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Abstract—Additive linear logic, the fragment of linear logic
concerning linear implication between strictly additive formu-
lae, coincides with sum-product logic, the internal languge of out of reach
categories with free finite products and coproducts. Decidig . ’ . .
equality of its proof terms, as imposed by the categorical has, . Th!s paper _presents a new no_tlon O,f prgof .net, doidi-
is complicated by the presence of the units (the initial and tive linear logic the fragment of linear implication between
terminal objects of the category) and the fact that in a free additive formulae, including a canonical treatment of tive t
ietting dprqdycts IandthCOPQOdetSCdok nt(t)t d(;StSriblite- Thle (lféeLSt additive units, which have thus far not appeared in proas.net

nown desicion algorithm, due to Cockett and Santocanale ; ; ; .
2009), is highly involved, requiring an intricate case anajsis on To quote Girard, in [7, Appendix A.3]:

the multiplicative units that is canonical with respect b t
semantics provided by-autonomous categories has remained

the syntax of terms.

This paper provides canonical, graphical representationsf the
categorical morphisms, yielding a novel solution to this deision
problem. Starting with (a modification of) existing proof nets,
due to Hughes and Van Glabbeek, for additive linear logic
without units, canonical forms are obtained by graph rewriting.
The rewriting algorithm is remarkably simple. As a decision
procedure for term equality it matches the known complexity of

There is still no satisfactory approach to additive
neutrals [...J The only way of handlingT is by
means of a box or, if one prefers, by means of
a second order translation: on this Kamtchatka of
linear logic, the old problems of sequent calculus are
not fixed. The absence of a satisfactory treatment of
T calls for another notion of proof-net. ..

the problem. A main technical contribution of the paper is the

substantial correctness proof of the algorithm. Sum-—product logic

Additive linear logic is also known asum—product logicit
is the internal language sum—product categoriesategories

Proof nets, introduced by Girard in the seminal [6], are @at have all finite products and coproducts. Free sum—gtodu
beautiful, geometric description of linear logic proof.€bh categories are the finite, discrete versions of Joyal's free
aim to reproduce the qualities of the conjunction—impl@at picomplete categories [11], which are free completiongwit
fragment of intuitionistic natural deduction, that haved®a g |imits and colimits. As such, free sum—product categ®ri
it into a prominent model of computation, via the Currygre characterised by theoftnessproperty described in that
Howard correspondence. The specifics of this mo'[ivatiomzhayaper (and expanded on in [10]), a property related to cut-
been described in subtly different ways: proof nets are Eimination and the subformula property in logic.
remove the uninteresting, bureaucratic permutations fiteen ¢ t-elimination for sum—product logic was investigated by
cut-elimination procedure in the sequent calculu_s; totilen cockett and Seely in [4]. They show that it reduces the
proofs that are ‘morally’ the same; or to obtain confluerfqyeq problem—deciding equality of (proof) terms—for sum—
cut-elimination, to name a few. A natural interpretatiomtth product logic to a small set of simple permutations, making i
subsumes those above, is that proof nets aim to be a canonigligable. However, this observation does not give a toeta
representation of proof in linear logic, with respect to it§igorithm, as the equivalence classes involved are exponen
categorical semantics (see [15] and [1]). This means thg[gily sized. One factor complicating the search for an ffit
is a 1-1 correspondence between proof nets and categorig@lision procedure is the presence of the units, the categor
morphisms, in the way that normal proofs in negative intynitial and terminal objects; omitting the units, a simptation
itionistic natural deduction uniquely describe morphisms ¢ proof identity via graphs is described in [5]. Anotherfigt
free Cartesian closed category (see, e.g., [12]). absence of distributivity; products distribute over caprots

The original nets for linear logic were canonical, in thisn most situations where both occur, simplifying the proble
sense, only for the multiplicative connectives. It has BIOV considerably. In particular, no solution is provided byeori
exceedingly difficult to extend them to larger fragmentsl 8N tating the permutations as rewrites, a standard technique.
particular, to include the units, which are the neutral elata Recently, Cockett and Santocanale [3] have presented an

for the four binary connectives. A widely hailed succesgmtricate, polynomial-time decision algorithm for the wior

after a partla_\l result in .[7],_ are thg. canonical proof_ netsroblem for sum—product logic.

for the combined multiplicative—additive fragment of lare

logic, without the four units, in [9]. Successive approache !The original text reads, “...which are fortunately extrémeninteresting

to including the multiplicative units are [2] and [13], andn practice.” One can only guess at the reasons for quesgdhie significance
v 116 d 181, Alth h f th of the additive units; after all, they are an integral partioéar logic, and in

more recen.ty [ ] an [ ] thoug spmg of the propos e opinion of the author, and probably that of others whoehaerked on

representations have confluent normalisation, a treatmntthem, pose a demanding challenge with interesting techo@asequences.

I. INTRODUCTION



a € hom(A, B) introduction to products and coproducts, see [14]). For the

a X Yo X B2 Y X -y purposes of the present papELI(C) can be understood as a
A—B (to,t1) S — syntactic category generated by sum—product logic [4]ctvhi
x W yixyn xoxx Py Y =gory 9 y P g
will be described below.
0 x " 0 The objects inXII(C), ranged over by variable¥, Y, Z,
Xo—V Xy —V XY are given by the grammar
1 Xo+x: Wy x sty 4y X 5= A€C|0|1|X+X|XxX.
" s The sequent calculus presentation of sum—product lodjis- il
e Id X— YSOtY —Z Cut trated in Figure 1, provides a term calculus for the morpkism
X —X X —7Z in 3I1(C), in which the cut-rule and identity-rule are admissi-
ble. The permutations in Figure 2 form an equational theory
Fig. 1. Sum-product logic over proofs in sum—product logic. In the syntactic desaipt

of the category, the morphisms BfiI(C) are the equivalence
classes of (cut-free, identity-free) proofs [4].
Sum-—product nets The notation for the connectives was chosen to agree with
The proof nets presented in this paper provide graphidhht of [4], and is natural given the intended interpretats
representations of proofs in additive linear logic, thaé arcategorical products and coproducts. To retrieve the iootat
canonical with respect to the categorical semantics of freg¢linear logic, interpret the unit as T, and the connectives
sum—product categories, constituting a novel solutiorh&rt + and x respectively asp and&. The case of additive linear
word problem. logic is given by choosing a discrete base categdrfone
First, in Section Il, the proof terms of sum—product logigvith only identity morphisms).
are translated t@um—product netsproof nets similar to the A sum-—product net will consist of a source object and a
unit-free MALL-nets in [9]. These are canonical for the wnittarget object from the categoyII(C), and a collection of
free fragment, and factor out the permutations of that do nlinks connecting vertices in the syntax tree of the former to
involve the units. This sharply isolates the challenge gdse vertices in that of the latter. Two example nets are drawn
the additive units, in the form of an equational theory ovdrelow, together with the terms they represent.

sum—product nets, induced by the remaining permutations. ido

This equational theory is addressed by rewriting to caradnic /@ /@\ @\
forms. The rewrite algorithm, callesaturation is extremely @ @ \\®
simple, and is the first main contribution of the paper, pre- N idg N e
sented in Section Ill. As a decision procedure—consisting O—O@
of translating terms to proof nets, saturation, and testing , ,
syntactic equality—it shares the polynomial time compiexi [(to 0 ida), (11 0 idp)] [7 Y]

of the decision algorithm by Cockett and Santocanale [Jhterpreted informally, nets are to be read from left to tigh
The correctness proof for the saturation algorithm is highBolid edges in the object trees correspond to projectiods an
involved. This is the second main contribution of the papenjections, while dashed edges correspond, roughly, te (th
discussed in Section IV. application of) the inference rules-, —) and [—, —/. Links
The nets obtained by saturation form a syntactic charamrrespond to axioms, and are distinguished from solid dge
terisation of free sum—product categories. Section V aeglo in the object trees by being slightly detached from vertices
composition and identity morphisms in this context. For the formal definition, theertices(or position3 in the
syntax tree of an objeck are given as binary words, with
¢ the empty word and<) the standard prefix ordering, and
For the remainder, fix a catego6/and denote by:II(C) collected in the sepos(X ). The subformula ofY at a vertex
its free completion with products and coproducts (for apis denotedX,, and % is Y’ will mean X, = Y when X is
understood. In this definition, if is a product or coproduct it
has childrerw0 andv1, and none otherwise.

Definition 1 (Pre-nets) A XII(C)-pre-net(X,Y, R) consists
=70y of a sourceobject X, atarget objectY and a relation

Ltio?2="7 R C pos(X) x (hom(C)w{*}) x pos(Y)
(?,?)="7 such that for any(v,l,w) € R, if [ = x then X, = 0 or

Y, = 1, and otherwisd € C(X,,Y,,).
(Tto,ta]: [s0,51]) = [ toss0)s ftrss1)] o= (o Yos)
Variablesf, g, h and k are used for pre-nets. THaks
Fig. 2. Permutations in sum—product logic in a pre-net are the elements, [, w) of R, which may be

Il. SUM—PRODUCT NETS

tio(tom;) = (;0t)om; l=lom
tio[t,s] = [t 0t,1;08]

(tomy,som) = (t,s)om;



rendered(v, w) when the label is understood or irrelevant. e f f,,_u--'o\
Alink (v, *,w) (the labelx will be omitted from diagrams) is e o ®
aunit link; if v is 0 it is aninitial link, if w is 1 aterminal T 7
link. A link labelled with aC-morphism isatomic

A switchings of an objectX is a function choosing one
branch of each product vertex{(v) € {0,1} if X, is a
product, while otherwise(v) is undefined. The dual notion of /Ot £
a co-switchingis a function choosing branches on coproduct ®/ -":ﬁﬁ::Q o
vertices. A vertexw is switched onby a [co-]switchingg, AN ey
written ¢ O w, if for any ancestor (i.e. prefix) ofv that is a O If, g]

- fiu
[co]product,¢ selects the branch containing 0

chw A (vi <w Ave dom(g)) = ) =1i. Fig. 3. Net constructors

A switching for a pre-netX,Y,R) is a pair(s,7) of a co-
switching¢ of X and a switchingr of Y. A link (v,w) is illustrated in Figure 3. Using the notation

switched orby (¢, 7) if ¢ v andT O w. W R A v, Lw) | (v, Lw) € R}

Definition 2 (Nets) A XII(C)-netis a pre-nef that satisfies

the following correctness criterion (ttevitching conditioh R-u {tv, Luw) | (v, w) € R},
« Any switching(s, 7) for f switches on precisely one link. the constructors are defined, on pre-nets, by

Let NET denote the set of alLII(C)-nets. m(Xo x X1);(Xi,Y,R) 2 (Xo x X1,Y, i+ R)
Sum-product nets without units form the purely additive
fragment of the MALL-nets by Hughes and Van Glabbeek [(X,Z,R),(Y,Z,8)] £ (X +Y,Z,(0-R)U(1-S))
[9, Section 4.10]. The addition of unit links has only minor
technical consequences, which are due to the fact thateunlik (X, Y;R), (X, Z,8)) = (X,Y x Z,(R-0)U (S -1))
atomic links, unit links may connect to non-leaf nodes. A
How diagrams and definitions relate is illustrated below. (X, Y5, R);u(Yo +Y1) = (X, Yo + Y1, R-0) .

ida 0 The translation from (cut-free) proof terms to nets, imiplic
@ @ in the naming of constructors, is made explicitfag] below.
e 10 €
SN o B []=7% [ix]=!x [e:4— B]=(4,B,q)
N AN
o9 [Foml=msld  [ft:s)] = ([t [s])
©)
1 [/t, /] = [1t], [s]] [ej o t] = [t]5y
(A+0, A+ (1x1), {(0,ida,0), (1,%,1)}) Applying a constructor is calledonstruction the reverse

) o i _ deconstruction A pre-net of the formm;;f or [f,g] is left-
The edges of nodes subject to (co-)switchings (in the Switcly sty ctible one of the formif, g) or f;1; right-constructible

ing conditiqn) are dashed. The switching condition can tlﬁ'le that is eitherconstructible and one that is bothbi-
separated _|nt0_ an at—least—_one and an at_—most—ong Part fistructible Both construction and deconstruction preserve
pre-net satisfying the latter, i.e. one for which any switth o switching condition, and moreover, all nets are basic or

(c,7) switches on at most one link, is calledpartial net  .,nqurctible. This gives theequentialisatiorresult below,
(An insightful way of gaining familiarity with the sSwitch@ ,ich, states that all nets correspond to some term.
condition is by convincing oneself that there are no natural

nets fromA x (B + C) to (A x B) + (A x C), showing that Proposition 3. NET is the smallest set containing all basic
sum and product do not distribute.) nets, closed under construction.

The proof terms of sum—product logic suggest an inductive g j5 5 minor variant on the analogous result by Hughes
construction method for sum—product nets. Using the abb%{aﬁd Van Glabbeek in [9].)

viation (X, Y, 1) for (X, Y, {{e, l,)}), there arebasicnets For bi-constructible pre-nets the following equations are
©—O O—@ @—2 immediate from the definitions, as illustrated in Figure 4.

7y 2 (0,Y,%) e 2 (X,1,%) (4, B, a) Proposition 4. Construction of pre-nets satisfies:
for eachX,Y e XII(C) anda € C(A, B), corresponding to (misf)iy = ms(fy) (bl [g k) = [(f,g), (b, k)]
the axioms—note the upright font, to contrast with termsif g];i; = [(f;1;), (g;)] ((r558), (m552)) = m;(f, g)

Inference rules coincide with the fospnstructors These equations correspond to the four equations on the left

(mi(X);—) [—, -] (—,—) (—yY)), in Figure 2; precisely those not involving the units.



The notationf{g}, ., denotes a pre-ndtwith the sub-pre-
S O\ netf, ,, replaced by a parallel pre-ngt Formally, for pre-nets
\® f=(X,Y,R) andg = (X,, Yy, S), define the following.

/

o R{Shw & {0 L) €R [0 Vi £/} Uw-S - w)
Qb ( Qb O Hehow = (XY, R{S}w)

g EEERN The general form of rewriting in context is given by the
W s following relation.

fH{eglvw FglhBvw f{h}ow

Fig. 4. Bi-constructible nets The relation=g|h}=, ., replaces the pre-net between ver-
ticesv andw, which is required to bg, with the parallel pre-
net h, leaving the context intact. An equivalent formulation

D < \® l=1om would bef Hf, ,, |h [z w f{h}, .. Dropping the subscript
v, w indicates the union over all andw.

Definition 6 (Equivalence) The equational theorys (equiv-
/O /O\ alencg on XII-nets is the equivalence relation generated by
, Z /@ L= /11 the following four relations.

o o {mile UL 20100 2%k

/ These four rewrite rules are the equivalences illustrated i
@—— R O) ?2=1907? Figure 5, interpreted as rewrite steps from left to right, on
subnets. With some effort, it then follows from the deséoipt
of free sum—product categories by Cockett and Seely in [4],
O\ O that 3I1-nets up to equivalence, too, characterise free sum—
N roduct categories.
® ?2=(2 P 9

O/ Proposition 7. For cut-free proof termst and s of sum—
product logic,
Fig. 5. The unit laws force an equational theory over nets

SII(C) Et=s <= [tj<s] -
Of the remaining equations in Figure 2, those involving I1l. DECIDING EQUIVALENCE OF NETS
the units, only?; = lo is factored out (by labelling initial  The equivalence relation over nets will be decided by rewrit
and terminal links uniformly). The other four will form aning equivalent nets to a common canonical form. A natural
equational theory over netgquivalence(<), illustrated in first question is whether a suitable, confluent rewrite i@hat
Figure 5. The natural way of defining it is via graph-rewigtin can be obtained by orientating the equivalence rewrites, i.
as rewrite rules that replace one subnet with another—whibip restricting them to one direction. Two straightforward
firstly requires a notion of subnet. In the general notionta sucandidates are to rewrite towards the leaves or towards the
pre-net of( X, Y, R) will mean a pre-net between subformula¢he roots of the trees. In fact, neither option is confluent.
of X andY’, with a subcollection of the links between them: &or the first, an example of non-confluence is illustrated in
pre-net(X,,Y,,S) such thaty-S-w C R. Call two pre-nets Figure 6. For the second option, the situation is more delica
parallel if they have the same source objects and the sake non-confluent example in Figure 7 could in principle be

target objects, and define, on parallel pre-nets, resolved by introducing a novel kind of link connecting both
. root nodes, while preserving the switching condition as the
(X,Y,8) C(X,)Y,R) <= SCR, correctness criterion for nets. However, the non-conflaenc

of the example in Figure 8 has no solution along these lines.

and, for a pre-nef = (X, Y, R), If confluent rewriting is impossible without breaking the

Row 2 {0 1w) | (00,1, ww) € R} switching condmon3 th_e obvious next step is t_o break |t¢ffh
’ when two nets rewrite into each other, the easiest way tarobta
fow = (Xo,Yu, Row) - confluence is to combine the links of both, as in the example of

o _ Figure 9. This gives a simple rewrite relation calkaturation
Definition 5 (Subnets) A sub-pre-neof a pre-neff is a pre- o define the saturation relation a different form of rewagti
netg C f, .. If gis a net, it is asubnetof f. is required, whereby links are added to a net, rather than



. o
g O——0
@< _° o

) . . Fig. 9. Saturation
Fig. 6. Rewriting towards the leaves is non-confluent

v andw. In order to provide saturation with a standard notion
of termination, the irreflexive varianty™ is defined. Both~>
and ~~ will be referred to as saturation, with the distinction
N @ only made when necessary.
S Proposition 9. The saturation relation ) is confluent and
® strongly normalising.
174
Fig. 7. Rewriting towards the roots is non-confluent (1)
o mitiy e
/@ ®\
69\\ X //® \
@@ ——0 iy ——@
A\
JoRoN JoRggol
7/ A / N\
@/< /@ @\ %® /O /O
\ G N / 7/ \ 7 \
N Y% N N
2 @) O
O O
Fig. 8. Rewriting towards the roots is non-confluent (2) , 7 , 7 \
G0 LI E—=0
replaced. Let thainion of two parallel pre-nets be the union O O
of their collections of links, /O\ /O\
AN N\
(X,Y,R)U(X,Y,S) 2 (X,Y,RUS) . @\ O AT @\—,®
/ 7/
A statement = f{f’ Ug}, ., then expresses the condition that o o
a pre-neff must haveg as a subnefg C f, ,, (wheref’ holds O, /O\
the other links inf, ,,). Define a second rewrite relation: N N
O——0 Iy 0T —0
f «(g|h)«> f{f, w U}y w if g Cfw - O/ O/
Definition 8. The saturation relation ~ on pre-nets is the
union of the following eight relations. @/ 2510 | 29y @/
~ms D (BT D7 ATy 7
~rsty ~H D AP A2 70
The relation~~ is the irreflexive restriction of. ©) ~7| 250 @/

The eightsaturation stepsn Definition 8 are illustrated in
Figure 10. In general, the relation(g | h)  is reflexive for
nets that already have (andg) as a subnet between vertices Fig. 10. Saturation steps



Proof: For strong normalisation it is sufficient to observgroposed way. The first is that a saturated sfets the union
that each step in~~ adds one or two unit links to a pre-of all nets equivalent té—a fact that will follow from aspects
net, while the number of unit links in a pre-ngX,Y,R) is of the eventual soundness proof, and will have a separate use
bounded by the size qfos(X) x pos(Y). in characterising composition of saturated nets. Desptegb

For confluence, lef = (X,Y,R), letg = (X,,Y.,S), naturally suggested by the proof idea above, the statersent i

and leth’ = (X,,Y,,7). Observe that the result of applyingdifficult to prove in the way suggested. In particular, thegry
a saturation step{(g | g’ tof is just link in of belongs to some net equivalent tovould follow
, " by induction on the saturation path, if not for the saturatio
HfowUghw = XY, RUv-S-w). step below (and its dual).

The following diagram shows local confluence fe¥.

O O
(X.Y.R) & Do - 60
- AN AN AN
(818" )v,w (h|h')zy O O
(XY, R U 0-8-w) (X,Y,R U z-T-y) The Ieft-han(_j side of this st_ep contains two links; even if
“ - each occurs in some net equivalent tdor the corresponding
(h|1) (g|e') equivalence step to apply, both links must occur together in
€,y v,w

single net, and it is not obvious how to show this is the case.
N g One approach to the above problem would be to charac-
X, YRUv S wUz-T-y) . L
terise, for a saturated net, the nets whose saturation it is;
Then also~~ is locally confluent, and in the context of strongfall such netsepresentativesf the saturated net. A simple
normalisation this implies~~ is confluent. m Potential answer, that any subnet of a saturated net would be
The normal form of a pre-nétw.r.t. ~ is denotedsf, and, a representative, turns out to be false: the saturated et be
if  is a net, is called aaturated netThe idea is that saturation!eft (the saturation of;(,) has that on the right as a subnet,
provides a decision procedure by comparing saturatedirets, but the latter is already saturated.
f < gif and only if of = og.

Theorem 10(Completeness)For netsf andg, if f < g then
of =og.

The completeness proof of this decision procedure is
straightforward: two net§ < g that are equivalent by a single
rewrite step have saturation step)s~ h andg ~ h with a
common targeh; the statement then follows from confluencein fact, no representative of the saturated net on the left
The soundness theorem is stated below; its elaborate preghtains both links from the net on the right.

will be the subject of the next section. The main difficulty of this proof idea, however, is the
Theorem 11 (Soundness)For netsf and g, if of = og then final step it suggests, of showing that the equivalence efass
feg. represented byf andog overlap. Without a characterisation

of representatives, there are not many immediate indicatio
left on how this should be approached.
A natural approach to proving the soundness theorem wouldThe previous served to illustrate how saturation is difficul
be by induction on the saturation pathsadfandog; e.g. for to characterise, and prove properties of, via saturatidghspa
f this is a sequence alone. Instead, therefore, the soundness proof will prbcee
by induction on the source and target objects of nets, and
Eyh »h 5o 5ot rely on a different description of saturation, which follethe
One could imagine a proof to proceed as follows. Each stiageconstruction of a net. For space reasons many technicalsdeta
in the saturation path would be taken to represent a caliectiare necessarily omitted.
of equivalent nets, by their union, with representing just  ag a first overview, there will be three cases, for nfetsid

itself. A saturatiop steffy “(g|h}\>v_,w fr+1 would then o with the same saturatiopX, Y, R):
create the collection ofy,; by closing that off, under

the corresponding rewrite steg}g | h}=, . TO complete the
argument, it would suffice to show that iff = og then the
collections of equivalent nets that both saturations &gt
which containf andg respectively, share at least one net. The first two cases are relatively straightforward, and ‘4l

A proof along these lines faces several obstacles, mainlytieated in the next subsection. The main body of the proof is
the form of statements that are true, but hard to prove in thencerned with the third case, which is that of ngts and

IV. THE SOUNDNESS PROOF

« one of X andY is an atom or unit,
e X is a coproduct ok is a product, and
e X is a product and” a coproduct.



7;;¢ as illustrated below. Lemma 13. The saturation of initial and terminal nets is full.

The second case of the soundness proof concerns nets whose
source is a coproduct or whose target is a product; call these
coproduct netand product netsrespectively.

There are three main obstacles to overcome. /O O\

1) Inductive saturation:To apply the induction hypothesis [ O O ®
it must be possible to relate, e.g., a saturatedoriéti), to AN .7
the saturation of its component net, This will be addressed O )

by Lemma 18, which describes saturated neftsnductively, A product net is right-constructible unless it containskéin
on the construction of. Subsection IV-B presents supportingy, ¢) connecting to the root of its target. Such a link must be
material for the lemma, whose main content will be discusse initial link, and can be moved away from the root by the

in Subsection 1V-C. following equivalence step. This gives the lemma below.
2) RepresentativesThe second obstacle is that nets con-

structed over different projections and injections, é;g, and O\ /O\

mo;g, but alsof;iy andg;i;, may have the same saturation; O—® = © ®

naturally, in such a case the induction hypothesis cannot be d \ d

applied toof andog. This will be solved by Lemma 19, which, O O

for a saturated netf, finds a representativg equivalent | emma 14. A product netg is equivalent to a netgo, g1). A
to f containing given initial links(v,e), or terminal links coproduct net is equivalent to a nefty, f;
(e,w), from of. From the presence of these links it can then

be deduced thag is left-constructible or right-constructible, A similar result holds for the saturation of (co)productsiet
respectively, and over which projection or injection it igor a net(f,g), if first the saturation steps ifi and g are

constructed. This is described in Subsection IV-D. applied, the remaining steps to be applied(¢d, og) are of
3) Deconstruction alone may not sufficehe third obstacle the following kind.

is that nets constructed over the same projection or imjecti 0 O

e.g.f;p andg;ly, may have the same saturation, while their / N / R

componentsf andg, do not. By isolating the exact cause of © ® ~» @—O®

this discrepancy it will be possible to transform the figt \O/ \Q/

into an equivalent neh;.y, such thath does have the same

saturation ag. This will be treated in Subsection IV-E. Applying these steps completes the saturatioff of): after a

step of the kind above, to the newly added link no saturation
. steps apply, as the only possible step would be the reverse.
The first case of the soundness proof concerns parallel ngfsreover, the links added by these steps are all of the form

whose source or target is an atom or unit. For nets with sourGe <) and thus, irv (f, g), illustrated below right, separate from
X and target’, this gives six, pairwise dual, possibilities. Foufinks in of andog.

are immediate: ifX is an atom orl, or dually if Y is an atom

A. The first two cases

or 0, illustrated below, it is easily observed that no rewrite or ag‘,“-o\
saturation steps apply. Oﬁ:’“' \® ~
@ O @ e 0O O @ Q e © og O/

For such netd andg, it follows that if of = og thenf=g. | emma 15. Saturation of (co)product nets satisfies:
For the remaining two cases, nets with source objewill

be calledinitial, and with targetl, terminal The links in an (olfo,f1])ie = of; (0(g0,81))ei = 08i -

initial net (0,Y,R) can move up and down the syntax tree

of Y essentially without hindrance. From this Lemma 12 and Using the two lemmata on (co)product nets, the present

Lemma 13, below, follow. case in the soundness proof will be completed. For parallel
product net$ andg with the same saturation, Lemma 14 gives

Lemma 12. All parallel initial nets are equivalent, as are all equivalent netéfo, f1) and(go, g1) respectively. By Lemma 15

parallel terminal nets.

This proves soundness of saturation for initial and terinina ofi = (o(fo,f1))ei = (0(80,81))ei = 08

nets, and_ alt_houg_h it need not refer to satu_ra_lted nets, thf%'rrz‘ € {0,1}. The induction hypothesis of the soundness
characterisation will be useful. Call a pre-fiiefl if it contains

all possible unit links (but no atomic links), i.e. one of fioem proof givesf; < g;, and the equivalences below follow.

(X,Y, {(v,*,w) | X, =00rY, =1}) . f e (fo.f1) © (g,81) < g



B. Pointed and copointed nets base cases, saturation of the basic f@t%’, ) and (X, 1, x)

A pointis a map out of a terminal objectcapointone into S full, by Lemma 13, while no saturation steps apply to a net
an initial object. An object that has a [co]point iso[pointed (4, B, a). The saturation of netg, h) and[g, h] was described

In free sum—product categories the pointed and copointédormally in Subsection IV-A, leaving the cases;f andg;L;
objects are given by the following grammars, respectively. (illustrated below fori = j = 0).

P :=1|P+X|X+P|PxP " .
Q =0[Q+Q|QxX|XxQ “o O

Here, X may be any object: pointed, copointed, or neither.
Note that an object is never both pointed and copointed, andAS an example, the saturation gfi, = (X,Y,R) from

that in X11(2), the free sum-product complguon_ of Fhe emF’%g can be described as follows. Firstly, any rooted initiaklin
category, where atoms are absent, every object is eithetgubi (v, ) in og forms an initial subnet betweenand the root of

or copointed. Y in (og);1, which will be filled. Secondly, since copointed

A categorical map that fa_ctors through a pomt,_ .€. ONats consist of initial links, ibg contains a copointed subnet
of the formp o !, wherep is a point, is calledpointed

hat h h ™~ inted Pointed q C (0g)v,e, the duplication of initial links will produce a
one that factors through a copoifto g, copointed Pointed -, inteq subnet, in the saturation gfiy, betweenv and

andcqpointednets are defined slightly more narrowly, by th%nyw in Y. Then if w is pointed, such a copointed subnet is
following grammars over the net constructors. bipointed. Lemma 18, below, states that filling these bifszin
p = !|p;y | (p,D) q = ?|[q,dq] | m;q . subnets completes the saturationgof. .

_ o In a pre-netf = (X,Y,R), say that a vertew in X
Up to equivalence, the definition corresponds to the categjor nas arooted copointed subnef there is a copointed net
one, but it requires pointed and copointed nets to have t&ec f,.. If v is minimal among the vertices ik that
f0.||-OWIITIQ syntactic form. CaII.a terminal linke, *, w) and an have rooted copointed subnets finthen v is said to have
|n|t|_aI link (v,x*,¢) roote_d p0|_nted nets are t_hose consisting, maximalcopointed subnet; lewAxcp(f) denote the set of
entirely of rooted terminal links, and copointed nets thosg,ch variables ifi. Dually, letMaxp (f) be the set of variables
consisting of rooted initial links. in Y that havemaximal pointed subnets.e. are minimal

A map that is both pointed and copointed will be callegmong the vertices that haveoted pointed subnets.
bipointed Bipointed maps feature heavily in the decision

procedure of Cockett and Santocanale [3]—where they d@mma 18. For a netg;i; let og = (X,Y),R) and let
called disconnects-because of the following property: thereo(g;;) = (X,Y,S). ThenS = (R-j) U I' U A, where
is preci_sely one bipointed map from a copointed_ objéct T = {{v,%,w) | X, =0, (v,%¢) € R}

to a pointed object?, and none between other objects. The

uniqueness property is easily observed from the fact that in A = {{v;xw) | Xy, =00rY, =1,

the diagram below the copoigtand the poinp are arbitrary. F’ < v. v € MAXCP(0g),

! Juw' < w. Y, is pointed}

Q 0 1 P The casert;;f is dual. The lemma is proved by showing that
q ? . ..
N T its description of a saturated net,@$, Y, (R-j) UT U A),
? is closed under-.

The corresponding notion for nets will again be restricteB .
. ) L . Deconstruction of saturated nets
to a useful syntactic form: let hipointednet be a net from a _ _ o
copointed to a pointed object that is itself pointed or cofezi. ~ The previous lemma (Lemma 18) illustrates that retrieving

The properties of bipointed maps carry over, by the follayinthe saturation of from that of f;, is easy in some cases,
two lemmata. but not in others. A simple case that follows immediately,

for example, is thatr(f;iy) = (of);1 if and only if of

Lemma 16. Any two parallel bipointed nets are equivalent. oonains no rooted initial links. For the remaining part of

Lemma 17. The saturation of a bipointed net is full. the soundness proof, on nets from products into coproducts,
] ) ) this solves the case for saturated nets that are constructib
C. Saturation via construction However, this need not be the case; and moreover, parallel

Previous lemmata showed that the saturation of initial, tamets constructed over different projections and inje&jcas
minal, and bipointed nets is full (Lemma 13 and 17). The neilustrated in Figure 11, may have the same saturation {lowe
result will be that saturation is completely described big thright). For an inductive proof this is clearly problematior
dynamic, i.e. by the filling’ of initial, terminal, and bipeted netsf;i; andm;;g, with the same saturation, equivalent nets
subnets. This enables, and is proved via, a charactensatio must be found that are constructed over the same projeation o
saturation by induction on the construction of a net. For thijection. In other words, equivalent nets must be found tha



© These two netsyg;7;1p andmy ;?; 19, have the same saturation,
& & which is full. However, their componentsy;?” and 7t;;? do
5 ® not: they are already saturated. That this is a general @mobl

can be observed from Lemma 18. Consider the saturation of
a net(f;i), with a pointed targel”, described by

© Q——
- \ @ (of);0 U T U A
o © (abusing notation). With™ pointed, if a vertex has a maximal

copointed subnei in of, the subnet betweemande is filled,
Fig. 11. Differently constructed nets with the same saimat by A. Now supposeg is identical tof, except thatv has
a different maximal copointed subnktin the saturatiorog.

) Thenf;i, andg;i, have the same saturation, litandg might
allow the deconstruction of a saturated net along a certajg; The solution is illustrated below.

projection or injection.

Fortunately the examples in Figure 11 also suggest a so- o L R v
lution. The two nets on the left are both bipointed, and thus O S O
equivalent (by Lemma 16). Then for the one top right, it needs
to be shown that from the fact that its saturation is full, it
follows that it is equivalent to a bipointed net. Since ndt al
saturated nets are between pointed and copointed objects, a v c v
generalisation is needed. Recall that a partial net is anpte- o & O
that has at most one link for each switching. Call a partial ne
[colpointedif it consists entirely of rooted terminal [initial]

links—note that in this definition the target of a partialpeid  1he Subnets andk need not be e/quivalen.t, byt andlk;i
net need not be pointed. are. They are equivalent tg andk’ by moving their links up

to the root (eachu, 0) becomegu, €)). Becaus&” is pointed,
Lemma 19. If f is a net andq C of is a partial pointed or ¢’ andk’ are bipointed, and hence equivalent by Lemma 16.
copointed net, then there is a nets.t.q C g andf < g. The generalised application of this idea is as follows. Isne
This solves the deconstruction problem, for ngts and f;1o andg;i have the same saturation, it can be shown that
m;;g, as follows. Suppose the saturation fifi; is non- the_same vertices have maximal copointed subnets aﬁ’_
constructible (i.e. not of the form;;h or h;i;, nor (h,k) asinog. It may be assumed, by Lemma 19, that a maximal
or [b,k], for any pre-netsh and k). This can only be the copointed subnet off is also a subnet of. Then a neth. is
case if the saturation df contains rooted initial links, which formed fromf as follows: for every vertex that has a maximal

rewrite from (v, j) in o(f;;) 1o (v, ). Then the above lemma COPOINted subneq in £ and onek in g, replaceq in f with
provides a net equivalent tof;; containing (v, ), since X Thenhsio is equivalent tf;i, by the above reasoning (the
this link constitutes, on its own, a partial copointed sutnfe €duivalence ofy;y andk;i), while h andg have the same
o(f;1;). Now h, containing(v, ), is not right-constructible, saturation, allowing the induction hypothesis to be amplie
and so must be left-constructible; moreoverQif< v then

h is constructed overy, and if 1 < v then overm;. Since .
the saturation oft;;g contains the same linky, ), it has an The soundness result, together with completeness, means

V. THE CATEGORY OF SATURATED NETS

equivalents constructed over the same projectiontas that sz_;lturat_ed nets are in one-to-on_e _Corresp_ondence with
. morphisms inXII(C). A complete description of this category
E. Completing the proof requires also composition and identities to be defined. Aulise

The final case in the soundness proof, for ntand g result in this respect is the characterisation of saturatsd
between a product and a coproduct, is nearly complete. It was unions over equivalence classes of nets.
_shown_ that if their _(common) satL_Jratl_on is c_onstructlbhe t Proposition 20. The saturation of a nett is | {g | f < g}.
induction hypothesis can be applied immediately, and that i
it is not, there are equivalent nef'si; andg’;t; constructed Identity nets are the translation and saturation of idgntit
over the same injection (or projection). A final obstacle igroofs in sum—product logic: netg(idx) where
the fact that their component$ and g’ need not have the . A eq . . N
same saturation, and indeed need not be equivalent. Théesimp '“X+Y = [(idx;t0), (idy ;1)) ido =
example below illustrates the idea. idygy = {(03id x ), (101;idy)) idy Iy .

©——@ (© @ Hughes and Van Glabbeek established composition for unit-
& D & / D free nets as relational composition [9]. Define, for presnet
® @ o @ (X,Y,R) o (Y,Z,8) 2 (X,Z,50R)

%0

1>



(denoting relational composition by) labels! and k may the algorithm by Cockett and Santocanale [3] has a time
be composed ag o [ if both are morphisms irC, and *+ complexity bound of

otherwise). In the presence of the units, this does not work

immediately: the following composition would be empty. O((hgt(X) + hgt(Y)) > | X] x [Y])

o (wherehgt(X) is the height of the syntax tree df).
P \ Correctness and sequentialisatioA: tractable algorithm to
©——— . @\ ©) find representatives of saturated netssequentialisationcan
\O/ be obtained from the soundness proof, using, in partictiar,

inductive characterisation of saturated nets. Such arritigo
As is clear from this simple example, relational compositiogsq constitutes a correctness criterion, separatingatatl
does work for nets whose links only connect to leaves—cakts from arbitrary pre-nets. A useful addition would be an
thesecomposable-and, by moving unit links up towards thegjegant combinatorial correctness criterion, such assiplys
leaves, any net is equivalent to a composable one. Furtlieyme, modification of the switching condition.
that composition preserves equivalence follows by a compar games semanticsA fruitful branch of research into logic,
son with the cut-elimination procedure for sum-—producidogjinear or otherwise, is that of game-theoretic semanti¢ghv

in [4], which it closely resembles. interprets formulae as two-player games and proofs as (win-
Lemma 21. For composable nets, i< ' and g < ¢’ then ning) strategies. Sum-product nets admit a simple game-
(fog) = (feg). interpretation, where two games are played in parallel,ame

- the source object and one on the target object. It appears tha
For non-composable nefsand g the composition’ e g’ saturated nets, viewed as strategies, exhibit interesfamge-

of equivalent, composable nets < f andg’ < g may be theoretic properties concerning this parallelism, opgném
used; this does not define a unique result, but by the abaMgriguing angle for future work.

lemma the possible outcomes are equivalent. Consequintly,

the category of saturated nets, the compositioafoind og ACKNOWLEDGEMENTS
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