
Graph Rewriting for Natural Deduction

and the Proper Treatment of Variables

Willem Heijltjes

Master’s thesis

Thesis supervisors:

Prof. Dr. Albert Visser
Dr. Vincent van Oostrom

Department of Philosophy, Utrecht University

2007

Preface

This thesis has been over one year in the making. Well over four times the
allotted time, its size has grown to match, reaching four times the minimum size
requirement. This to the horror of my supervisors, Albert Visser and Vincent
van Oostrom, who had to read countless intermediate versions of the document,
of which sometimes not a single letter made it to the final version.

Meetings with either of my supervisors usually followed the same outline:
—Willem: Good afternoon! Did you have a chance to read what I sent you last
night/week/month?
—Albert/Vincent: I’m afraid not, but I was just about to. Maybe you can
explain things as we read along?
—Willem: Well, in short, I’ve come across such–and–such a problem, and I
found solutions A and B. Solution B is a little more elegant, but also requires
an overhaul of most of what I’ve written so far.
—Albert/Vincent: Yes, I prefer solution B as well. Until next time, then!
Despite their simple format meetings could last several hours, during which we
discussed many problems, solutions and philosophical implications, mostly to
do with retrieving the email in which I sent the latest documents.

If I was well-prepared and supervision meetings were light-hearted, that was
mainly because my preceding education by both Albert and Vincent has been
downright excellent. During the last few years I took several of their courses,
and I dare say that all of the skills I learned there were used in the making of this
thesis. Wherever I go next, if it’s not the Philosophy Department in Utrecht,
I will surely miss Vincent’s witty jokes, which I practically always fell for, and
Albert’s heart-warming optimism, which generally far exceeded my own where
my thesis was concerned.

During the writing process I received support from countless other people,
mostly in the form of a comment on the aesthetics of my pictures, and there are
two people in particular whom I would like to thank. The first is my brother
Bart, who corrected the grammar, spelling and style of the introduction and the
first chapter; we guessed that anyone to get past that point is mainly interested
in formulas anyway. The other is my girlfriend Saskia, who, besides everlasting
love, provided me with the one thing that made this thesis possible: deadlines.

The public version of my thesis, the one before you, has as additions over the
submitted version this preface, and the illustrated cover pages. Also, some
minor errors in the appendices have been fixed.

Contents

Introduction 6

1 Natural Deduction 9

1.1 Building proofs . 9

1.2 Proof rewriting . 12

1.3 Free and bound variables . 13

1.4 Proper variables . 16

1.5 Substitution rules . 18

2 Proof Graphs 19

2.1 The propositional fragment . 19

2.2 Constructing and interpreting graphs 22

2.3 Bisimulation . 24

2.4 Backpointers . 25

2.5 The closing of assumptions . 27

2.6 The first-order fragment . 29

2.7 Substitution . 31

2.8 Binding of proper variables . 33

2.9 Dead terms . 36

2.10 Rewriting . 40

2.11 Translating proofs to graphs . 45

3 Formal Definitions 51

3.1 Constraint definition . 51

3.2 Pre-proof graphs . 57

3.3 Binding in pre-proof graphs . 60

4 Transformations 64

4.1 The trans operation . 65

4.2 The merge operations . 71

4.3 Adding and removing backpointers 76

4.4 The read operation . 80

5 Graph Rewriting 84

5.1 Rewrite steps . 84

5.2 Confluence . 87

6 Correctness and Completeness 90

6.1 Building a proof graph . 91

6.2 Reversibility of the translation 93

6.3 Reading back a proof graph . 96

7 Conclusions 99

7.1 Further investigations . 100

Bibliography 101

Appendices 102

Appendix A: Natural deduction schemes 102

Appendix B: Inference schemes for proof graphs 105

Appendix C: Rewrite schemes for proof graphs 111

Appendix D: Proof-to-graph translation schemes 116

Introduction

The name ‘natural deduction’ has, over the years, probably left many a student
wondering what on earth is so natural about these deductions. Usually the first
proof system taught, the student has to learn about open assumptions, closed
assumptions, and variables that may or may not occur in specific locations,
not to mention the peculiarities of some of the elimination rules, while still
struggling with the concept of creating formal proofs.

Any confusion about the name will abrubtly have ended the moment the stu-
dent was confronted with Hilbert-style or combinatorial proofs. Indeed, the
development of natural deduction in the 1930s was a response to the cumber-
some nature of the contemporary proof systems developed by Frege, Russell,
Hilbert and Heyting. The problem with those proof systems was that logicians
and mathematicians used a very different style of reasoning to obtain informal
proofs of their statements. Because of the differences between informal reason-
ing and the proof systems of the time, if one was to formally prove a statement,
one essentially had to start from scratch.

Determined to amend this, Gerhard Gentzen presented natural deduction in his
1935 paper1 in the form of the calculi NJ and NK, for intuitionistic and classical
logic respectively. Characteristic of the informal mathematical reasoning on
which it is based is the use of assumptions. This is illustrated by the example
Gentzen gives, a proof of distribution of disjunction over conjunction:

“Suppose that either X or Y&Z holds. We distinguish the two cases:
1. X holds, 2. Y&Z holds. In the first case it follows that X ∨ Y
holds, and also X ∨ Z; hence (X ∨ Y)&(X ∨ Z) also holds. In the
second case Y&Z holds, which means that both Y and Z hold. From
Y follows X ∨ Y ; from Z follows X ∨ Z. Thus (X ∨ Y)&(X ∨ Z)
again holds. The latter formula has thus been derived, generally,
from X ∨ (Y&Z), i.e., (X ∨ (Y&Z)) ⊃ ((X ∨Y)&(X ∨Z)) holds.”2

Despite its relative user-friendlyness, natural deduction initially hardly caught
on. In the same paper, Gentzen had presented another proof system, whose
variations are today known as ‘sequent calculi’ or ‘Gentzen systems’. These
systems outperformed natural deduction where classical logic was concerned
and garnered all the attention, while natural deduction threatened to fade into
obscurity. Remaining underground during the thirties, its gradual emergence
thereafter was mainly due to its suitability as an introduction to formal proof
systems.

The rise of computers created an interest in the properties of proof systems
1Gentzen [1935]
2from: Gentzen [1969]

6

themselves. The correspondence between proofs and computer programs, ex-
pressed in the Curry-Howard isomorphism, turned out to be particularly precise
for intuitionistic logic, more so than for classical logic, sparking a renewed in-
terest in the former. In 1965 Dag Prawitz developed proof normalisation for
natural deduction3. The more or less similar concept for sequent calculi called
‘cut elimination’ had already been present in the original paper by Gentzen, but
until then there had been no equivalent for natural deduction. This eliminated
the last fundamental advantage of sequent calculi over natural deduction, and
although sequent calculi are still considered the better choice for dealing with
classical logic, today both are widely studied and taught.

Another field that brought renewed attention to formal proof systems in general
is that of computational (or formal) linguistics. The main aim being to obtain
a formal representation of natural language, natural deduction has featured in
many attempts at this.

Somewhat more recent works approach natural deduction from a graph perspec-
tive4, mostly to address the complexity of the proof normalisation process. In
general those graph representations have ignored the formulas in a proof. This
thesis will present a version of natural deduction in which both a proof and the
formulas within it are represented in a single graph.

The main motive to include formulas in this approach was to get a better view on
the behaviour of variables inside a proof. In most versions of natural deduction,
half of the rules that deal with variables carry explicit restrictions with them
on where those variables may or may not occur. Although from a technical
perspective this is at most inconvenient, the question is whether there are more
fundamental reasons behind the need for these restrictions.

In the hope of being able to present a more elegant proof system, in this thesis
a graph system for natural deduction is constructed, with the correct treatment
of variables as the main premise. Whether in the end that will be considered a
success may turn out to be a matter of taste, especially since what the ‘correct’
treatment of variables exactly entails is itself very debatable.

The design of the graph system brings a lot of choices with it. The arguments
to make those choices will be technical, but sometimes a little philosophical as
well. This is not at all strange to works on logic: often, there will be talk of
structures being ‘essentially the same’, appealing to some unspecified intuition
on identity of formal constructs. This thesis will be no stranger to that phrase,
but it will attempt to provide grounds for that intuition whenever possible.

On the other side, the technical specifications of graphs can be quite elaborate,
and are often not that interesting. The informal description and the formal
treatment of the graphs have therefore been separated as much as possible. The

3see: Prawitz [1965]
4see e.g. Statman [1974]

7

first chapter will introduce the reader to a standard case of natural deduction
for intuitionistic logic, with the indication of possible areas of improvement,
while the second chapter will elaborately describe the design of the proof graph
system. Both these chapters refrain from giving formal specifications, so as not
to hinder the casual reader.

The remaining chapters will give the formal details. In chapter three, proof
graphs are formally described as a type of graph meeting certain specifications.
Chapter four focuses on how to turn a natural deduction proof into such a
graph, and the other way around. Chapter five presents the graph versions of
the rewrite steps for natural deduction. Finally, chapter six contains the proofs
that show that proof graphs can correctly represent all natural deduction proofs,
and vice versa, that all proof graphs represent a valid natural deduction proof.

The results in this thesis are relevant to several areas of the field of cognitive
artificial intelligence. Firstly, in the area of computational linguistics a host
of formal systems is used, of which several are based on natural deduction.
Moreover, many of the other systems face problems related to the presented
work. For instance, Discourse Representation Theory uses a semi-formal method
to process sentences for which ordinary first-order logic fails due to limitations
on variables. Research into the behaviour of variables in formal systems is
relevant to this theory and to other linguistic models, as is the investigation
into implicit underlying structures within natural deduction.

Also for any area of research connected with data representation, this thesis may
prove helpful. As a concrete study into sharing, data structures related to formal
systems may benefit from a more compact representation method. Regarding
the area of logic itself, the thesis is a study into fundamental representations,
and as such results may be applicable to other proof systems, or in fact any
representational structure.

8

1 Natural Deduction

In the first two sections of this chapter a version of natural deduction will be
presented that will serve as a basis for developing proof graphs. This version
will differ from the one given in Troelstra and Schwichtenberg [1996] only in
notation; there will be no difference in the functioning of the rules. We will only
be concerned with natural deduction for intuitionistic logic.

The next two sections will focus on the treatment of variables. Some examples
will show that this is not optimal in natural deduction. We will give a suggestion
for improvement, to be tested in graphs later on. The final section will briefly
comment on substitution.

1.1 Building proofs

First of all, the notation has to be explained. The scheme used for naming
formulas, variables and the like should be familiar:

• A, B and C are arbitrary formulas,

• P , Q and R are predicates,

• x, y and z are bound variables,

• a, b and c are free variables,

• u, v and w are assumption markers, and

• t is a term

When more than three of a kind are needed, we will use primes (′). Further-
more, our intuitionistic logic consists of the binary operators ∧, ∨ and →, the
quantifiers ∀ and ∃ and the symbol for contradiction, ⊥. Negation of a formula
A is expressed by A→ ⊥.

→

∧

mmmmmmmm ∧

QQQQQQQQ

A

}}}
B

AAA
B

}}}
A

AAA

∀x

∧

P

{{{{
Q

CCCC

x x

(A ∧B)→ (B ∧A) ∀x(Px ∧Qx)

Figure 1.1: Formulas depicted as formula trees

9

Formulas are built inductively; larger formulas are made by joining smaller
formulas with a connective or by adding a quantifier (with a variable) to a
formula. Predicates with a number of arguments equal to their arity, which
may be zero, are the basic components of a formula. The last connective or
quantifier added to a formula is called the primary connective. This is the
connective that the inference rules of natural deduction operate on. The way a
formula is built up is more pronounced when it is presented as a formula tree,
of which some examples are shown in Figure 1.1; the primary connective of the
formula is the root of the (upside-down) tree.

Deductions are formed by introducing a new or duplicate assumption, which
is simply a formula with a marker, or by expanding one or more deductions
in accordance with the inference rules shown in Figure 1.2. Assumptions with
different formulas must have different markers as well. Following these rules,
deductions take the form of trees, starting with one or more assumptions as the
leaves but having only one conclusion as the root.

Au

....
⊥
A

(⊥E)

[A]u....
B

A→ B
(→I,u)

....
A→ B

....
A

B
(→E)

....
A

....
B

A ∧B
(∧I)

....
A ∧B
A

(∧EL)

....
A ∧B
B

(∧ER)

....
A

A ∨B
(∨IL)

....
B

A ∨B
(∨IR)

....
A ∨B

[A]u....
C

[B]v....
C

C
(∨E,u,v)

....
∀x.A
A[t/x]

(∀E)

....
A[a/x]
∀x.A

(∀I)

Restrictions on ∀I: a = x or
a is not free in A; a is not free
in open assumptions

....
A[t/x]
∃x.A

(∃I)

....
∃x.A

[A[a/x]]u....
C

C
(∃E,u)

Restrictions on ∃E: a = x or
a is not free in A; a is not free
in C or in open assumptions
except [A[a/x]]u

Figure 1.2: The inference rules of natural deduction

Assumptions are open when they are introduced, but may be closed by instances
of the rules →I, ∨E and ∃E (see Figure 1.2). When these rules are applied, an

10

assumption marker—or two in the case of ∨E—is added to the name of the rule,
and all open assumptions with that marker in the current deduction are closed.
To indicate such a group or class of assumptions we put the formula between
square brackets: [A]u. An assumption class is allowed to be empty. When
an assumption is still open in a deduction or subdeduction, we say that the
deduction depends upon that assumption. A proof is a deduction that does not
depend on any assumptions. Deductions are abbreviated by a column of dots
above their conclusion; an assumption drawn on top indicates an assumption
on which the deduction depends.

Square brackets are also used for substitution: we write A[y/x], meaning ‘A
where x is substituted by y’. Compared to Troelstra and Schwichtenberg [1996]
this notation is the other way around. To prevent any confusion, it may be
helpful to think of A[y/x] as A × y/x, using the mathematical meaning of the
‘divides’ sign as a memory aid. Thus, Px[y/x] rewrites to Py. Figure 1.3 shows
what the proof from the introduction looks like within natural deduction.

A ∨ (B ∧ C)u

Av

A ∨B
(∨IR)

Av

A ∨ C
(∨IR)

(A ∨B) ∧ (A ∨ C)
(∧I)

B ∧ Cw
B

(∧EL)

A ∨B
(∨IL)

B ∧ Cw
C

(∧ER)

A ∨ C
(∨IL)

(A ∨B) ∧ (A ∨ C)
(∧I)

(A ∨B) ∧ (A ∨ C)
(∨E,v,w)

(A ∨ (B ∧ C))→ ((A ∨B) ∧ (A ∨ C))
(→I,u)

Figure 1.3: The example natural deduction proof

Introducing a little more terminology, the illustrations of Figure 1.2 are the
inference rules or inference schemes; the use of one of these rules in a deduction
is called an inference or a rule application. The formulas directly above the
horizontal line of a rule or rule application are the premises, the formula below is
the conclusion. When a rule has more than one premise, these are distinguished
by calling them left, right, major or minor, or a combination of these terms.
Major premises are the premises of elimination rules that contain the connective
that is eliminated; the other premises of the inference are called ‘minor’. By
convention, major premises are placed in the leftmost position. Two premises
that play a more or less equal role in the inference are called ‘left’ and ‘right’. For
instance, a disjunction elimination rule has, from left to right, a major premise,
a left minor premise and a right minor premise; a conjunction introduction rule
has a left premise and a right premise. The free variable a in the rule schemes
for ∀I and ∃E is called the proper variable. For want of a better notion, the
term t in the ∀E and ∃I schemes will be referred to as the proper term.

When a deduction is a smaller part of another deduction, the former is called a
subdeduction of the latter. A subdeduction that derives a premise of the last rule
application in a deduction is called a direct subdeduction. Instead of writing
‘the direct subdeduction that derives the minor premise of the last inference of a
deduction D’, we simply write ‘the minor premise of D’. In this abbreviation we

11

identify a deduction with its last inference, when we refer to the minor premise
of a deduction, and we identify a deduction with its conclusion when we only
refer to the minor premise, while we mean the entire deduction leading up to it
as well.

w w

v v ∧EL ∧ER

∨IR
MMMMM ∨IR

qqqqq
∨IL

HHHH ∨IL

uuuu

u

TTTTTTTTT ∧I ∧I

ffffffffffffffff

∃E,v,w

→I,u

Figure 1.4: Rule tree of the example proof

One of the tools we will use to investigate deductions is what we call rule trees.
These are trees that show the rule applications used in a deduction, but omit
the formulas. Figure 1.4 shows the rule tree of the proof in Figure 1.3.

1.2 Proof rewriting

Natural deduction has both introduction and elimination rules for each connec-
tive. When a proof is built from these rules, there is no guarantee that there
isn’t a more direct proof that reaches the same conclusion. Connectives may
be introduced and eliminated at will, possibly without moving any closer to the
desired conclusion.

As it turns out, the derivations that follow the most direct route from their
assumptions to their conclusion follow a particular scheme. Within these de-
ductions, called normal deductions, formulas are first broken down into com-
ponents by elimination rules and after that reassembled by introduction rules.
This sorting of the inferences of a deduction into an elimination-part and an
introduction-part is a little obscured by the form of the schemes for disjunction
elimination and existential quantifier elimination. We think of these inference
schemes as if the closed assumptions were direcly below the major premise,
which is where the disjunction or existential quantifier is actually removed;
nothing happens between the minor premises and the conclusion. The example
proof of Figure 1.3 is a normal proof, even though there are introduction rules
above the minor premises of the disjunction elimination.

To obtain a normal deduction from any deduction, we transform it step by
step, until no elimination rule is below an introduction rule. This process is

12

∃xPxw

Pau

∃yPy
(∃I)

Bv

∃yPy ∧B
(∧I)

∃yPy ∧B
(∃E,u)

∃yPy
(∧EL)

u

∃I
IIII v

||||

w

FFFF ∧I

vvvv

∃E,u

∧EL

⇓ ⇓ (∃-permutation)

∃xPxw

Pau

∃yPy
(∃I)

Bv

∃yPy ∧B
(∧I)

∃yPy
(∧EL)

∃yPy
(∃E,u)

u

∃I
KKKKK v

xxxx

∧I

w

FFFF ∧EL

tttt

∃E,u

⇓ ⇓ (∧-contraction)

∃xPxw
Pau

∃yPy
(∃I)

∃yPy
(∃E,u)

u

w

FFFF ∃I

wwww

∃E,u

Figure 1.5: An example of a permutation and a contraction

called normalization. There are three kinds of transformations: contractions,
permutations and simplifications. Contractions are used to remove a consecutive
introduction and elimination of the same connective. Simplifications remove
parts of a proof that are unused, which occurs when a closed assumption class of
an ∃E- or ∨E-application is empty. Permutations are used to shift ∨E- and ∃E-
applications down over elimination rules to expose other contractions. Figure 1.5
shows a permutation and a contraction in action, the formal descriptions of the
normalization rules can be found in Appendix A.

1.3 Free and bound variables

This section will deal with variables, which will be addressed from both a tech-
nical and a philosophical perspective. The issue is this: the variables a, b, x, y
and so on that we use in formulas, are really not the variables themselves, but
only names for variables, called variable letters. The reason this difference is

13

noticeable is that a variable letter does not uniquely identify a variable.

First we look at bound variables. Observe that the formulas ∀xPx and ∀yPy
essentially mean the same thing: ‘P holds for everything’. The interpretation
shows that the choice of variable letter does not affect the meaning of the for-
mula. The way we see this philosophically, is that the identity of the variable
is not determined by the letter, but by the quantifier; the letter is simply a
necessary marker to link the variable to the quantifier.

Technically the similarity of ∀xPx and ∀yPy is called α-equivalence: two for-
mulas are α-equivalent if they are the same up to the names of their bound
variables. This is reflected by the fact that substitution of bound variables is
generally considered valid.

As a note on the side, the current context of natural deduction is actually a
poor choice for a discussion of α-equivalence: within a natural deduction proof
it is generally not allowed to replace a formula with an α-equivalent one.

In many respects, the semantic properties of the logical connectives are deter-
mined by the inference rules. Take for instance the symmetry of conjunction:
although (A ∧ B) → (B ∧ A) is easily proved within natural deduction, a for-
mula (A ∧ B) may not replaced by (B ∧ A). Likewise, (∀xPx) → (∀yPy) is a
tautology, but bound variables may not be substituted within a proof.

Despite these considerations, the general idea is that α-equivalence shows that
variable letters and variables are not the same thing, since bound variables may
be renamed without affecting the meaning of the formula.

Another, related point is that the same variable letter may be used for different
variables within the same formula, as in for example (∀xPx)∧ (∀xQx), or even
in a nested situation such as ∀x(Px ∧ ∀xQx). The different occurrences of x
denote different variables, since they are bound by different quantifiers and may
be substituted independently.

In the following paragraphs we will apply these insights to assumption markers
and free variables on the level of an entire proof, rather than a single formula.
The focus will be on the technical side, since intuitions on proofs may not be
as strong as those on formulas. Our primary method will be to find out which
substitutions yield valid deductions.

Au

A→ A
(→I,u)

Av

A→ A
(→I,v)

Au

A→ A
(→I,u)

Au

A
(→E)

A→ A
(→I,u)

Figure 1.6: Assumption markers

Figure 1.6 illustrates the striking similarity between variables and assumption

14

markers: α-equivalence exists for assumption markers too, as the first two proofs
show. The third proof illustrates that the same marker may be used for different
assumption closures.

Formally, which variable is bound by which quantifier, and which assumption is
bound by which rule application, is defined by the construction of the formula
or deduction. This is best shown with rule trees and formula trees: a variable
is bound by the first quantifier with the same letter above it; an assumption
is closed by the first →I-, ∨E- or ∃E-application with the same marker, found
when moving down the rule tree. Since the variable bound by a quantifier does
not have to appear in the formula at all, it is not possible to create ‘illegal’
formulas—although one may of course be left with unwanted free variables. We
will come back to this later, when we need to apply the restrictions that follow
from the definition of assumption binding, to graphs.

We will now focus on the free variables within a proof. Free variables may not
be renamed, because the letter of a free variable generally denotes the same
variable throughout different formulas within a certain environment, such as
a proof. For instance, when Pa and Qa occur as premises of a conjunction
introduction, concluding Pa ∧ Qa, the letter a denotes the same variable in
both premises as well as the conclusion—or at least, renaming it in one but not
the other formulas yields an invalid inference, whereas renaming it in all three
formulas does not. The question is, how to find out whether occurrences of a
variable letter in totally different parts of a proof denote the same variable.

.... (1)

A
∀x.A[x/a]

(∀I)

A[t/a]
(∀E)

⇒
.... (1)

A

}
[t/a]

Figure 1.7: ∀-contraction

It is not so that a free variable may not be renamed at all. Consider the rule
for ∀-contraction in Figure 1.7. What has happened on the right side, is that in
the entire deduction leading up to A, a is replaced by t. Consider also the two
proofs shown in Figure 1.8, that differ only in the name of the free variable.

Pau

Pa→ Pa
(→I,u)

∀x(Px→ Px)
(∀I)

Pbu

Pb→ Pb
(→I,u)

∀x(Px→ Px)
(∀I)

Figure 1.8: Are these proofs α-equivalent?

The suggestion rising from Figure 1.7 and Figure 1.8 is that on the level of
a proof, the proper variable of a ∀I-application becomes bound. The next
paragraph will show some characteristics of natural deduction that point in the

15

same direction.

1.4 Proper variables

As was pointed out in the previous section, bound variables cannot be identified
by their letter alone, since that letter may be used by other variables as well.
When looking at a proof as a whole, some free variables suffer from the same
problem, as will be demonstrated with the help of Figure 1.9.

∀xPx ∧Qau
∀xPx

(∧EL)

Pa
(∀E)

∀yPy
(∀I)

∃xPxu

Pav

∃yPy
(∧EL)

Qaw

∃yPy ∧Qa
(∧I)

∃yPy ∧Qa
(∃E,v)

Figure 1.9: Some inference rules are too strict

The applications of ∀I and ∃E in the examples of Figure 1.9 are not allowed,
because the proper variable, a in both cases, is free in an open assumption,
∀xPx ∧ Qau and Qaw respectively. However, it is not possible to derive a
contradiction from these proofs—these are in essence valid inferences. This
imperfection is widely recognized, but also quickly dismissed as it does not
prohibit us from proving anything: both deductions in Figure 1.9 could just as
well have a b as the proper variable, while the free variable a in the assumptions
remains in place. The question rises, then, whether the occurrences of the letter
a denote the same variable throughout these deductions.

....
Qa

∀yQy
(∀I)

....
Pa
∀xPx

(∀I)

Pt
(∀E)

⇒

....
Qt

∀yQy
(∀I)

....
Pt

Figure 1.10: A contraction gone bad

Real problems arise when we take a closer look at normalization. Figure 1.10
shows an abstracted ∀-contraction where the right side ends up with an illegal
∀I-application (universal conclusions may only be drawn from free variables,
not terms). Of course, this is because the a in the upper part should not be
renamed as it has nothing to do with the a in the lower part, but the inference
rules blindly operate on variable letters.

Two different measures to amend this will be discussed here. The first and
simplest is to declare the variable a not to be free in the subproof of an inference
of which it is the proper variable. This would imply that a is not free in the

16

upper part of the proofs in Figure 1.10, and would thus not be substituted—only
free occurrences of variables participate in a substitution. The other solution is
the original one devised by Prawitz.5

His solution was, essentially, to rename as few occurrences of a variable as
possible, while still retaining a valid proof. The procedure that finds these
occurrences starts at the ∀I- or ∃E-application whose proper variable is the one
that needs to be renamed. If it is a ∀I-application, the premise is marked—if
the proper variable occurs in it—and if it is an ∃E-application the assumptions
that it closes are marked—again, only if they contain the proper variable. The
marked formula may be part of an inference in three ways: it may be a premise,
the conclusion or an assumption closed by the inference. For each inference
in which it takes part, we mark those formulas that share a letter with the
marked formula in the inference scheme—if they contain a free occurrence of the
variable letter. For instance, suppose the left closed formula of a ∨E-application
is marked (the A in the inference scheme). Then the major premise, A ∨ B, is
marked; becaus it contains A in its entirety it also contains an occurrence of a.
If the right major premise (the formula B) also contains a free a, that formula is
marked in turn. This procedure is repeated until nothing else can be marked. If
the variable letter a by that time both occurs in marked and unmarked formulas,
it is replaced by a fresh one in all marked formulas simultaneously. The resulting
variable letter (the a or the fresh one) is called a pure variable.6

This renaming procedure may be viewed from a purely technical perspective, in
which it simply renames a proper variable while leaving all inferences valid. But
since renaming is usually reserved for bound variables, it is a strong indication
that also in this view the proper variable of a ∀I- or ∃E-application behaves
like a bound variable.

....
Pt
∃xPx

(∃I)

Pau....

....
Qa

∀yQy
(∀I)

....
C

C
(∃E,u)

⇒ Pt....

....
Qt

∀yQy
(∀I)

....
C

Figure 1.11: Another contraction gone bad

As a further illustration, Figure 1.11 shows that the problem found with ∀-
contraction in Figure 1.10 can be reconstructed for ∃-contraction. The free
variable letter a is replaced with term t, which makes the ∀-introduction invalid.

It begins to look as though applications of both ∀-introduction and ∃-elimination
5see Prawitz [1965]
6This is a quite liberal interpretation of Prawitz’ formalism, that actually constructs se-

quences of formulas instead of marking them. Since deductions are trees, there is probably
no specific reason to use sequences, and marking the formulas should do equally well.

17

actually bind the occurrences of their proper variables within their subproofs.
The restrictions on those rules, which amount to: ‘after an application, the
proper variable may not occur in the conclusion or in any open assumption’ make
more sense in that light as well. If an open assumption in which a proper variable
occurs is closed by an implication introduction, then that variable will also
occur in the conclusion of the implication introduction. However, the variable
occurrence in the assumption will be bound by the rule whose proper variable it
is, but the variable occurrence in the conclusion of the implication introduction
will be free.

1.5 Substitution rules

As the previous section illustrated, variables need to be handled with care.
Before we start building graphs, another sensible but implicit restriction should
be brought to the surface.

The rules for substitution in general state that, firstly, only free variable oc-
currences may be replaced, and secondly, no free variable in the replacement
formula may become bound in the substitution. The area to which the lat-
ter specifically applies is that of the proper terms of ∀E- and ∃I-applications,
repeated below.

∀x.A
A[t/x]

(∀E)

....
A[t/x]
∃x.A

(∃I)

In principle the term t may be any term, as long as it can be placed in the
same positions that a variable may occur. It can be a variable, or a larger term
in which many variables occur. The catch is of course, that free variables may
not be inserted into a formula without checking whether they become bound.
The proof in Figure 1.12 shows the consequences of ignoring the restrictions on
substitution.

∃y.Pxu Pxv

Px
(∃E,v)

(∃y.Px)→ Px
(→I,u)

∀x.((∃y.Px)→ Px)
(∀I)

(∃y.Py)→ Py
(∀E)

∀z.((∃y.Py)→ Pz)
(∀I)

Figure 1.12: An incorrect proof

18

2 Proof Graphs

In this chapter we will describe an alternative approach to natural deduction
using proof graphs. This chapter will be a step by step introduction, pointing
out difficulties and motivating choices along the way; a formal definition will
have to wait until the next chapter.

For explanatory ease, the introduction of proof graphs will at first be limited to
natural deduction for propositional logic only. Surprisingly, due to the similari-
ties between variables and assumptions, the expansion of the graphs to predicate
logic will not require many additional tools.

2.1 The propositional fragment

Proof graphs consist of two parts, one representing the inferences of a proof,
and the other the formulas. As a blueprint for the rule-part of a proof graph
we use the rule trees introduced in the previous chapter. The main difference is
that assumptions may be shared, as shown in Figure 2.1. Indices of discarded
assumptions are replaced by an additional edge that goes around the left side
of the graph.

A ∧Bu
B

(∧ER)
A ∧Bu
A

(∧EL)

B ∧A
(∧I)

(A ∧B)→ (B ∧A)
(→I,u)

u u

∧ER
FFF ∧EL

xxx
∧I

→I,u

?>=<89:;76540123ass

?>=<89:;76540123∧ER

AA���� ?>=<89:;76540123∧EL

]]::::

?>=<89:;76540123∧I
AA����

]]::::

?>=<89:;76540123→I
OO@A

GF //

Figure 2.1: The transition from natural deduction proof to proof graph

As for the formula-part of a proof graph, we use formula trees as a basis. As
the formula graph in Figure 2.2 shows, sharing within a formula is also possible:
the propositions A and B each only need to occur once in the graph. In the
numerous examples throughout this thesis, the spatial layout of rule trees and
formula trees will be preserved in graphs as much as possible.

The third way parts of a graph can be shared, is that when the conclusions
are added to each rule application, different rule nodes can share parts of the
same formula graph. We use the name formula graph to indicate a proof graph
consisting only of formula nodes. Actually, we will not call graphs consisting
only of a formula part ‘proof graphs’ at all, but just ‘formula graphs’.

In order to indicate which of two rule nodes connected by an edge is the premise

19

(A ∧B)→ (A ∨B)

→

ppppp
NNNNN

∧
��� ;;; ∨

��� ;;;

A B A B

/.-,()*+→
�������

��?????

/.-,()*+∧
��

OOOO

''OOOO

/.-,()*+∨
��wwooooooooo

/.-,()*+A /.-,()*+B
Figure 2.2: The transition from propositional formula to proof graph

and which is the conclusion, edges need to be directed. Although it seems like
there is a choice to be made here, it is only an arbirary one, since the direction
of edges relative to eachother is decided by the way we implement sharing.

The ‘direction’ of sharing is that rule nodes share premises and conclusions, and
formula nodes share subformulas. If we were to direct edges between rule nodes
towards conclusions and those between formula nodes towards subformulas, the
direction of edges would be along with the direction of sharing within the formula
part, but against it within the proof part of a graph. This would prevent us
from finding common definitions for dealing with formula and rule nodes.

We choose to direct edges towards the shared parts, which will allow for more
convenient definitions later on. That is, edges in proof graphs lead from formulas
to subformulas and from rule applications to premises, the latter of which might
seem counterintuitive to those who expect edges to represent the direction of
inference. The edges that connect the proof part of the proof graph to the
formula part lead from the rule nodes to the formula nodes.

Like rules in regular natural deduction, a rule node requires the correct number
of premises. Premises of a node are indicated by outgoing edges, but the node
also has an edge to a formula. Furthermore, where natural deduction rules
discard assumptions, their proof graph counterparts need to do so as well. This
implies that the number and function of outgoing edges should be fixed. On the
other hand, in order to share subproofs multiple rule nodes must be able to share
the same premise. The number of incoming edges on a rule node should therefore
be arbitrary. Figure 2.3 shows the connections of an implication introduction
node as an example, with the natural deduction counterpart for reference. There
is a slight inaccuracy with the premise-port, which does not connect directly to
the premise formula, as its name suggests, but instead connects to the rule node
whose conclusion is the required premise.

To regulate the outgoing edges on a node we introduce the notion of a port.
Each node will have a limited number of ports, and each port accommodates
exactly one outgoing edge. Ports act as labels on edges, which allows edges to
perform different functions in a graph; for example, as illustrated in Figure 2.3,
the three ports on the →I-node are the closed assumption-port, the premise-
port and the conclusion-port. The edge attached to the conclusion-port should
point to a formula node that represents the conclusion formula of the implication

20

[assumption]
u

....
premise

conclusion
(→I,u)

premise

closed
assumption

?>=<89:;76540123→Ioo

OO

// conclusion
(formula)

1st node with
this one as

premise

;;wwwwww
nth node with

this one as
premise

ccGGGGGG

Figure 2.3: The edges of an implication introduction node

introduction, the closed assumption-port connects to the assumption node that
is discarded, and so on. What ports a node has depends on the label of that
node: for instance, a conjunction node always needs two subformulas and a
conjunction introduction node has two premises and a conclusion.

When illustrating the graphs, the choice was made to omit the names of the
ports from the pictures. Instead, ports are indicated by the spatial layout of
the pictures. As the layout of the rule trees and formula trees of Figure 2.1 and
Figure 2.2 is preserved as much as possible, the general direction in which an
edge leaves a node is a clear hint as to which port it is meant to use. Which ports
are located where is given by illustrations like Figure 2.3 and the left picture of
Figure 2.4, the latter of which shows the ports of an implication node. These
images can then be used as a reference to identify the function of the edges in
the middle and right pictures. When the number of edges is large, ports and
edges can be identified by their clockwise order on the node’s rim. This can be
practised by looking up the entry for disjunction elimination in Appendix B.

/.-,()*+→
||yyyyy

""FFFFF

antecedent consequent

/.-,()*+→
�������

��?????

/.-,()*+A /.-,()*+B
/.-,()*+→

�������
��?????

/.-,()*+B /.-,()*+A
(A→ B) (B → A)

Figure 2.4: Identification of ports

To sum up, we now have two graph frameworks—one which represents the rule
applications used in a natural deduction proof, and one which will eventually
represent first order formulas, but is limited to propositional logic at the mo-
ment. We know how to identify nodes and edges and what features of natural
deduction proofs they are meant to represent. Putting it all together, Figure 2.5
shows the completed proof graph of Figure 2.1.

Note that sharing in proof graphs is implicit : nodes are simply the target of
multiple edges, and there are no special ‘funnel’ nodes to unite multiple edges

21

/.-,()*+→
��?????

G�����

��

/.-,()*+∧
G�����

��

D????

BC
oo

?>=<89:;76540123ass ///.-,()*+∧
��999999

G�����

��

?>=<89:;76540123∧ER

??�����
///.-,()*+B

?>=<89:;76540123∧EL

D
__??????

///.-,()*+A
?>=<89:;76540123∧I

@
??????

OO

??����� BC

GF //

?>=<89:;76540123→I
OO@A

GF //

BC

GF //

Figure 2.5: A completed proof graph

into one. Although we have only seen shared formula nodes and assumption
nodes yet, any node may in principle be shared. Figure 2.5 also shows that
as the proof grows, some edges will be stretched while others stay short. Since
this is mainly an artefact of this particular representation, distance in a graph is
measured in the number of edges traversed. Another relic of the two-dimensional
representation which we will ignore is that edges tend to cross each other.

2.2 Constructing and interpreting graphs

At first sight it may be difficult to discern the beginning and the end, so to
speak, of the graph in Figure 2.5. Closer inspection will reveal, however, that
the lowermost node (labeled →I) has no edges towards it. This is a so-called
root node, and its conclusion is the conclusion of the proof which the graph
represents.

To reconstruct the proof from the graph, we simply trace the edges of the graph
and write down what we encounter, starting at the root node. Whether the
next node encountered represents a major premise, assumption, conclusion or
subformula is indicated by the ports. Figure 2.6 presents an example.

The lower four pictures in Figure 2.6 are a step-by-step interpretation of the
graph above. The first picture is read from the root node (node 1): it is an
application of conjunction introduction, with as conclusion the formula repre-
sented by node 3. The two subdeductions that lead up to the two premises are
both represented by node 2, because they are shared in the graph.

22

/.-,()*+∧ 3

����?>=<89:;76540123ass
2 ///.-,()*+A 4

?>=<89:;76540123∧I 1

FF XX BC

GF //

.... (2)
.... (2)

(3)
(∧I)

(4)u (4)u

(3)
(∧I)

(4)u (4)u

(4) ∧ (4)
(∧I)

Au Au

A ∧A
(∧I)

Figure 2.6: Interpreting a proof graph

To create the second deduction, we read from node 2 that the two subdeductions
are assumptions whose formula occurrence is represented by node 4. As an
assumption marker we have taken u for the moment, because we have yet to
add those to the graph framework.

The third and fourth deductions add the interpretations of nodes 3 and 4. Even-
tually, we see four occurrences of A as a (sub)formula, while the node represent-
ing A, node number 4, only has three edges towards it. The edge from node 2 to
node 4 is shared, because node 2 is: there are two paths from 1 to 2, and hence
also two paths from 1 to 4 through 2. Each occurrence of a subproof or subfor-
mula corresponds to a path from the root node to the node that represents it.
This important observation will be a great help in formulating definitions later
on.

?>=<89:;76540123ass

⇒
?>=<89:;76540123ass

?>=<89:;76540123∧ER

??����
⇒

?>=<89:;76540123ass

?>=<89:;76540123∧ER

??����

?>=<89:;76540123∧EL

D
__?????

⇒
?>=<89:;76540123ass

?>=<89:;76540123∧ER

??����

?>=<89:;76540123∧EL

D
__?????

?>=<89:;76540123∧I

@
?????

OO

??����

Figure 2.7: Inductive graph construction (formula nodes omitted)

At the moment nothing prohibits a graph from having more than one root node.
If we want to keep open the option of an inductive definition, we have reason not
to change this. Figure 2.7 shows what the inductive construction of Figure 2.5
would look like using multiple conclusions. If we would restrict the number of
root nodes to one, the third figure could obviously not be constructed. Instead,
we would have to create two different graphs, each with a different assumption
node; yet to construct the fourth figure from those two graphs, both assumptions

23

would have to be merged into one again.

With two root nodes, two natural deduction proofs can be read from the third
graph of Figure 2.7. This should not be a problem, and in principle there is
nothing against a graph containing two proofs that are entirely separate, i.e. a
graph with two root nodes that don’t share any node.

2.3 Bisimulation

In Figure 2.5 all formulas are shared; there are no two formula subgraphs that
represent the same formula. There are two conjunction nodes, but one represents
the formula A ∧ B and the other B ∧ A—note that although the graph proves
them to be equivalent, they are not the same formula. There will be cases,
however, in which the same formula is represented twice in a graph. The problem
is how to find out if two different subgraphs represent the same formula or
deduction.

The issue that makes the matching of graphs non-trivial is that subgraphs don’t
have to be shared; for instance, the formula A ∧ A can both be represented by
a conjunction node sharing just one A-node, or by a conjunction node with two
separate A-nodes.

/.-,()*+∧
�� ��

R
g _ W /.-,()*+∧

�������

��0
0000

/.-,()*+A
RQ _ m

R

F
O W _ g o

x
/.-,()*+A /.-,()*+A

/.-,()*+∧
�� ��

/.-,()*+∧
�������

��0
0000

/.-,()*+A /.-,()*+A /.-,()*+A

Figure 2.8: A bisimulation R as a witness of bisimilarity

The relation depicted by the dashed lines in Figure 2.8 is a bisimulation relation.
Two nodes n and m are bisimilar if a bisimulation R can be found that holds
between them. A relation R is a bisimulation if it conforms to two restrictions:
firstly, it may only hold between two nodes a and b if both have the same label
and, consequently, the same ports. Secondly, when each port on node a is paired
with the corresponding port on node b, R must also hold between the two targets
of each pair of ports.

The bisimulation relation can be characterized in another way: two graphs are
bisimilar if they have the same unfolding. An unfolding is an adaptation of
a graph that contains the same information, but has no shared nodes. It is
obtained by duplicating every node that is the shared target of multiple edges,
such that each edge gets its own target node. When a graph contains cycles,
this process never stops, theoretically leading to infinite unfoldings. Since we
are dealing with acyclic graphs, the unfolding of our graphs is a tree. In each of

24

the two images of Figure 2.8, the right graph is the unfolding of the left graph.
The unfolding of a formula graph will be a formula tree, and the unfolding of a
rule graph stripped of its formulas will be a rule tree.

Summing up, a formula graph unfolds to a formula tree, which represents a
formula. A formula graph represents a single formula if it has a single root
node. Consequently, two formula subgraphs represent the same formula if there
is a bisimulation relation between the two root nodes.

2.4 Backpointers

Next, we look at bisimulations between entire proof graphs. Figure 2.9 shows the
two α-equivalent natural deduction proofs of Figure 1.6. The graph translation,
shown on the right, is the same, since the assumption markers are replaced by
edges.

Au

A→ A
(→I,u)

Av

A→ A
(→I,v)

/.-,()*+→
�� ��?>=<89:;76540123ass ///.-,()*+A

?>=<89:;76540123→I
OO@AGF
//

BC

GF //

Figure 2.9: Two α-equivalent proofs and their graph translation

Figure 2.10 shows something that, however, does not work correctly in the
current configuration. The proof graphs are bisimilar, but the proofs of which
they are translations, shown below the graphs, are not the same: the one on the
left has an open assumption where the one on the right does not. Upon closer
inspection the left proof graph also reveals an open assumption, the lower one.
Although the upper assumption is not used as a premise in the graph, this is
a correct construction and is in fact the way in which we will deal with ‘empty
discharges’, assumption discharges in which zero instances of an assumption are
closed, as with the left natural deduction proof in Figure 2.10.

To see that the graphs of Figure 2.10 are indeed bisimilar, first observe that
all nodes labeled A have no outgoing edges. Therefore, a bisimilation R may
be constructed that holds between all these nodes. Next, all three assumption
nodes have only one outgoing edge, towards the A-nodes. Since R holds for
those nodes, R may also hold for the assumption nodes. It now easily follows
that R holds for the root nodes of both graphs, the implication introduction
nodes.

The adopted solution to this problem is the use of backpointers, illustrated in
Figure 2.11 by the dashed arrow. These additional connections link assumption
nodes with assumption discarding nodes, only in the reverse direction—hence

25

/.-,()*+→
�� ��?>=<89:;76540123ass ///.-,()*+A

?>=<89:;76540123→I
OO@AGF
//

BC

GF //
/.-,()*+→

�������

D?????

��

?>=<89:;76540123ass ///.-,()*+A
?>=<89:;76540123ass ///.-,()*+A
?>=<89:;76540123→I
OO@A

GF //

BC

GF //

Au

A→ A
(→I,u)

Av

A→ A
(→I,u)

Figure 2.10: Incorrectly bisimilar proof graphs

?>=<89:;76540123ass?>_ _ _

89�
�
�
�

//___ ?>=<89:;76540123→I

OOOO

HI

ON //

Figure 2.11: A closed assumption with its backpointer

the name. To accomodate our notion of bisimulation for the use of backpointers,
we add the following restriction to the description of bisimulations: R may only
hold between two nodes if either both have no backpointers, or both have exactly
one backpointer and R holds between the two targets of these backpointers. This
assures that closed assumptions are different from open ones and that, when
comparing two graphs, bisimilar assumptions can only be discarded by bisimilar
discarding nodes. When backpointers are added, the graphs of Figure 2.10 are
no longer bisimilar: the open assumption within the left graph only has an
outgoing edge, while the closed assumption within the right graph has both an
edge and a backpointer.

The use of backpointers comes at a cost, however. Without backpointers our
graphs were acyclic. When we allow cycles by introducing backpointers, we
need additional restrictions and checks to sort between ‘good’ and ‘bad’ cycles,
to prevent a rule application from being its own premise. Because of this issue
we have given backpointers a separate status: they are only used when checking
for bisimilarity and are to be ignored with other operations on these graphs.

assumption
u

....
u ?>=<89:;76540123assoo_ _ _

Figure 2.12: Retaining the indices of open assumptions

26

Also, while closed assumptions are now only bisimilar if they are closed by bisim-
ilar rule nodes, open assumptions with the same formula but different labels are
still bisimilar. For open assumptions, therefore, we still need assumption mark-
ers. For graphs, we will use indices, enclosed in a square and attached to the
assumption by a dashed arrow, as illustrated by Figure 2.12.

2.5 The closing of assumptions

A difference between deductions and graphs that was pointed at earlier, is that
for deductions, which assumption is closed by which rule application is defined
inductively. Moving down from an assumption, it is closed by the first appli-
cation of →I, ∨E, or ∃E with the same marker. This prevents two situations
from occurring: one, an assumption that is closed by more than one rule ap-
plication; and two, a rule application that closes an assumption outside of its
direct subproof.

These situations have to be ruled out explicitly in our graph framework. Before
we state the restrictions that achieve this, we will demonstrate for both these
constructions that allowing them yields unwanted results, and that we are not
just throwing away opportunities for sharing. Figure 2.13 shows two graphs,
each with an assumption that is closed by two implication introduction nodes
(backpointers are omitted).

?>=<89:;76540123ass

?>=<89:;76540123→I
OO89?>
//

?>=<89:;76540123→I
OOHI

ON // ?>=<89:;76540123ass

?>=<89:;76540123
??����� ?>=<89:;76540123
__?????

?>=<89:;76540123→I
OO@A

GF //

?>=<89:;76540123→I
OO@A

OO

Figure 2.13: Double assumption discharges

To see why the graphs in Figure 2.13 spell trouble, we glance forward at what
rewriting for graphs will involve. For natural deduction and graphs alike, when
→-contraction is applied to a proof, the assumptions that were closed by these
rules are substituted by a subproof. If two implication introductions discharged
the same assumption, two different contractions could be made. For the right
graph both contractions are directly visible, for the left graph, if it is extended by
two consecutive→E-nodes, one contraction could expose the other. Figure 2.14
illustrates this.

After the first contraction, the assumption node is replaced by a node with
another label, in this case ∨IL. The second contraction involves a ∧ER-node
that is closed by an implication introduction, and has to be replaced by a ∨IL-
node. In the current framework this isn’t a legal construction; some radical

27

?>=<89:;76540123ass

?>=<89:;76540123→I
OO89?>
//

?>=<89:;76540123→I
OOHI

ON //

?>=<89:;76540123∧ER

?>=<89:;76540123→E
__?????

??����� ?>=<89:;76540123∨IL

?>=<89:;76540123→E
__?????

??�����

⇒

?>=<89:;76540123∧ER

?>=<89:;76540123→I
OO89?>
//

?>=<89:;76540123∨IL

?>=<89:;76540123→E
__?????

??�����

⇒ ?

Figure 2.14: One assumption cannot be substituted twice

changes of the definitions for proof graphs might be suggested, but it is clear
that without those, the situation is not going to be resolved.

Au

A→ A
(→I,u)

Au

A
(→E)

/.-,()*+→
8?���

��???
;<???

�����?>=<89:;76540123ass
///.-,()*+A

?>=<89:;76540123→I

OO

89
?> //

:;

?> //

?>=<89:;76540123→E
__????

;<
���

????

__?????

*+

/. //

Figure 2.15: Another interesting contraption

The other situation to be addressed is the one in which a rule application closes
an assumption outside its subformula, as portrayed in Figure 2.15. Before it can
be clear what is going on here, this unusual construction requires an interpre-
tation of what it is for an assumption to be closed. There are two options; the
first is, that the path to an assumption decides whether it is considered open or
closed, the way the inductive definition of proofs decides whether an assumption
is closed or not. In this case, the graph represents the proof on the left, where
the assumption Au on the right is considered open. The problem is then, that
since the assumption is considered open, it will have to be closed again to make
the deduction into a proof. This results in the situation discussed before, in
which two rule nodes close the same assumption.

The second interpretation is that the assumption is closed, since there is a rule
node that closes it. The graph then represents the proof on the left, but this
time the assumption Au on the right is considered closed by the implication
introduction labeled u. The proof represented by the graph now derives an ar-

28

bitrary formula A from two closed assumptions, rendering our entire framework
useless.

The example uses two different notions of when an assumption is closed. One
is a local notion, related to dependence on an assumption in natural deduction.
It states that a rule node is dependent on a certain assumption node if there is
a path from the rule node to the assumption node that does not cross the node
that closes the assumption.

The other notion is a global notion, which simply reads that an assumption
is closed if there is a node that closes it—equivalent to the notion in natural
deduction that an assumption is closed if there is some rule that closes it. The
difference between graphs and proofs is that in proofs these notions automati-
cally coincide: an assumption is open if the conclusion of the proof depends on
it, and closed if it does not. As we have just seen, for graphs this is not nec-
essarily the case; a situation may be constructed in which a root node depends
on a closed assumption.

The restriction that we explicitly impose on graphs, therefore, will be that every
path from a root node to an assumption must cross the node that closes the
assumption. With the help of an earlier observation, that a path from a to b in
a graph corresponds to b being a subproof of a, we can attach a clear intuition
to this restriction: it states that the assumptions closed by a rule node must all
occur in its direct subproof.

In the next chapter this restriction will be further specified, among other things
because the ∨E-node closes two assumptions, which leads to additional difficul-
ties.

2.6 The first-order fragment

The time has come to upgrade our graphs from propositional logic to predicate
logic. Figure 2.16 shows how bound variables appear in formula graphs. Pred-
icates (P and Q in the example) are treated as connectives for now, but later
on we will take a different approach for the formal definitions.

∀x (P (x) ∧ Q(x))

∀x

∧

��� ===

P Q

x x

/.-,()*+∀
��

ML

JK
oo

/.-,()*+∧
������

��9999

/.-,()*+P
��9999 /.-,()*+Q
������

/.-,()*+var

:;
__

=<�
�
�
�
�

oo_ _

Figure 2.16: Bound variables in formula graphs

29

As illustrated, variables are to be shared as much as possible. To avoid α-
equivalence issues the variable letter of a bound variable, such as the x in the
above illustration, is replaced by a backpointer. For free variables the same
indices as for assumptions will be used, as Figure 2.17 shows.

P (x) ∧ Q(x)

∧

��� 888

P Q

x x

/.-,()*+∧
�����

��999

/.-,()*+P
��999 /.-,()*+Q
�����/.-,()*+var //___ x

Figure 2.17: Free variables in formula graphs

Variables and assumptions have more in common than just α-equivalence. Like
assumptions may only be discharged once, variables may not be bound by more
than one quantifier. Also, quantifiers may not bind variables outside their direct
subformula, their scope. In a first-order formula these issues are automatically
resolved by the way quantifiers bind their variables. By definition, a quantifier
binds all variables with a certain variable letter within its subformula, except the
ones that are already bound by another quantifier. In graphs these restrictions
have to be applied by hand. Yet by making them explicit, we find that they
are exactly the same for variable binding as they were for assumption discharge.
Figure 2.18 shows that bound variables can be mistreated in the same way that
closed assumptions can.

/.-,()*+∀ ED
@A

//

/.-,()*+∀

����

ED
BC
oo/.-,()*+var

/.-,()*+→
�������

��?????

/.-,()*+P
@
��?????

/.-,()*+∀
��
ED
BC

oo

/.-,()*+P
�������

/.-,()*+var

Figure 2.18: How formula graphs may go awry

In the left graph of Figure 2.18 a variable is bound by two quantifiers, analogous
to Figure 2.13. The right graph mimicks Figure 2.15: the graph represents
the formula Px → ∀xPx, where the first x is either bound by the universal
quantifier, or is free, in which case the variable node has to be bound twice.
As a result of the analogy the restriction for bound variables will sound quite
familiar: from every root node, all paths to a bound variable must cross the
quantifier node that binds it.

To see that the root nodes are indeed the correct places to start looking for
paths to variables, remember that there are no formula root nodes—or at least,
if there are any, they are not part of a proof within the graph. The formulas
represented in the proof are always the conclusion of some rule node. The root

30

nodes of formulas are thus, essentially, the rule nodes. But since there can be no
formula nodes in between rule nodes, we may just as well use the root nodes of
a graph, instead of every rule node. That the restriction for assumption closure
refers to paths starting at root nodes as well, makes it sensible to do so.

2.7 Substitution

Turning to the natural deduction rules for first-order logic, one of the trick-
ier habits of variables is their tendency to get substituted—for instance, by
quantifier introduction and elimination rules. Where the other rules of natural
deduction operate conveniently on the primary connective of a formula, which
is represented by the root node of a formula subgraph, the quantifier rules affect
the variables as well, which are at the leaves of the graph. Since we are sharing
subformulas and since variables are different before and after substitution, we
cannot share one formula graph as the ’before and ’after of a substitution. In-
stead, two subgraphs are required that are only different in the variable that is
substituted for. Although generating a duplicate graph with substituted vari-
ables is easy, we also need to be able to verify the correctness of a substitution
in an existing graph. The relation that can identify two formula graphs as the
premise and conclusion of a substitution, P and P [x/a], is the bisimulation
modulo identification, illustrated by the curly triple bars in Figure 2.19.

/.-,()*+∀
��
ML
JK
oo

/.-,()*+P
��

/.-,()*+P
��

x /.-,()*+varoo_ _

Rdef

V _ h
/.-,()*+var

:;
=<�

�
�

oo /.-,()*+∀
��
ML
JK
oo

/.-,()*+P Rh _ V

��

/.-,()*+P
��

x /.-,()*+varoo_ _

Rdef

V _ h
/.-,()*+var

:;
=<�

�
�

oo /.-,()*+∀
��
ML
JK
oo

/.-,()*+P /o/o /o/o /o/o

��

/.-,()*+P
��

x /.-,()*+varoo_ _

Rdef

V _ h
/.-,()*+var

:;
=<�

�
�

oo

Figure 2.19: The construction of a bisimulation modulo identification-relation

The bisimulation modulo identification of x and y is a bisimulation for which
the auxiliary relation R is assumed to hold between x and y, without regarding
the restrictions on R, as illustrated by the left picture of Figure 2.19. The
relation is equivalent to a regular bisimulation when the variable substituted for
or the substitute is absent from both graphs. When this relation is applied to
verify the correctness of substitution, the presence or absence of variables and
substitute formulas has to be checked independently.

As Figure 2.20 illustrates, the graphs for the formulas R(x, y) and R(y, x) are
bisimilar modulo identification of x and y; yet the result of substituting x with
y or vice versa will not be that R(x, y) becomes R(y, x). To recognize a substi-
tution of y for x in a graph, we need the additional requirement that x does not
occur in the result: x does not occur (free) in the formula A[y/x]. If two graphs,
simply indicated with ‘before’ and ‘after’, are bisimilar modulo identification of

31

R(x, y) /.-,()*+R

((--

o/o/o/ /.-,()*+R

zz
ooooooo

wwooooo

R(y, x)

x /.-,()*+var

Rdef

N S _ k p
oo_ _ _ /.-,()*+var //___ y

Figure 2.20: The limits of bisimulation modulo identification

x and y, and x may not occur in the after graph, then since nodes representing
x are only bisimilar to nodes representing x or y, where x occurs in the before
graph there has to be a y in the after graph.

∀x.P (x)
P (a)

(∀E)

∃y.P (y)
(∃I)

?>=<89:;76540123ass ///.-,()*+∀
��

ML

JK
oo

/.-,()*+∃
��

ML

JK
oo

?>=<89:;76540123∀E
OO

//
JJJJ

$$JJJJ

/.-,()*+P N2

��

/.-,()*+P N1

��

/.-,()*+P N3

��?>=<89:;76540123∃I
OO BC

GF E
��?????

A B ??/.-,()*+var
V2 //__ a /.-,()*+var

V1
:;

=<�
�
�
�
�

oo

/.-,()*+var
V3
:;

=<�
�
�
�
�

oo

Figure 2.21: A proof with quantifier introduction and elimination rules

Figure 2.21 shows a small proof with quantifiers. Besides the premise-port and
conclusion-port the ∃I-node and ∀E-node have a third port, whose edge leaves
the node on the lower right side. This is the proper term-port, which connects
to the term t in the inference schemes (see Appendix A). When checking the
correctness of a proof, this information is used for constructing the bisimulation
modulo identification relation.

For example, the ∃I-application in the proof in Figure 2.21 has the conclusion
∃y.P (y) and the premise P (y)[a/y] = P (a); the proper term of the inference is
the free variable a. The P (y) in ∃y.P (y) is represented by the subgraph starting
at node N3, P (a) is represented by N2. Variables y and a are represented by
nodes V3 and V2. If the inference is correct, N2 and N3 are bisimilar modulo
identification of V2 and V3, and there is no path from N2 to V3. A generalization
of this requirement is illustrated by Figure 2.22.

32

premise

?>=<89:;76540123∃I
OO

//

&&LLLLLLL conclusion

proper
variable

/.-,()*+∃
��
ML

JK
oo

?>=<89:;76540123 ///.-,()*+ /o/o /o/o /o/o

����

/.-,()*+

����

?>=<89:;76540123∃I
OO

&&MMMMMMMMM

BC

GF //

/.-,()*+varoo_ _

Rdef

V _ h
/.-,()*+var

:;

=<�
�
�
�
�
�
�

oo

Figure 2.22: The ports and connected nodes of existential quantifier introduction

2.8 Binding of proper variables

In Section 1.3 and Section 1.4 we argued that applications of universal quantifier
introduction and existential quantifier elimination bind their proper variables.
In this section we will return to the matter, armed with the insight of how bound
variables and closed assumptions are treated in graphs.

....
A[a/x]
∀x.A

(∀I)

Restrictions on ∀I: a = x or
a is not free in A; a is not free
in open assumptions

....
∃x.A

[A[a/x]]u....
C

C
(∃E,u)

Restrictions on ∃E: a = x or
a is not free in A; a is not free
in C or in open assumptions
except [A[a/x]]u

Figure 2.23: The inference rules of natural deduction

The rules for universal quantifier introduction and existential quantifier elimina-
tion for natural deduction, repeated in Figure 2.23, are accompanied by explicit
restraints on where the proper variable may or may not occur. Starting with
∀-introduction, the requirement is that the proper variable occurs neither in any
open assumptions nor in the conclusion of the inference.

Crucial in the treatment of bound variables and closed assumptions in graphs is
the notion of scope: the explicit restraint on graphs was that a bound variable
or closed assumption may not occur outside the direct subformula or direct
subproof of the node that bound or closed it. Keeping this in mind, we turn to
an analysis of Prawitz’ renaming algorithm (see page 17).

The algorithm keeps track of which occurrences of a variable letter in a proof
denote the same variable. Within an inference, if the formula letters in the
inference scheme are the same, then in the corresponding formula occurrences

33

the variable letters denote the same variables. This implies that the same vari-
able not only occurs in premises and conclusions, but also, for instance, in the
conclusion and closed assumption of an →I-inference.

Pau....
A[a/x]
∀xA

(∀I)
....
B

Pa→ B
(→I,u)

Figure 2.24: An unrestricted proper variable

The schematic proof in Figure 2.24 shows what may happen without explicit
restrictions: the →I-application introduces an occurrence of a, the proper vari-
able, below the ∀I-application; outside its direct subproof. Likewise, an occur-
rence of the variable letter a in the conclusion would allow occurrences outside
the scope of the ∀I-application—if that doesn’t already count as ‘outside’ it-
self. In other words, the restrictions on the ∀I-scheme limit the scope in which
occurrences of the proper variable of a ∀I-application may occur to the direct
subproof of the application.

It will probably come as no surprise that investigations into the case of existen-
tial quantifier elimination lead to a similar conclusion. The restrictions on the
inference scheme prohibit the proper variable from occurring outside the proof
of the minor premise: in the scheme it may not occur in the major premise
(∃xA), the conclusion C or any open assumption on which the minor premise
depends.

Returning to graphs, we will treat proper variables of ∀I- and ∃E-applications as
bound. Figure 2.25 shows the graph scheme for universal quantifier introduction.

premise

?>=<89:;76540123∀I
OO

//

&&LLLLLLL conclusion

proper
variable

/.-,()*+∀
��
ML

JK
oo

?>=<89:;76540123 ///.-,()*+N1

����

/o/o /o/o /o/o /.-,()*+N2

����

?>=<89:;76540123∀I
OO

%%LLLLLLLL
BC

GF //

/.-,()*+var
V1

eeL
L

L
L

Rdef

V _ h
/.-,()*+var

V2
:;

=<�
�
�
�
�
�
�

oo

Figure 2.25: Universal quantifier introduction

The scheme in Figure 2.25 requires two nodes to be bisimilar modulo identifica-
tion: node N1 which represents the premise, A[a/x] in the inference scheme, and

34

N2, which represents the direct subformula (A) of the conclusion (∀xA). As for
the variable nodes identified by the bisimulation, V1 represents the proper vari-
able and is bound by the ∀I-node, and V2 is bound by the universal quantifier
node that is the primary connective of the conclusion.

major
premise

assumption
minor

premise

?>=<89:;76540123∃E
eeKKKKK

OO 88qqqqqq //

''NNNNNN conclusion

proper
variable

?>=<89:;76540123 ///.-,()*+∃
��
ML

JK
oo

?>=<89:;76540123ass?>

���
�
�
�
�
�

///.-,()*+ /o/o /o/o /o/o

����

/.-,()*+

����

?>=<89:;76540123

OOOO

ED
��?>=<89:;76540123∃E

@
????

G
??����

ON //

BB���
//

9?????

//

/.-,()*+
/.-,()*+var

I
_ _ _ _ _

__?
?

?

Rdef

U _ i
/.-,()*+var

:;

=<�
�
�
�
�
�
�
�
�
�

oo

Figure 2.26: Existential quantifier elimination in graphs

The scheme for existential quantifier elimination, portrayed in Figure 2.26, in-
cludes all three types of binding: a variable bound by a quantifier, a variable
bound by an inference, and a closed assumption.

The restrictions for proofs and formulas that bound variables and closed as-
sumptions must be within the scope of the binder, were made explicit in graphs
as the restriction that any path from a root node to a bound node must cross
the binder node. For binding by ∀I- and ∃E-nodes, as wel as assumption closure
by ∨E- and ∃E-nodes, we need to be a little more specific.

As we saw, the proper variable of ∀-introduction in proofs should only occur in
the direct subproof, and not in the conclusion. Demanding that a path crosses
the ∀I-node does, however, allows the path to use the conclusion-port. The
restriction should therefore be that paths from a root node to a bound variable
should not only cross the binding ∀I-node, but use the premise-port as well—or
the proper variable-port, of course.

To correctly state the bound variable restriction for existential quantifier elimi-
nation we have to identify differences between ports as well. The proper variable
may only occur in the subproof of the minor premise, and even then not in the
conclusion of that subproof. Since the ∃E-node and its minor premise share the
same conclusion, we only have to restrict the proper variable from being reached
through the conclusion-port. Furthermore, it may not be reachable through the
major premise-port, but it may be reached through the closed assumption-port,
the premise-port and the proper variable port.

In this setup a minor difference remains between proof graphs and natural de-

35

Pau

∀x.Px
(∀I)

/.-,()*+∀
��
ML

JK
oo

?>=<89:;76540123ass //

��

/.-,()*+P

��

/.-,()*+P

��

?>=<89:;76540123∀I
OO

%%LLLLLLLL
BC

GF //

/.-,()*+var

eeL
L

L
L /.-,()*+var

:;

=<�
�
�
�
�
�
�

oo

Figure 2.27: An assumption that cannot be discharged

duction. The incomplete proof in Figure 2.27 cannot be constructed within
natural deduction since the proper variable of the ∀I-application is open in an
assumption. The graph, on the contrary, does comply to all our restrictions, but
its open assumption cannot be discharged anymore: the bound variable would
be reachable without crossing the ∀I-node. Any added discharging node could
never be reachable from the ∀I-node, since all ports within the subproof are
already used. The inductive construction procedure would be at a dead end
here. However, this is ultimately not an issue for completed proofs, in which all
assumptions have to be closed; therefore we will not explicitly prohibit graphs
like the one in Figure 2.27.

?>=<89:;76540123∀I
��<<<<<<

?>=<89:;76540123∃EAB ??/.-,()*+var

/.-,()*+

����

?>=<89:;76540123∀I
��<<<<<<

?>=<89:;76540123

GF // //

/.-,()*+var

Figure 2.28: Prohibited constructions

Figure 2.28 shows the graph configurations that have been ruled out. The config-
urations are reminiscent of the prohibited constructions for bound variables and
closed assumptions. The left graph illustrates the double binding of a variable,
which whould in this case correspond to deducing a universal conclusion from
an existential premise—two ∃E-nodes or two ∀I-nodes would lead to similar
problems. The right graph shows a proper variable of a ∀I-node that is reach-
able from outside the subproof of the ∀I-node, which would allow derivations
like Pa→ (∀xPx).

2.9 Dead terms

The central question of the current section is expressed by Figure 2.29. Previ-
ously we have seen that if we treat applications of ∀I and ∃E as though they

36

bind their proper variables, we can eliminate a form of α-equivalence. Let us
now take a closer look at the proper term of ∀-elimination and ∃-introduction.

∀x.Px
Pa

(∀E)

∃y.Py
(∃I)

∀x.Px
Pb

(∀E)

∃y.Py
(∃I)

Figure 2.29: Are these deductions α-equivalent?

The first impression may be that this case is remarkable similar to the situation
for universal quantifier introduction. Nonetheless, there are good reasons why
the proper terms of ∃I-applications cannot be seen as bound, the first being
that they’re terms; terms, in general, cannot be bound.

The second reason not to treat proper terms as bound, is that a term or variable
may be the proper term of many applications of ∀-elimination or ∃-introduction,
because it may still occur in the conclusion of an application, or in its open
assumptions. These two typical restraints on the proper variables of ∀I and ∃E
obviously don’t apply to ∀-elimination, but neither to ∃-introduction, as shown
in Figure 2.30.

Pt ∧Qt
∃y.(Pt ∧Qy)

(∃I)

∃x∃y.(Px ∧Qy)
(∃I)

Pa
∃x.Px

(∃I)

Pa→ ∃x.Px
(→I,u)

Figure 2.30: ∃I doesn’t have the constraints of ∀I

The case portrayed in Figure 2.29, where the proper term does not occur in
the conclusion or an open assumption of the ∃I-application, seems to be an
exception. In such a particular case, then, it might still be possible to treat the
term as bound, since the conditions as they are for ∀-introduction are met. The
third reason not to treat proper terms as bound, is that applications of some
other rules can meet these same conditions, and should then also be considered
as binders. Figure 2.31 shows the case of ∧-elimination; other inferences that
may show this behaviour are→E, ∃E and ∨E, though the latter two only when
at least one closed assumption class is empty.

∀x.(Px ∧A)
Pa ∧A

(∀E)

A
(∧ER)

∀x.(Px ∧A)
Pb ∧A

(∀E)

A
(∧ER)

Figure 2.31: Another example of a dead term

For these reasons these terms, which we will call dead terms, should not be
considered bound. Unless the term consists only of a variable, a dead term is
a term that does not occur in the conclusion and assumptions of a deduction.
If it does consists only of a variable, a dead term is a term that does not occur

37

in a conclusion or assumption and also isn’t the proper variable of some ∀I or
∃E-application.

On the one hand, dead variables are indispensable to the deductions in which
they occur. For the typical situations where they occur, illustrated in this
section, it is probably impossible to find an equivalent deduction without one.
On the other hand, which variable letter or term is used is even less relevant
than with bound or proper variables: there is no reference to a binder.

∀x∀y.Rxyu
Pav

Pa→ Pa
(→I,v)

(∀x∀y.Rxy) ∧ (Pa→ Pa)
(∧I)

∀x∀y.Rxy
(∧EL)

∀y.Ray
(∀E)

Rab
(∀E)

∀x.Rxb
(∀I)

∀y∀x.Rxy
(∀I)

∀x∀y.Rxyu
Pbv

Pb→ Pb
(→I,v)

(∀x∀y.Rxy) ∧ (Pb→ Pb)
(∧I)

∀x∀y.Rxy
(∧EL)

∀y.Ray
(∀E)

Rab
(∀E)

∀x.Rxb
(∀I)

∀y∀x.Rxy
(∀I)

Figure 2.32: Dead terms and proper variables

An example of a more serious construction with dead terms is given in Fig-
ure 2.32. The tails of both proofs are mainly there to allow two different proper
variables; the difference is in the redundant branch on the top right. Since
proper variables are considered bound, it will be very hard to rename only the
variables in the top right branch, and not in the rest of the proof.

Given these considerations, it is debatable whether it is really α-equivalence we
are dealing with. If, nonetheless, we want each of the pairs of deductions in
Figure 2.29, Figure 2.31 and Figure 2.32 to be represented by one and the same
graph, another option than binding is simply erasing the name of the variable or
term. In fact, this can be done in the deductions themselves as well. In the next
few examples, dead terms consisting of variables will be replaced by a special
symbol, ‘0/’.

∀x.Px
P0/

(∀E)

∃y.Py
(∃I)

∀x.(Px ∧A)
P0/ ∧A

(∀E)

A
(∧ER)

∀x.(Px→ A)
P0/→ A

(∀E)
∀x.Px
P0/

(∀E)

A
(→E)

Figure 2.33: Dead terms without names

Figure 2.33 shows the example deductions of Figure 2.29 and Figure 2.31, as
well as an example deduction in which a term is removed by an implication
elimination, using the special ‘dead term’ symbol. The intended consequence
is that every dead term is represented by one and the same term. To see why
that does not cause problems, consider the following argument: firstly, if a proof

38

contains a dead term that consists of only a variable, that variable might just
as well have been a term, since it may not occur as a proper variable of ∀I or
∃E.

Secondly, there are only two rules that may operate on terms, ∃I and ∀E. The
other two quantifier rules affect only their proper variables, and all the other
rules add or remove connectives. Obviously, no application of ∀E can be made
invalid by changing the proper term, if the new term does not contain any
variables. As for ∃I, the worst that can happen for an ∃I-application when
changing the proper term, is that it becomes identical to some other term in the
premise and conclusion. An example of this situation is given by Figure 2.34.

R(s, t)
∃y.R(s, y)

(∃I)

∃x∃y.R(x, y)
(∃I)

R(0/, 0/)
∃y.R(0/, y)

(∃I)

∃x∃y.R(x, y)
(∃I)

Figure 2.34: Existential quantifier introduction with dead terms

In Figure 2.34 the two terms s and t in the left proof are replaced with one
and the same term on the right. The intuition may be that the upper inference
in the proof on the right is invalid, but that is not the case. The direction
of substitution in the scheme for ∃-introduction was chosen such that not all
occurrences of the proper term in the premise have to be replaced by the new
existentially quantified variable in the conclusion. As a result, changing the
proper term cannot render an ∃I-application invalid.

Next, we apply these findings to natural deduction. To find out whether a term
in a deduction is dead, checking whether it does not occur in the conclusion
or open assumptions will suffice, unless it only consists of a variable. Then it
should also be verified that it is not the proper variable of an application of
∀-introduction or ∃-elimination. And to find the proper variables, they have to
be made into pure variables, as was demonstrated on page 17.

For graphs, dead terms face the same problems. Although bound variables
are indicated with backpointers in graphs, and are thus relieved of issues with
variable letters, they can still occur in terms that would otherwise be dead.
Figure 2.35 shows such a construction.

The problem presented by Figure 2.35 is a serious one. If a dead term can
use any proper variable, then if we want to build a graph system that deals
with dead terms, we will need the algorithm for finding pure variables to de-
fine proper variables. The other possible definition for proper variables, all free
variables in the subdeduction, suddenly looks a lot more appealing, particu-
larly because it corresponds to the definition of regular variable binding and
assumption discharge.

The decision to abandon the option of pure proper variables is made definitive by

39

?>=<89:;76540123 ///.-,()*+∧
��999999

��������

?>=<89:;76540123∧EL

OO

///.-,()*+P /.-,()*+Q

��

?>=<89:;76540123∀I
OO

//

9??????

//

/.-,()*+∀
/.-,()*+var

I
_ _ _ _ _ _

__?
?

?

Figure 2.35: A proper variable occurring as a dead term

the deduction in Figure 2.36. An adaptation of Figure 2.32, the only difference is
that the redundant branch of the proof has been moved down by two inferences.
Although it is hard to say why this should fundamentally matter, this time the
algorithm for finding pure variables will not identify the variables in the branch
as dead terms.

∀x∀y.Rxyu
∀y.Ray

(∀E)

Rab
(∀E)

Pav

Pa→ Pa
(→I,v)

(Rab) ∧ (Pa→ Pa)
(∧I)

Rab
(∧EL)

∀x.Rxb
(∀I)

∀y∀x.Rxy
(∀I)

Figure 2.36: Dead terms or no dead terms

2.10 Rewriting

Rewriting will be addressed in a straightforward way: the rewrite schemes for
graphs will be the graph translations of the rewrite schemes for natural deduc-
tion. The current section will explore which adaptations to this general approach
are needed to deal with the particularities of graphs—that is, of course, sharing.

Figure 2.37 shows the contraction schemes for conjunction introduction and left
conjunction elimination. In the graph version all formula nodes are omitted,
because they play no role in the contraction. For comparison with the natural
deduction schemes the subgraphs of the uppermost nodes are sketched with
dotted arrows.

While for proofs the property of being a premise of some inference is indicated

40

.... (1)

A

....
B

A ∧B
(∧I)

A
(∧EL)

⇒
.... (1)

A

?>=<89:;76540123 K
(1)

OOOO

?>=<89:;76540123

OOOO

?>=<89:;76540123∧I
__?????

??�����

?>=<89:;76540123∧EL

OO

⇒
?>=<89:;76540123 K

(1)

OOOO

Figure 2.37: Conjunction contraction directly translated for graphs

by being on top of that inference, graphs use edges. When the ∧EL-node is
removed, the edges from its predecessors are left without a target. Obviously,
these have to be redirected to the node K. To indicate that all predecessors of
one node should become predecessors of another, a dotted edge is used, as in
Figure 2.38.

?>=<89:;76540123 K ?>=<89:;76540123 L

?>=<89:;76540123∧I M

__?????

??�����

?>=<89:;76540123∧EL
N

OO

(1)

OOOO

⇒

?>=<89:;76540123 K ?>=<89:;76540123 L

(1)

YYYY

Figure 2.38: Conjunction contraction with predecessors

One other thing has changed in Figure 2.38 as well: the node L has not been
removed. The reason behind this is that the ∧I-node might have shared it with
other nodes. Removing it in those circumstances would leave ‘dangling edges’,
edges without target.

Actually the same holds for the ∧I-node itself: if it is shared between the ∧EL-
node and some other nodes, it may not be removed. That it does not reappear
in the right side of the contraction is because there are other rewrite steps for
which that doesn’t work, as we will see shortly. The approach that does work
for all rewrite steps is to copy the introduction node of the contraction first; that
way, the elimination node of the contraction and the other nodes that share it

41

have separate copies.

On the other hand, the possibility exists that all these nodes weren’t shared in
the first place. What happens then is that redundant nodes without predecessors
are left all over the graph, like the node L in Figure 2.38. Each rewrite step will
therefore be followed by an operation that gets rid of these nodes, to be defined
later.

[A]u.... (1)

B
A→ B

(→I,u)

.... (2)

A
B

(→E)

⇒

.... (2)

[A].... (1)

B

?>=<89:;76540123ass
J

?>

89�
�
�
�
�
�

//

?>=<89:;76540123 K

?>=<89:;76540123 L
(2)

OOOO

?>=<89:;76540123→I M

OOHI

ON //

?>=<89:;76540123→E N

__?????

C
������

OO

(1)

OOOO

⇒

?>=<89:;76540123 K

?>=<89:;76540123 L

(2)
33 33

(1)

YYYY

Figure 2.39: The graph translation of implication contraction

The contractions that cannot do without the duplication of the introduction
node, are →-contraction, ∀-contraction and the permutations.

The assumption of the→I-node, J , is replaced in the contraction by the node K.
This means that the subgraph of the→I-node has changed. For any other node
sharing the →I-node that change will probably have unwanted consequences,
so simply leaving the →I-node in the graph is impossible.

So the solution would be to duplicate not only the →I-node, but also its entire
subgraph, and use one copy for the contraction and one for the other nodes
that share it. Figure 2.40 shows a contraction with a shared →I-node, and the
required duplication step.

In Figure 2.40 the →I-node M is shared between nodes N and N ′. Before M
and N can be contracted, M must be duplicated, and its subgraph as well. More
specifically, since closed assumptions may not occur outside the scope of their
binders, instead of the entire subgraph of M only its scope must be duplicated.
Consider for example Figure 2.41.

42

?>=<89:;76540123ass
J

?>_ _

89�
�
�
�
�
�

//__

?>=<89:;76540123 K

?>=<89:;76540123 L

OOOO

?>=<89:;76540123→I M

OOHI

ON //

?>=<89:;76540123 N′
??����� ?>=<89:;76540123→E N

__?????

C
������

OO

(1)

OOOO

⇒
copy

?>=<89:;76540123ass
J′

?>

89�
�
�
�
�
�

//

?>=<89:;76540123ass
J

?>_ _

89�
�
�
�
�
�

//__

?>=<89:;76540123 K

?>=<89:;76540123 L′

OOOO

?>=<89:;76540123 L

OOOO

?>=<89:;76540123→I M′

OOHI

ON //

?>=<89:;76540123→I M

OOHI

ON //

?>=<89:;76540123 N′
__????? ?>=<89:;76540123→E N

__?????

C
������

OO

(1)

OOOO

Figure 2.40: Copying the introduction node of the contraction

?>=<89:;76540123 I

?>=<89:;76540123ass
J

?>

89�
�
�
�
�

//____

?>=<89:;76540123∧I L

__?????

GG����������

?>=<89:;76540123→I M

OOHI

ON // ⇒
copy

?>=<89:;76540123 I

?>=<89:;76540123ass
J

?>

89�
�
�
�
�

//____

?>=<89:;76540123ass
J′

?>_ _

89�
�
�
�
�

//_____

?>=<89:;76540123∧I L

__?????

GG���������� ?>=<89:;76540123∧I L′

__?????

oo

?>=<89:;76540123→I M

OOHI

ON //

?>=<89:;76540123→I M′

OOHI

ON //

Figure 2.41: Only the scope of the →I-node has to be copied

In Figure 2.41 the scope of node M consists of nodes L and J , but not I. When
M is duplicated, then so must J and L, but L and its duplicate L′ may still
share I.

Left out of the discussion so far, the next question is what happens to the
conclusions of the rule nodes in a contraction. In proof graphs conclusions are
shared as much as possible between an inference and its premises, and we need
to verify whether the inference nodes in the result of a translation step still
share their conclusions.

Figure 2.42 shows one of the two contraction schemes for conjunction, to which
conclusions have been added. In the contraction, the elimination node N is
removed, and all edges towards it are redirect to the right premise, L, of the
introduction node M . From the perspective of the predecessors of N , however,
not much has changed: the node L has the same node as conclusion as did
N . At least for this scheme, conclusions are shared in the resulting graph as
required.

43

?>=<89:;76540123 K ?>=<89:;76540123 L ED

��

?>=<89:;76540123∧I M

__?????

??�����
///.-,()*+∧

�������

��;;;;;

/.-,()*+A /.-,()*+B
?>=<89:;76540123∧ER

N

OO

BCOO

(1)

OOOO

⇒

?>=<89:;76540123 K ?>=<89:;76540123 L ED

��

/.-,()*+∧
�������

��;;;;;

/.-,()*+A /.-,()*+B

(1)

EE EE

Figure 2.42: Right conjunction contraction with conclusions

Fortunately, for most contraction schemes and for all permutation and sim-
plification schemes, conclusions remain shared. The two exceptions are ∀-
contraction and ∃-contraction, of which the former is shown, with added con-
clusions, in Figure 2.43. The graph has been simplified to improve readability:
the edges that connect M0 and N0 to their conclusions M1 and N1 have been
omitted.

/.-,()*+∀ M1

��
ML

JK
qq

ll

?>=<89:;76540123 L0 ///.-,()*+ L1

(2)

����

/o/o/o /.-,()*+

(3)

����

/o/o/o /.-,()*+N1

(4)

����

?>=<89:;76540123∀I M0

OO

$$JJJJJJJJ

?>=<89:;76540123∀E N0

OO

/.-,()*+var
A

ddJ
J

J
J

Rdef

Q _ m
/.-,()*+var

X

:;

=<�
�
�
�
�
�
�

Rdef

Q _ m
/.-,()*+var

T

(1)

OOOO BC
OO

⇒

?>=<89:;76540123 L0 ///.-,()*+ L1

(2)

�� ��

/.-,()*+N1

(4)

����/.-,()*+var
T

(1)

OOOO

Figure 2.43: Universal quantifier contraction with conclusions

To explain the details of the contraction in Figure 2.43 we compare it to the
contraction scheme for natural deduction, in Figure 2.44. The three conclu-
sion nodes, L1, M1 and N1, represent the three formulas A, ∀x.A[x/a] and
A[t/a]. The bisimulation modulo identification (∼∼∼) relations ensure that these
substitutions are correctly represented in the graph. The variable nodes have
been named A, X and T to match the variables and terms a, x and t in the
contraction scheme for proofs.

The substitution on the remaining deduction in Figure 2.44, which replaces a
with t in the entire subproof of the contraction, is carried out in graphs by
redirecting all edges with node A as target towards T . In the resulting graph,

44

.... (1)

A
∀x.A[x/a]

(∀I)

A[t/a]
(∀E)

⇒
.... (1)

A

}
[t/a]

Figure 2.44: Universal quantifier contraction for proofs

the nodes A and X no longer occur: A has been replaced with T , and X may
not occur outside the scope of M1.

In Figure 2.43 the node N has M0 as a premise before the contraction, and
K0 afterwards. Although K0 and M0 don’t have the same node as conclusion,
their conclusion nodes K1 and M1 are bisimilar. In a sloppy interpretation,
the bisimulation modulo identification relations read: if A, X and T were the
same, then L1, the subformula of M1, and N1 would be bisimilar. Since in
the resulting graph A has been replaced by T , L1 and N1 should be bisimilar;
formal proofs, however, will have to wait.

To complete the contraction we somehow need to merge the nodes L1 and N1

into one. In Section 4.2 an operation will be introduced that does precisely that.

2.11 Translating proofs to graphs

The translation from deductions to graphs will make use of an intermediate
type of graph, which we call ‘pre-proof graphs’. In these graphs we will see
aspects of both proofs and proof graphs. For instance, bound variables and
closed assumptions may be identified both by indices and by backpointers. We
will introduce the translation procedure by an elaborate example, illustrated by
Figures 2.45 through 2.52.

Pre-proof graphs need, among other things, the ability to represent graphs half-
way through a translation. The approach we take is inspired by the idea that
every rule node in a graph, by means of its connections, represents a deduction.
Applying this idea to an inductive translation procedure, we introduce special
‘unfinished’ nodes and attach them to the proofs they are going to represent.

Pre-proof graphs, then, are proof graphs containing deductions that have yet to
be translated, as an argument of their future root node. These nodes are called
empty and are, like the other nodes, divided into rule nodes and formula nodes.
Empty rule nodes are labeled ‘ε0’ and linked to a deduction, empty formula
nodes get the label ‘ε1’ and a link to a formula. The graph in Figure 2.45
illustrates the idea.

A pre-proof graph is translated one step at a time. Each step translates one
empty node, but in the example some steps will be taken simultaneously. The

45

possible steps are given in Appendix D.

Pau

Pa→ Pa
(→I,u)

∀x(Px→ Px)
(∀I)

Pau

Pa→ Pa
(→I,u)

∀x(Px→ Px)
(∀I)

?>=<89:;76540123ε0 ///.-,()*+ε1
∀x(Px→ Px)

Figure 2.45: The starting proof and initial step

Figure 2.45 shows the proof that we are going to translate, on the left, and the
result of the first translation step, on the right. The deduction as a whole has
been attached to the left node, an empty rule node; the conclusion has been
duplicated and attached to the right node, an empty formula node. The edge
from left to right is attached to the conclusion-port of the empty rule node.

Pau

Pa→ Pa
(→I,u)

/.-,()*+ε1
?>=<89:;76540123ε0 ///.-,()*+ε1
?>=<89:;76540123∀I
OO BC

GF

((PPPPPPPPPP

/.-,()*+ε1
a Pa→ Pa ∀x(Px→ Px)

Figure 2.46: The empty rule node was translated

Figure 2.46 shows the result of the next step in the translation. The empty
rule node of Figure 2.45 has been given the label ∀I, which was the last rule
application in the deduction. The premise-port leads to a new empty rule node,
that will represent the rest of the deduction. As in the first step, the empty
rule node has been given a conclusion. Although it is not that important in
this particular case, on other occasions it will allow rule nodes to share parts of
the formula graph. The edge on the lower right of the ∀I-node connects to the
proper variable, in this case a.

The following step, resulting in Figure 2.47, has translated the middle ε1-node,
representing Pa→ Pa, to an implication node. The other empty formula nodes

46

Pau

Pa→ Pa
(→I,u)

/.-,()*+ε1
?>=<89:;76540123ε0 ///.-,()*+→

��������

��999999

?>=<89:;76540123∀I
OO BC

GF

((PPPPPPPPPP /.-,()*+ε1 /.-,()*+ε1
/.-,()*+ε1
a Pa Pa ∀x(Px→ Px)

Figure 2.47: The conclusion of the empty rule node had to go first

could have been translated as well, but not the empty rule node. Because sharing
of conclusions is enforced, translating an empty node sometimes requires that
its conclusion nodes are already present.

Pau Pau

?>=<89:;76540123ε0 ED

��

?>=<89:;76540123ε0 ED

��

/.-,()*+ε1
?>=<89:;76540123→I

@A

OO

OO

///.-,()*+→
��������

��999999

?>=<89:;76540123∀I
OO BC

GF //

��?????
/.-,()*+ε1 /.-,()*+ε1

/.-,()*+ε1
a Pa Pa ∀x(Px→ Px)

Figure 2.48: Now the empty rule node could be translated

In Figure 2.48 the empty rule node has become an →I-node. The upper left
empty node is the assumption closed by the →I-node; the backpointer will be
added later. The conclusions of the new empty rule nodes are the antecedent
and consequent of the implication node translated in the previous step.

In Figure 2.49 all formulas have been translated as well, and there are no empty

47

u

?>=<89:;76540123ass

=={
{

{

ED

��

?>=<89:;76540123ass

OO�
�
�
�
�

ED

��

/.-,()*+∀
��

ED

��

?>=<89:;76540123→I
@A

OO

OO

///.-,()*+→
��������

��999999 /.-,()*+→
��999999

��������

?>=<89:;76540123∀I
OO BC

GF //

��?????
/.-,()*+P
��

/.-,()*+P
��

/.-,()*+P
��

/.-,()*+P
��/.-,()*+var

''PPPPP /.-,()*+var

 @
@

@ /.-,()*+var

~~~ ~
~

/.-,()*+var

  @
@

@ /.-,()*+var

~~~ ~
~

/.-,()*+var

wwn n n n n

a x

Figure 2.49: The remaining empty nodes have been translated

nodes left. Assumption markers and variable letters have been replaced by
indices. The next steps in the translation will merge variables and assumptions
with the same index and put backpointers in place.

u

?>=<89:;76540123ass

=={
{

{

ED

��

?>=<89:;76540123ass

OO�
�
�
�
�

ED

��

/.-,()*+∀
��

ML

JK
oo

?>=<89:;76540123→I
@A

OO

OO

///.-,()*+→
��������

��999999 /.-,()*+→
��999999

��������

?>=<89:;76540123∀I
OO BC

GF //

��?????
/.-,()*+P
��

/.-,()*+P
��

/.-,()*+P
��;;;;; /.-,()*+P
�������

/.-,()*+var

''PPPPP /.-,()*+var

 @
@

@ /.-,()*+var

~~~ ~
~

/.-,()*+var

:;
___

=<�
�
�
�
�
�
�

oo_ _ _

a

Figure 2.50: The bound variable has been merged

The three variable nodes with index x have been merged in Figure 2.50. The
merging procedure is very straightforward: we merge every variable with the

48



first possible binder, found when traversing the graph against the direction of
the edges. A possible binder is in the case of a variable the bound variable of a
quantifier node, or the proper variable of a ∀I-node or ∃E-node, with the same
index.

?>=<89:;76540123ass?>

89�
�
�
�

//

ED

@A
//

/.-,()*+∀
��

ML

JK
oo

?>=<89:;76540123→I
HI

ON // OO

///.-,()*+→
����

/.-,()*+→
��999999

��������

?>=<89:;76540123∀I
OO BC

GF

��?????
/.-,()*+P
��

/.-,()*+P
��;;;;; /.-,()*+P
�������

/.-,()*+var

&&MMMM /.-,()*+var

���
�

/.-,()*+var

:;
___

=<�
�
�
�
�
�
�

oo_ _ _

a

Figure 2.51: The assumptions have been merged

The merging of assumptions involves a little more effort. Variable nodes typi-
cally have no outgoing edges, only a backpointer, so merging is straightforward.
Assumptions, on the other hand, have a conclusion that has to be merged as
well; we will have to develop our procedure so it can work with entire formula
graphs.

?>=<89:;76540123ass?>

89�
�
�
�

//

ED

@A
//

/.-,()*+∀
��

ML

JK
oo

?>=<89:;76540123→I
HI

ON // OO

///.-,()*+→
����

/.-,()*+→
��999999

��������

?>=<89:;76540123∀I
OO BC

GF

((QQQQQQQQQQQ /.-,()*+P
��

/.-,()*+P
��;;;;; /.-,()*+P
�������

/.-,()*+var

hhQ Q Q Q Q Q /.-,()*+var

:;
___

=<�
�
�
�
�
�
�

oo_ _ _

Figure 2.52: The proper variable has been merged

Figure 2.52 shows the completed proof graph. The last step was the merging of
the two variables a. This brings a new issue with it; the bound variables x were
only reachable by a single path from the quantifier, and likewise there was only
one path from the→I-node to each assumption. The formula-part and rule-part
of the graph were still trees when these merges took place, but the right one of
the two variables with index a is shared by two propositions and two rule nodes.

49



If the variable is bound by the first binder found moving up the graph, we have
to show that for each path, this is the same binder. In other words, we have to
show that each occurrence of the variable a that we have previously merged, is
an instance of the proper variable of the same binding rule node.

50



3 Formal Definitions

To describe proof graphs mathematically turns out to be quite a job. A lot
of the problems faced in the previous chapter lead to exceptions in the formal
treatment.

This chapter will describe the formal makeup of proof graphs and that of a larger
class of graphs required for incomplete translations, and will define variable
binding and assumption closure for those graphs.

3.1 Constraint definition

In this section a constraint-based definition for proof graphs will be given, as well
as some basic notions and operations. A large part of the constraint definition—
the correctness criteria for the representations of inferences in a graph—is pre-
sented in images which are, because of their size, placed in the appendices.

Still, the definition of proof graphs will be quite elaborate due to the multitude
of components involved. We need nodes that represent inference rules, nodes
that represent formulas, we need edges and special backpointers, and we need
a fixed set of ports for each node, dependent on the label; but first we will
introduce additional naming conventions:

• D, E and F are deductions

• G and H are graphs

• capital letters such as M and N are nodes

• p and q are ports

• γ and δ are edges

• Γ and ∆ are paths

• R is a bisimulation relation

The nodes need differentiation between rules and formulas. To achieve this
we will use two different sets of labels, not different sets of nodes. Since the
inference rules and formulas used in natural deduction are fixed, the sets of rule
labels and formula labels are fixed for every graph as well. Although they only
differ in label and not in the type of node, for ease of terminology we will refer
to nodes with a formula label as formula nodes, and nodes with a rule label as
rule nodes.

51



Definition 3.1 r-labels is the set of inference labels:

{∧I,∧EL,∧ER,∨IL,∨IR,∨E,→I,→E,⊥E,∀I, ∀E,∃I, ∃E,ass}

f-labels is the set of formula labels:

{∧,∨,→,⊥,∀,∃,var} ∪ {pn|n ∈ N}

The union of the two sets of labels will be called labels. The labels pi are the
predicates, with i indicating the number of ports. Since we want the label of
a node to define which and how many ports it has, we need a predicate node
for each possible arity. Moreover, since there may be more predicates with the
same arity, we will use indices to identify them.

A small note on why predicates are dealt with like this: simply using node labels
P andQ for predicates P andQ would lead to problems when two graphs contain
a predicate P of different arity. Another option would have been to predefine
a set of predicate labels that contains all possible predicates with all possible
arities, or to add a set of predicate labels as a parameter to each graph. The
current setup represents a predicate Q of arity n by a predicate node pn with
n ports and index Q. Besides using smaller or less sets of entities, it has the
added conceptual advantage that predicates are treated the way they would be
in second-order logic: they can, theoretically, be bound.

Definition 3.2 ports is the set of ports listed on page 106.

For easier reference some ports have been assigned a type. Since there is no limit
to the arity of the predicates we need to represent, the set contains an infinite
amount of argument ports for predicate nodes.

Definition 3.3 ports is a function from labels to subsets of ports, i.e.
it assigns a set of ports to each label. The contents of the ports function are
displayed by the images in Appendix B; exactly how is illustrated by Figure 3.1.

/.-,()*+→
||yyyyy

""FFFFF

antecedent consequent

premise

closed
assumption

?>=<89:;76540123→Ioo

OO

// conclusion

Figure 3.1: Ports

The left image of Figure 3.1 shows the ports of an implication node, the right
image the ports of an implication introduction node. The information contained
is as follows:

ports(→) = {antecedent, consequent}
ports(→I) = {closed assumption, premise, conclusion}

52



Each proof graph uses the sets labels and ports, and the ports function.
Individually, graphs have a set of nodes, a set of indices, and functions that
provide the nodes with labels, successors and indices.

Definition 3.4 A proof graph G is a tuple

〈nodes,indices,label ,succ ,bind ,index 〉

where:
nodes a finite set of nodes
indices a finite set of indices, disjoint from nodes
label is a function from nodes to labels
succ is a function from nodes to partial functions from ports to nodes,

such that for every node N and every port p ∈ ports(label(N))
succ(N, p) = N ′ for some node N ′

bind is a partial function from the nodes with label var or ass to the nodes
labeled ∀, ∃, ∀I, ∃E, →I or ∨E

index is a partial function from the nodes with label var, ass, or pi to
indices, such that dom(bind ∪ index) contains all nodes labeled var,
ass, or pi

The label function assigns a label to each node. The labels come from one of the
two sets of labels; nodes with a label from r-labels are called rule nodes and
nodes with a label from f-labels formula nodes. The ports of a node N are
the ports of its label: ports(label(N)), which may be abbreviated to ports(N).

The succ function gives a successor for each port on each node. These are
the regular connections that contain information such as which nodes are the
premises and conclusion of a rule node. The bind function links every closed
assumption to the rule node that closed it and every bound variable to the
quantifier or quantifier inference that binds it. For brevity, from now on the
term binding will be used for assumption discharge as well as variable binding.

Graphs need to conform to a number of restrictions. To formulate the first one,
acyclicity, in an intelligible manner, we need the notions of edge and path. The
notion of backpointer is provided as well, although we will mostly use the bind
function itself within definitions.

Definition 3.5 An edge is a tuple

〈N ∈ nodes, p ∈ ports(N), N ′ ∈ nodes〉

such that succ(N, p) = N ′. N is what is called the source of the edge, N ′ the
target. We use the abbreviation 〈N, p〉 for 〈N, p, succ(N, p)〉.

A backpointer is a tuple

〈N ∈ nodes,M ∈ nodes〉

such that bind (N) = M .

53



Definition 3.6 For M,N ∈ nodes, a path Γ from M to N is a sequence of
edges 〈γ1, γ2, ..., γn〉 such that M = source(γ1) and N = target(γn) and for
each γi (1 ≤ i < n) target(γi) = source(γi+1). The nodes that are on a path,
or the nodes that a path contains, are the nodes that are the source of the path
or the target of some edge within the path.

Since each pair of node and port specifies a unique successor, paths may be
abbreviated to a source node and a sequence of ports. A path may be of lenght
zero, but to set it apart from other zero-length paths a source has to be specified.

Restriction 3.7 Proof graphs are acyclic, i.e. a proof graph may not contain
a path from node N to N consisting of one or more edges. Note that paths solely
consist of edges and cannot include backpointers. Since we have a finite amount
of nodes, all paths are finite.

Definition 3.8 A root node is a node N ∈ nodes such that:

∀M ∈ nodes ∀p ∈ ports(M) succ(M, p) 6= N

A graph with only one root node is called a rooted graph. A rooted path is
a path whose source is a root node. In a rooted graph a rooted path can be
written as just a sequence of ports. When a graph is required to be rooted,
while it isn’t, the following definition will save the day:

Definition 3.9 For a node N in a graph G, GN is the subgraph of G consist-
ing of all nodes reachable from N .

Since backpointers may point to nodes outside of the subgraph GN , in some
cases it cannot be considered in isolation from G. When N is a root node,
however, Restriction 3.17 will ensure that all backpointers in GN point to nodes
inside GN .

For greater convenience we will use the notion of binding instead of constantly
referring to the bind relation. This is done by the lemma below; the restriction
that follows it ensures a one-to-one correspondence between a binder and the
node it binds, and the lemma below that transfers the notion of scope to proof
graphs.

Definition 3.10 For all M,N ∈ nodes if bind(M) = N then N binds M .

Restriction 3.11 For all M,N ∈ nodes if N binds M then succ(N, p) = M
where p is an assumption-type or variable-type port.

Definition 3.12 The scope of a node N is the set of all nodes that are on
some path from N to a nodeM that is bound by N .

Disjunction elimination nodes bind two assumption nodes, a left one and a right
one. We divide the scope of these nodes into a left scope and a right scope, which

54



contain the disjunction elimination node itself and every node on a path from
the left minor premise to the left closed assumption, or, respectively, every node
on a path from the right minor premise to the right closed assumption. The
two scopes of ∃E-nodes are called assumption scope and variable scope. In both
cases ‘the scope’ refers to the union of both scopes.

The bisimulation relation, introduced in Section 2.3, will be described formally
below.

Definition 3.13 Two nodes M and N are bisimilar (M ≡ N) if there is a
relation R such that R(M,N) and for all nodes α, β:

R(α, β)⇒ label(α) = label(β)
& ∀p ∈ ports(α) R(succ(α, p), succ(β, p))
& if α ∈ dom(bind)

then β ∈ dom(bind) and R(bind(α), bind(β))
& if α /∈ dom(bind)

then β /∈ dom(bind) and index(α) = index(β)

For the above definition it doesn’t matter whether M and N are nodes in the
same graph or in different graphs. Two graphs are bisimilar if for both graphs
every root node is bisimilar to a root node of the other graph.

Individual bisimulation relations, usually indicated as R, need not be reflex-
ive, symmetrical or transitive. Bisimilarity, on the other hand, the fact that a
bisimulation can be found, is an equivalence relation.

Lemma 3.14 Bisimilarity is an equivalence relation.

Proof: firstly, the identity relation is a bisimulation, which makes bisimilarity
reflexive. Secondly, if R is a bisimulation, then so is the inverse R−1, proving
symmetry. Finally, given two bisimulations S and T we show that the composite
relation S ◦ T is a bisimulation as well.

Suppose that for arbitrary nodes α, β and η we have S (α, β) and T (β, η). Then
because label(α) = label(β) and label(β) = label(η) we have label(α) = label(η).
For all ports p belonging to that label, we have S (succ(α, p), succ(β, p)) and
T (succ(β, p), succ(η, p)), giving us S ◦ T (succ(α, p), succ(η, p)). The case for
bind is similar. �

A very specific notion, the ‘bisimulation modulo identification’ is used to repre-
sent substitution within graphs. The relation may be constructed between two
nodes that are not bisimilar, and, to mimick transitivity, as well between any two
nodes that are bisimilar to the earlier two. The relation inherently represents a
partial substitution, i.e. a substitution in which some but not all ocurrences of
a term or variable are replaced. Because of this and the fact that the relation

55



is directed, it is not suited to represent multiple substitutions. Fortunately, an
inference in natural deduction contains at most one substitution.

Definition 3.15 Two nodes M and N are bisimilar modulo identification of
P and Q (M ∼∼∼PQ N) if there is a relation R such that R(M,N) (or vice versa),
and for all nodes α, β:

R(α, β)⇒ {α, β} = {P,Q}
—or—

label(α) = label(β)
& ∀p ∈ ports(α) R(succ(α, p), succ(β, p))
& if α ∈ dom(bind)

then β ∈ dom(bind) and R(bind(α), bind(β))
& if α /∈ dom(bind)

then β /∈ dom(bind) and index(α) = index(β)

Restriction 3.16 The restrictions that ensure that every rule node repre-
sents a correct natural deduction inference are given in Appendix B. Figure 3.2
provides an example from that appendix for explanation.

premise

closed
assumption

?>=<89:;76540123→Ioo

OO

// conclusion

/.-,()*+→N1

�������

��

?>=<89:;76540123ass
L0

?>

89�
�
�
�
�
�

//

///.-,()*+L1

?>=<89:;76540123M0

OOOO

///.-,()*+M1

?>=<89:;76540123→I N0

OOHI

ON //

BC

GF //

Figure 3.2: Implication introduction

The normal arrows in Figure 3.2 are the edges, the dashed arrow is a backpointer
(see also the legend in Appendix B). The dotted arrow roughly indicates the
scope of the implication introduction node, but does not impose any restrictions.
The left image was already discussed in Figure 3.1, but we need it to know which
ports are located where in the right image. The ports of the implication node,
which are also required to interpret the illustration, are given in Figure 3.1 as
well. The restrictions illustrated by the right image of Figure 3.2 are:

56



For every (regular) node N , if label(N) =→I:

label(M0) ∈ r-labels (M0 = succ(N0, premise))
label(L0) = ass (L0 = succ(N0, closed assumption))
label(N1) =→ (N1 = succ(N0, conclusion))
bind(L0) = N0

succ(L0, conclusion) = L1 = succ(N1, antecedent)
succ(M0, conclusion) = M1 = succ(N1, consequent)

The next restriction concerns the correctness of variable binding and assump-
tion closure. For natural deduction the inductive buildup of proofs ensures
that assumption closing rules can only close assumptions that are within the
subproof(s) of the rule. Likewise, quantifiers can only bind variables within
their scope, which is their direct subformula. Since binding and closure within
a graph are indicated by a backpointer, we have to verify independently that
bound nodes do not occur outside the subgraph of the binding node.

Restriction 3.17 Let N be a binder node and let Γ be the scope of N . Then
the following statements must hold:

• for all nodes M,M ′ such that there is an edge from M to M ′, if M /∈ Γ
but M ′ ∈ Γ, then M ′ = N .

• If N is a ∨E-node then the right minor premise and right closed assump-
tion are outside the left scope, and the left minor premise and left closed
assumption are outside the right scope of N .

• If N is a ∨E-node or ∃E-node then the major premise of N must be
outside Γ.

• If N is a ∀I-node or ∃E-node then its conclusion must be outside Γ.

3.2 Pre-proof graphs

Due to a multitude of factors the translation from a proof to a graph, and
the reverse, require several stages. To facilitate this an intermediate notion
of graphs is needed, called pre-proof graphs. There are two major differences
between graphs and pre-proof graphs. The first is that pre-proof graphs may
be partial translations of deductions, and in that sense may contain (parts of)
deductions and formulas that are still to be translated. These deductions and
formulas are contained in the graph by attaching them to so-called empty nodes.

To this end there are two extra node labels for pre-proof graphs: ‘ε0’ (added
to the set r-labels) and ‘ε1’ (in f-labels). The former has one port, the
conclusion port, the latter has none. The repr function provides the nodes with
these labels with the deduction or formula they are going to represent.

57



Definition 3.18 A pre-proof graph is a tuple

〈nodes, indices,deductions, formulas, label , succ , bind , index , repr〉

where nodes, indices, label , succ , bind and index are as for proof graphs, and:
deductions is a finite multiset of deductions
formulas is a finite multiset of formulas
repr is a bijection from empty rule nodes to deductions and from

empty formula nodes to formulas

Most of the definitions for proof graphs apply literally to pre-proof graphs, such
as the notions of edge, path and root node, but there are a few exceptions. From
the restrictions on proof graphs only acyclicity is retained.

Restriction 3.19 Pre-proof graphs are acyclic.

Dropping all restrictions except acyclicity means that pre-proof graphs in gen-
eral do not represent valid natural deduction proofs. This is not a problem
because we will only be considered with pre-proof graphs that are the result of
the translation procedure to be described later on.

The first definition that requires adaptation is the definition of bisimulation,
which has to be expanded to incorporate the repr function. There will be
no need for bisimulations modulo identification, so that definition will not be
replicated for pre-proof graphs.

Definition 3.20 For pre-proof graphs, two nodes M and N are bisimilar
(M ≡ N) if there is a relation R such that R(M,N) and for all nodes α, β:

R(α, β)⇒ label(α) = label(β)
& ∀p ∈ ports(α) R(succ(α, p), succ(β, p))
& if α ∈ dom(bind)

then β ∈ dom(bind) and R(bind(α), bind(β))
& if α /∈ dom(bind)

then β /∈ dom(bind) and index(α) = index(β)
& if label(α) = ε0 or label(α) = ε1

then repr(α) = repr(β)

Another definition that cannot be straightforwardly applied to pre-proof graphs
is that of binding. Binding in proof graphs is indicated with backpointers, but
the problem of placing backpointers is one of the reasons that pre-proof graphs
are needed in the first place. Because of this variable letters and assumption
markers are retained in pre-proof graphs in the form of indices. Binding in
pre-proof graphs may be indicated by backpointers as well as by corresponding
indices. However, the definitions required to make this work are complex enough
to deserve a section of their own: see Section 3.3. With these definitions, the

58



notions for proof graphs that depend on the notion of binding, such as scope,
will be applicable to pre-proof graphs.

A type of pre-proof graph of special interest, are those graphs that do not
contain empty nodes or backpointers. We call these clean pre-proof graphs.

Definition 3.21 A clean pre-proof graph is a pre-proof graph that contains
no nodes labeled ε0 or ε1, and for which the bind function is empty.

Definition 3.22 The unfolding of a clean pre-proof graph G is a clean pre-
proof graph H such that:

• every rooted path Γ in G is a node in H with the same label as target(Γ)
in G

• 〈Γ, p,∆〉 is an edge in H whenever ∆ is the path in G that consists of Γ
concatenated with the edge 〈target(Γ), p〉 in G

• index(Γ) = I in H, where the index I is index(target(Γ)) in G

Theorem 3.23 A graph G and its unfolding H are bisimilar.

Proof: we construct a relation R that holds between every node Γ in H, which
is a path in G, and the target of Γ, N , which is a node in G. By the definition
of unfolding, the labels of Γ and N are the same, as are any accidental indices
index(Γ) and index(N).

For every port p associated with the label of Γ and N , the target ∆ of the edge
〈Γ, p,∆〉 is a path in G composed of Γ and the edge 〈N, p, N ′〉, where N is the
target of Γ. Now N ′ is the target of ∆, so that we have R(∆, N ′). �

Theorem 3.24 Bisimilar clean pre-proof graphs with a single root node have
the same unfolding, and such graphs with the same unfolding are bisimilar.

Proof: for one direction, let G and H be two clean pre-proof graphs and let R
be the bisimulation between them. We adopt the convention of writing rooted
paths as sequences of ports. Let G′ and H′ be the unfoldings of G and H.

The root of the unfoldings G′ and H′ is the empty path, 〈〉. This is the basis of
the induction.

Let MR and NR be the root nodes of G and H. By definition, G and H are
bisimilar only if their root nodes are, therefore R must hold between MR and
NR.

Let Γ be a rooted path in G and let ∆ be a rooted path in H such that Γ and
∆ are the same sequences of ports. If two nodes are related by a bisimulation,
their successors of the same port are related as well. By this observation, the
nodes on Γ and ∆, and in specific their targets, are pairwise related by R.

59



Because of their bisimilarity, the target nodes of Γ and ∆ have the same label
and, by the definition of unfolding, so do Γ and ∆ themselves. Since they have
the same label, they have the same set of ports, say p, and thus the same
successors, Γ extended with p and ∆ extended with p, for all p ∈ p.

For the other direction, let G and H have the same unfolding. Then for each
node Γ in that unfolding let R hold between target(Γ) in G and target(Γ) in H.
By definition their labels and indices correspond, and the successor of the port
p in G is bisimilar to the successor of port p in H, since both are the target of
the same path. �

3.3 Binding in pre-proof graphs

Within pre-proof graphs there are two ways of binding, with backpointers and
with corresponding indices. Binding with backpointers, or rather with the bind
function, was defined in Definition 3.10. In this section we will define binding
with indices.

The different definitions in this section concern binding of variables by quanti-
fiers, binding of assumptions by inference applications, and binding of proper
variables by ∀I- and ∃E-applications, adapted for graphs. First we will intro-
duce some convenient notions.

Definition 3.25 For a variable node V , a candidate binder edge is any edge
〈N, p, N ′〉 for which one of the following holds:

• label(N) = ∀ and the bound variable of N has the same index as V

• label(N) = ∃ and the bound variable of N has the same index as V

• label(N) = ∀I, p = premise or p = proper variable, and the proper variable
of N has the same index as V

• label(N) = ∃E, p = minor premise or p = proper variable, and the proper
variable of N has the same index as V

Definition 3.26 For an assumption node A, a candidate binder edge is any
edge 〈N, p, N ′〉 for which one of the following holds:

• label(N) =→I and the closed assumption of N has the same index as A

• label(N) = ∨E, p = left minor premise or p = left closed assumption, and
the left closed assumption of N has the same index as A

• label(N) = ∨E, p = right minor premise or p = right closed assumption, and
the right closed assumption of N has the same index as A

60



• label(N) = ∃E, p = minor premise or p = closed assumption, and the closed
assumption of N has the same index as A

The reason that edges instead of nodes are specified as candidate binders lies
with the last three items in the list above: ∨E-inferences and ∃E-inferences
close assumptions in the subproof of some minor premise, and not in all their
subproofs; likewise proper variables of ∃E-inferences occur only in the subproof
of the minor premise.

Definition 3.27 In a pre-proof graph G, a node V is bound by the source
node of the last candidate binder edge on a path from a root node to V .

This definition is additional to the earlier definition for binding, which applies
to nodes with a backpointer to a quantifier or discharging rule node. The
next definition, as a counterpart to the previous, defines when variables and
assumptions are considered free in graphs.

Definition 3.28 An assumption or variable node V is free at a node N if
there is a path from N to V that does not contain a candidate binder edge of
V , or if V has a backpointer instead of an index, if there is a path from N to V
that does not cross the binder of V . An index is called free at a node N if there
is a variable or assumption node free at N with that index. A node is free in a
graph if it is free at a root node of the graph.

Crucially, each of the above definitions refers to ‘a path’, while sharing is all
about having multiple paths towards a node. Later proofs will therefore focus on
showing that in the graph translation of a deduction, assumptions and variables
are uniquely bound, and never bound and free at the same time and place.

To be thorough, the procedure for finding pure variables from Section 1.4 (see
page 17) will also be adapted for graphs.

Definition 3.29 A v-edge is an unordered pair of rule nodes {N,M} for
which one of the following statements is true:

• label(N) ∈ {∧I,∧EL,∧ER,∨IL,∨IR,→I,→E,⊥E,∀I, ∀E,∃I},
and for some non-conclusion port p ∈ ports(N) succ(N, p) = M

• label(N) ∈ {∨E,∃E} and succ(N, p) = M
for some p ∈ {left minor premise, right minor premise,minor premise}

• there is some node L such that label(L) =→E,
succ(L,major premise) = N and succ(L,minor premise) = M

• there is some node L such that label(L) ∈ {∨E,∃E},
succ(L,major premise) = N and
succ(L, p) = M for some assumption-type port p

61



u u

?>=<89:;76540123ass oo //

OO�
�
�

?>=<89:;76540123ass

OO�
�
�

?>=<89:;76540123 oo // ?>=<89:;76540123
?>=<89:;76540123→E��

__????? ��

??�����

?>=<89:;76540123ass??
������ __

��????

?>=<89:;76540123 oo // ?>=<89:;76540123ass

?>=<89:;76540123
?>=<89:;76540123

?>=<89:;76540123∨E ��

??����������tt

44jjjjjjjjjjjj

?>=<89:;76540123ass??
������

?>=<89:;76540123 ?>=<89:;76540123
?>=<89:;76540123∃E��

??����

Figure 3.3: The v-edges that differ from regular edges

• N and M are assumption nodes bound by the same rule node

In most cases v-edges correspond to regular edges, albeit undirected. As an
illustration of the above definition, Figure 3.3 shows where v-edges also occur:
between assumptions of the same class (although the picture only shows that
they have the same indices), between the major and minor premise of an impli-
cation elimination, and between assumptions and major premises of ∃E-nodes
and ∨E-nodes. Regular edges have been drawn as dotted lines.

Definition 3.30 A v-path is a sequence of v-edges 〈γ1 . . . γn〉 such that each
pair of successive v-edges has a node in common, i.e. γi∩γi+1 6= ∅ for 1 ≤ i < n.

Definition 3.31 A variable node V is purely bound by a node N if V is the
proper variable of N , or if all of the following statements hold:

• N is labeled ∀I or ∃E

• N binds V

• there is a v-path Γ from the premise of N , or the minor premise if N is
an ∃E-node, to a rule node M , such that

• V is free at M

• at every node on Γ a variable node with the same index as V occurs free

• no node on Γ is labeled ∀I or ∃E and has a proper variable with the same
index as V

To summarize what happens above: a v-edge is undirected and links two rule
nodes that, if they were inferences in a deduction, would share a formula in
their conclusion. Multiple v-edges are linked together in a v-path, simulating
the progression of marking formulas. A v-path does not start at the node whose
proper variable is sought itself, but at the premise or minor premise. If not, the

62



v-path could immediately proceed towards a predecessor, in which the proper
variable may not occur in a regular deduction.

The following theorems will explain to what extent binding is preserved amongst
a graph and its unfolding. The results are independent of the correctness of any
binding relation.

Lemma 3.32 Given two edges 〈N, p, N ′〉 and 〈M, p,M ′〉 and an assumption
or variable node V , if N and M are bisimilar and either edge is a candidate
binder edge for V , then the other is a candidate binder edge for V as well.

Proof: again, bisimilarity requires N and M to have matching labels and bisim-
ilar successors; the closed assumptios of N and M thus have corresponding
indices. �

Theorem 3.33 Let G and H be bisimilar rooted graphs, let Γ be a rooted
path in G. Then if the nth node—or the nth edge—is the last candidate binder
for target(Γ) on Γ in G, the same holds in H

Proof: the two paths, Γ in G and Γ in H, have bisimilar source nodes, which
implies that the nodes on the two paths are pairwise bisimilar; in particular,
the nth node. By Lemma 3.32, the nth node or edge is a candidate binder for
target(Γ) in H as well. Any candidate binder for target(Γ) in G is a candidate
binder for target(Γ) in H, since they have the same index. �

What the above lemma shows is that, although not true generally, in certain
circumstances binding will be preserved under bisimulation. Particularly when
dealing with the unfoldings of a graph, in which there is always exactly one
rooted path to a node, the lemma will prove useful.

63



4 Transformations

The following scheme is a summary of the translation process from a deduction
to a proof graph.

Deductions

trans
��

Clean pre-proof graphs

v-merge
��

Clean pre-proof graphs with explicit variable identity

back
��

Pre-proof graphs with backpointers

t-merge
��

Proof graphs

Figure 4.1: Summary of the translation from proofs to graphs

The first stage is the actual translation process, a procedure called trans . It
turns the deduction into a pre-proof graph in which binding is indicated with
indices.

If a deduction that has, say, n occurrences of x is translated by the trans
procedure, this will most likely result in a graph that has approximately n
variable nodes with index x. However, in proof graphs all those variables should
be represented by a single node. Therefore, v-merge merges separate variable
nodes that are bound by the same quantifier node, and merges closed assumption
nodes that belong to the same assumption class.

Next, the indices of the merged assumption and variable nodes are replaced by
backpointers. This operation is abbreviated as ‘back ’. Finally, in the opera-
tion called t-merge, the proper terms of ∃I-nodes and ∀E-nodes are merged.
The bisimulation modulo identification relation, which represents substitution,
identifies two nodes, the one that represents the substitute, and the one that
is subsituted for. To represent the substitution of a variable by a proper term,
then, all instances of that term have to be represented by a single node.

64



The reverse translation, from proof graph to deduction, consists of the following
two steps:

Proof graphs

fresh
��

Clean pre-proof graphs

read
��

Deductions

Figure 4.2: Summary of the translation from graphs to proofs

The first, the fresh operation, replaces backpointers with fresh indices. The
second reads the contents of the graph, starting at the root node. This chapter
will present these five operations in detail.

4.1 The trans operation

The trans operation translates a deduction to a graph one node at a time. The
nodes that still need translation are called empty nodes, and come in two types:
empty rule nodes, labeled ε0, and empty formula nodes, labeled ε1. The trans-
lation step that translates the empty node N is called transN . Which steps are
possible is described by the schemes in Appendix D. The repr function gives
every empty node a deduction or a formula, whose last inference or primary
connective decides which scheme applies. We will explain the schemes in Ap-
pendix D with the help of the example depicted in Figure 4.3.

In the example the node N0 is translated, expressed by the subscript N0 in
transN0 . The repr function is indicated by the dotted lines starting at the empty
nodes, labeled ε0 (empty formula nodes would be labeled ε1). The conclusion
node of N0, N1, already has been translated. However, later on we will show
that, for all intents and purposes, we may treat N1 as the translation of an
empty formula node representing A→ B.

The nodes L1 and M1 are the antecedent and consequent of node N1. They are
not necessarily empty nodes, as they may already have been translated. In the
images, empty nodes should not be confused with arbitrary nodes. Nodes L1

and M1 are arbitrary formula nodes, but as we will show we may treat them
as empty nodes representing A and B, which is indicated by the A and B in
parentheses on the bottom of the picture.

65



[A]u
D
B

A→ B
(→I,u)

Au
[A]u
D
B

/.-,()*+→ N1

�������

��

/.-,()*+→ N1

�������

��

/.-,()*+ L1

⇒
transN0

?>=<89:;76540123ε0 L0 ///.-,()*+ L1

/.-,()*+M1 ?>=<89:;76540123ε0 M0 ///.-,()*+M1

?>=<89:;76540123ε0 N0
BC

GF //

?>=<89:;76540123→I N0

OO@A

OO

BC

GF //

(A) (B) (A) (B)

Figure 4.3: The translation scheme for implication introduction

In the translation step the node N0 is given the label →I, according to the last
inference application in repr(N0). New ε0-nodes L0 and M0 are added, repre-
senting the closed assumption class and the premise of the inference. Bookkeep-
ing involves adding Au and D to the multiset deductions, and removing an
instance of repr(N0).

The conclusion-ports of L0 and M0 are linked to L1 and M1. Although we don’t
know what the last inference of repr(L0) and repr(M0) is, and thus what labels
L0 and M0 will receive from the future translation steps transL0 and transM0 ,
the conclusion nodes L1 and M1 have to be present if we want to share them.
On the other hand, all empty nodes have to be new nodes: the translation
process cannot take binding into consideration, so although some empty nodes
may look like they represent exactly the same formula, binding of some of the
variables may change that.

Because trans operates on nodes and not on deductions, we need something
extra to get the translation started. The special translation step called trans0

is defined such that for a deduction D with conclusion C, trans0(D) is a couple
of an empty rule node N0 and an empty formula node N1, such that repr(N1) is
the conclusion C, repr(N0) is the deduction D, and succ(N0, conclusion) = N1,
as illustrated in Figure 4.4. The other initial translation step, trans1, is provided
for the translation of isolated formulas.

A complete translation of a graph requires that each empty node is translated,
which is complicated by the fact that each translation step may introduce new
empty nodes. To formalize this translation process we introduce the notion of
a translation sequence: a series of graphs, each of which is translated one step
further than the previous.

66



D
C

⇒
trans0

D
C

?>=<89:;76540123ε0 N0 ///.-,()*+ε1 N1

C

A
⇒

trans1

/.-,()*+ε1 N1

A

Figure 4.4: The initial translation steps

Definition 4.1 A translation sequence is a sequence of pre-proof graphs
〈G1, . . . ,Gn〉 such that for all 1 ≤ i < n, Gi+1 = transN (Gi) for some N ∈ Gi. A
translation sequence is complete if the first graph in the sequence is trans0(D)
for some deduction D or trans1(A) for some formula A, and there is no possible
translation step transM (Gn).

Definition 4.2 The translation trans(D) of a deduction D is a graph for
which 〈trans0(D), . . . , trans(D)〉 is a complete translation sequence. The trans-
lation of a formula A is a graph trans(A) such that trans1(A) . . . trans(A) is a
complete translation sequence.

The lemma below states some essential features of translation sequences. In
particular, each node can only be translated once, and remains unchanged in
other translation steps.

Lemma 4.3 Let 〈G1, . . . ,Gn〉 be a translation sequence, and let Gi+1 =
transN (Gi), where N is a node in Gi, be a translation step in that sequence.
Then for all graphs Gj , if 1 ≤ j ≤ i and N ∈ Gj then N has the same label,
successors and represented formula or proof in Gj as in Gi; if i < j ≤ n, then N
has the same label, successors and index in Gj as in Gi+1.

Proof: in each of the translation schemes in Appendix D, new nodes may be
introduced, but nodes are never removed. In a translation step transN , N is the
only node for which the label and successors change. A node may be introduced
and translated at most once in a translation sequence, and although it may gain
additional predecessors, it remains otherwise unchanged in all other translation
steps. �

New empty nodes are introduced with their conclusion nodes already in place, to
allow the latter to be shared. As a result, the left hand side of each translation

67



scheme deals with an empty rule node with attached conclusion. Because the
scheme itself does not influence the translation of that conclusion, we have to
verify independently that it is the right conclusion for the empty node.

More specifically, we will show that the conclusion node of an empty node,
when fully translated, is bisimilar to the translation of that nodes represented
deduction. In other words, each pair of an empty rule node and a conclusion
node may be treated as though they were a direct translation of the represented
deduction of the empty node. The translation scheme in Figure 4.3 will serve
as an example.

Lemma 4.4 Let 〈G1, . . . ,Gn〉 be a complete translation sequence and let N0

be a rule node in Gn. In the graphs Gi in which N0 occurs as empty node, let
repr(N0) be a deduction D. Let N1 be the conclusion of N0. Then the subgraph
of N1 in Gn is isomorphic to trans(C), with C conclusion the conclusion of D.

Proof: by induction. We show by the example of Figure 4.3 that the correctness
of the represented conclusions is passed on through the graph from the root. The
induction hypothesis is that the node N1 is isomorphic to trans(A→ B). Below
are the first steps in the translations of A→ B, A and B.

A→ B
⇒

trans1

/.-,()*+ε1 N

A→ B

⇒
transN

/.-,()*+→ N

�������
��?????

/.-,()*+ε1 /.-,()*+ε1
A B

A
⇒

trans1

/.-,()*+ε1
A

B
⇒

trans1

/.-,()*+ε1
B

Clearly, if N1 is isomorphic to the node N above, then its antecedent and con-
sequent are isomorphic to trans(A) and trans(B), respectively. �

Except the conclusion node, all other features of an empty rule node are de-
termined by the represented deduction. Proving that the conclusion matches
that in the represented deduction leads to the corollary that nodes in a graph
translate the same way as they would in isolation:

Corollary 4.5 If N0 is an empty rule node in some graph in a complete
translation sequence 〈G1, . . . ,Gn〉, then in the result of the translation Gn, N0 is
isomorphic to trans(repr(N0)). �

The above lemma and corollary are needed because the translation of a rule
node is independent of the translation of its conclusion. The conclusion node

68



was added to the graph by some predecessor of the rule node, and not by the
rule node itself. In this process, the information that it is the right conclusion
for the proof that the rule node represents was essentially lost. That information
is provided again by the above lemma and corollary.

A further complication in the translation process is that empty nodes may be
translated in any order, with the possibility that a different order of translation
steps results in a different translation. The next two lemmas intend to show
that there is exactly one graph translation for each deduction.

Lemma 4.6 The trans operation is confluent, i.e. if for some graph G there
are two complete translation sequences G . . .G′ and G . . .G′′, then G′ and G′ are
identical up to the names of their nodes (isomorphic).

Proof: let transM and transN be successive steps in a translation sequence.
Three cases may be distinguished: one, transM introduces N ; two, N has the
label ∧I, ∨IL, ∨IR or →I and M is the conclusion of N ; three, otherwise. In
the first and second case, transM and transN may not be interchanged, and
there are no translation sequences in which N is translated before M . Either
N does not exist before the step transM , or it does not match a translation
scheme.

In the third case, the step transM leaves node N untouched, and trans(N) may
add a predecessor to M , but does not change it. In particular, both N and M
are empty nodes in the graph on which transM is applied. The following scheme
displays the situation:

G1
transM

~~}}}}}} transN
  AAAAAA

G2

transN   AAAAAA G3

transM~~}}}}}}

G4

Although G2 and G3 are different graphs, the step transM may be applied to G3

since it is an empty node in that graph. If the nodes introduced in both steps
transM receive the same names, and the same goes for both steps transN , then
the left and right path in the above schematic produce the same graph G4. �

Another result needed to show that the trans operation is a suitable translation
mechanism is that it terminates; and that when it terminates it has produced
an acyclic graph, in which all nodes it had to translate are actually translated.

Lemma 4.7 The trans operation terminates in an acyclic graph that con-
tains no empty nodes.

Proof: termination is guaranteed by the deductions and formulas multisets:
in each translation step, a deduction or formula is erased, and replaced with a
finite number of smaller subdeductions or subformulas.

69



That the resulting graph is acyclic can be deduced from properties of the trans-
lation schemes. Each sheme has a root node, and no paths enter that scheme
other than through that node. Whenever paths are added to an existing node,
there already was a connection to that node in the same direction, from the
root of the scheme, so no new connections are made that could form a cycle.

To show that all empty nodes can be translated, we remark that the only restric-
tion on translating an empty node are the requirements imposed on the conclu-
sion nodes in the schemes for ∧I, ∨IL, ∨IR and →I. Considering Lemma 4.4,
it is easily seen that these requirements are always met. �

The definition of proof graphs requires that each variable node or assumption
node is bound at most once, and that no node is both bound and free at the
same time. The following lemma and theorem show that a freshly translated
graph meets these requirements.

Lemma 4.8 In a graph trans(D) for some deduction D, let N and M be
nodes such that M binds N . Then N is not free in G, and if M ′ binds N then
M = M ′.

Proof: again we use that each translation scheme has exactly one root node, and
that as a consequence the translation process does not allow arbitrary paths to
join. If a translated graph contains two paths to a variable or assumption node
N , those paths are separated and joined again within one translation scheme.

Inspection of the schemes will then show that whenever two paths converge on
one node, that node is a formula node, and on the part that they are separate,
none of those paths contains a quantifier node or an empty formula node (which
might later become a quantifier node). �

Theorem 4.9 In a pre-proof graph trans(D), let A and A′ be two assump-
tion nodes bound by the same node N . Let V and V ′ be variable nodes with
the same index that are free at A and A′ respectively. Then if V and V ′ are
bound by M and M ′, M = M ′.

Proof: since V is free in A, let ∆ be a path from A to V free of candidate
binders for V . By Lemma 4.8 all other paths from A to V are free of candidate
binders as well. Let ∆′ be such a path from A′ to V ′. Let Γ be a path from N
to A and Γ′ from N to A′.

Firstly, M andM ′ have to be ∀I- or ∃E-nodes, since they have to be predecessors
of A and A′. These nodes don’t share the relevant conclusion nodes: the only
access to their subgraphs is through the node itself. Because of this, if M and
M ′ are on the same path, the first one on the path can’t bind variable nodes in

70



the subgraph of the second one, unless M = M ′.

D
A[a/x]
∀x.A

(∀I)
D

A[a/x]

?>=<89:;76540123ε0 ///.-,()*+ε1
?>=<89:;76540123ε0 N ///.-,()*+ ⇒

transN
?>=<89:;76540123∀I N

OO

//

((QQQQQQQQQQ /.-,()*+
/.-,()*+ε1

(∀x.A) a (∀x.A) A[a/x]

Suppose M is on Γ. Then the assumption A with free variable node V is in the
subgraph of M , while M is a ∀I-node or ∃E-node whose proper variable has
the same index as V . This construction is ruled out by the restrictions on ∀I-
and ∃E-applications, which state that the proper variable may not occur free
in open assumptions.

By this argument M and M ′ cannot be on Γ or Γ′, and must be predecessors of
N . Since there is only one rooted path to N in the fresh translation trans(D),
by the argument above M = M ′. �

4.2 The merge operations

For technical as well as philosophical reasons explained earlier, we preferred
closed assumption classes, and variables bound by the same quantifier or in-
ference, to be represented by a single node. Obviously a graph resulting from
the trans operation does not yet conform to this requirement. What needs to
be done, is that different assumption and variable nodes that are bound by the
same binder node, have to be merged into one. Additionally, occurrences of the
proper terms of ∀E-nodes and ∃I-nodes have to be represented by a single node,
because of the nature of the bisimulation modulo identification.

Collapsing two variable nodes can be as straightforward as redirecting all edges
pointing at one node towards the other, and removing the former. Assumption
nodes, on the other hand, have a conclusion port that connects to an entire
formula subgraph, which cannot be removed since it may be shared, and terms
may consist of more than just one node. Of course an assumption node that
results after a merger cannot have two separate conclusions: conclusion sub-
graphs of assumptions and subgraphs that make up a proper term have to be
collapsed in their entirety.

Fortunately, the assumptions we need to merge are in one assumption class,
and thus have the same formula. The requirement on natural deduction that

71



assumptions with the same marker must have the same formula, even if they
are not bound by the same inference, makes things even simpler.

Lemma 4.10 In a newly translated pre-proof graph, assumption nodes that
have the same index are bisimilar.

Proof: consider an assumption Au. Since natural deduction requires assump-
tions with the same marker to have the same formula, a proof in which Au

occurs may not contain assumptions Bu (where B 6= A). Consequently, a trans-
lation sequence that contains empty rule nodes representing Au cannot contain
empty rule nodes representing Bu. Corollary 4.5 guarantees that each empty
rule node representing Au will be bisimilar to trans(Au) upon completion of the
translation. �

Of course two occurrences of a proper term t will translate to bisimilar graphs
as well. What is needed, then, is an operation that collapses a graph along
the lines of a certain bisimulation. We will define the merge operation to do
just that. To complete this section we will show that the different mergers of
assumption classes, variables and terms do not interfere with each other.

Definition 4.11 For any pre-proof graph G and bisimulation R on G, the
graph mergeR(G) is the graph H such that:

nodesH = the set of smallest non-empty subsets of nodesG
closed under R=

indicesH = indicesG
labelH : labelH(N) = labelG(n) for all n ∈ N
succH : succH(N, p) = N ′ whenever succG(n, p) = n′, n ∈ N

and n′ ∈ N ′
bindH : bindH(N) = N ′ whenever bindG(n) = n′, n ∈ N

and n′ ∈ N ′
indexH : indexH(N) = I whenever indexG(n) = I for n ∈ N
reprH : reprH(N) = D whenever reprG(n) = D for n ∈ N

Formally, the merge operation takes a quotient of a graph. We add a few further
remarks and basic lemmas to clarify the definition.

The nodes of H are sets of nodes from G that R shows to be bisimilar. Al-
though R is not necessarily symmetric or transitive, bisimilarity is, as shown in
Lemma 3.14. Instead of taking closure under R we therefore take closure un-
der its reflexive–transitive–symmetric closure, R=. (Technically, the symmetric
closure of R would suffice, since set closure is inherently transitive and reflexive.)

The following lemmas are used to show that the merge operation creates a valid
graph. Even some very basic features have to be demonstrated, such as that
the successor and binder functions are indeed functions.

72



Lemma 4.12 Any node n from the graph G occurs in exactly one node N
in the graph mergeR(G), where R may be any bisimulation on G.

Proof: n occurs in at least one node N since it occurs in {n}. Because nodesG
is finite, the subset {n} can always be expanded to meet the closure demand,
without causing trouble by growing infinite. To see that n occurs in at most one
N : let H be mergeR(G) and suppose two nodes from H, M and N , have a non-
empty intersection containing k, a node from G. Then for all nodes m ∈M and
n ∈ N , closure under R= gives us R=(k,m) and R=(k, n). Transitivity gives
R=(m,n), and finally closure under R= and extensionality imply M = N . �

Lemma 4.13 The successor relation in mergeR(G) is a function (where G
may be any pre-proof graph and R any bisimulation on G).

Proof: the successors of a node N ∈ mergeR(G) using port p are specified as all
nodes that contain the successor at port p of some n ∈ N . For mergeR(G) to
be a valid graph we need to show that the successors of N are unique.

The previous lemma showed that a node from G is an element of exactly one
node in mergeR(G); each individual successor n′ occurs in exactly one node
N ′. Now we show that for a node N ∈ mergeR(G), for all nodes n ∈ N the
p-successors succ(n, p) = n′ are elements of the same node N ′.

Let n1 and nk be arbitrary nodes in N . Since N is a smallest set closed under
R= we have R=(n1, nk). By Lemma 3.14 R= is a bisimulation, and therefore R=

must hold between the p-successors of n1 and nk as well: for n′1 = succ(n1, p)
and n′k = succ(nk, p) we have R=(n′1, n

′
k). Consequently, n′1 and n′k are elements

of the same node N ′. �

Theorem 4.14 For any bisimulation R on a pre-proof graph G without
empty nodes, the pre-proof graph mergeR(G) is well-formed.

Proof: the above lemma can easily be replicated for the other functions, bind
and index . Merging a graph with emtpy nodes would require a recalculation of
the multisets deductions and formulas. �

Now that it has been proven to work, the next lemma shows that the merge
operation preserves bisimilarity.

Lemma 4.15 For any bisimulation R on a graph G, G and mergeR(G) are
bisimilar.

Proof: we prove that the relation {〈n,N〉 ∈ nodesG ×nodesmergeR(G)|n ∈ N}
is a bisimulation.

Suppose n ∈ G is an element of N ∈ mergeR(G). By the definition and lemmas
above, N has the same label as n. For a port p, by demonstrating that the succ
relation in mergeR(G is a function we have shown that for all n, if succ(n, p) = n′

73



and n ∈ N , then n′ ∈ N ′ where N ′ = succ(N,P ). Again, the case of the bind
function is similar.

Moreover, since by Lemma 4.12 each node n ∈ G can be an element of only one
N ∈ mergeR(G), the bisimulation is a function. �

To summarize, merging assumptions and variables is done by creating a bisim-
ulation with the closed assumption or bound variable of the binder node. The
graph can then be collapsed along the lines of those bisimulations. Since merging
preserves bisimilarity there is a relative freedom to the order in which different
assumptions and variables are merged. We have chosen to do them all at once,
in an operation called v-merge. The merging of terms, however, is performed
separately, in the operation t-merge.

Definition 4.16 For a pre-proof graph G v-merge(G) is mergeR(G) where R
is the following bisimulation on G: R(A,B) holds for nodes A and B if there is
a node N such that A is bound by N , and B is the the corresponding bound
variable, proper variable or closed assumption of N .

Theorem 4.17 Let G be the graph trans(D) for some deduction D. Between
G and v-merge(G) binding is preserved, and binding in v-merge(G) is unique.

Proof: the way preservation of binding for graphs without backpointers is ex-
pressed, is as follows: if the nth node on a rooted path Γ binds target(Γ) in G,
then the same must hold in v-merge(G). By Theorem 3.33 this follows directly
from the fact that G and v-merge(G) are bisimilar.

That binding remains unique as well, in the sense that for a freshly translated
graph after the v-merge step each node is still bound at most once, is ensured by
Theorem 4.9. This theorem stated that free variable nodes with the same index
within the same assumption class are bound by the same node. Merging those
assumptions thus cannot create the double binding of any of those nodes. �

The above theorem deals with graphs in which some—if not all—binding is
expressed with indices. Binding with indices is not taken into account in a
bisimulation relation, but binding with backpointers is—which is exactly what
is needed for the merging of terms.

In the rules for ∃-introduction and ∀-elimination a variable x is substituted with
the term t, resulting in the formula A[t/x]. In principle, all free variables in t
remain free in the occurrences of t in A[t/x]. This ensures that they can safely
be merged in the graph; if a free variable node and a bound variable node would
be merged, then the resulting node would be both bound and free.

The catch here is that the formula A may already contain occurrences of t, and
nothing prohibits those from having bound variables that are free in t itself. Yet
if binding is not taken into consideration, those occurrences of t will be bisimilar

74



to the ones that are the substituted for x. The most straightforward solution
is to add backpointers to the graph first, so that binding is taken into account
in the bisimulation relation. The t-merge operation is therefore processed after
backpointers have been placed.

Definition 4.18 For a pre-proof graph G, t-merge(G) is the graph mergeR(G)
where R is the following bisimulation: for each node N labeled ∀E, R(A,B)
holds whenever A is in the subgraph of the conclusion of N , B is the proper
term of N and A ≡ B; for each node N labeled ∃I, R(A,B) holds whenever A
is in the subgraph of the conclusion of the premise of N , B is the proper term
of N and A ≡ B.

To make this operation viable, it remains to show that the free variables in a
substitute term t are indeed bound by the same node, when taking the binding
of proper variables into account. This is proven by showing that also in graphs,
the free variable occurrences of the same letter in a formula can only be bound
all at once.

Theorem 4.19 Let M be a formula node in a pre-proof graph trans(D) and
let V and V ′ be different variable nodes with the same index, such that V and
V ′ are both free at M . Then if a node N binds V , it also binds V ′.

Proof: since N binds V there is a path Γ on which some edge γ is the last
candidate binder edge for V . First, suppose M is on Γ. Then γ must lie on the
subpath of Γ from N to M , because V is free at M . That subpath combined
with the path from M to V ′ makes that N binds V ′.

Next suppose that M is not on Γ. Then Γ and the path from M to V , let’s call
it ∆, are different paths to the same node, V . We will look at the properties of
the translation schemes to show that there is a path from N to V .

In the translation schemes all converging paths have split within the same
scheme, at a rule node. No paths converge after crossing a quantifier node,
so N must be a ∀I-node or ∃E-node. Schematically a scheme can be seen as
follows: ?>=<89:;76540123 A ///.-,()*+ B

����?>=<89:;76540123 C
OO

// ///.-,()*+ D
��

OO

Now let the node D be the point at which Γ and ∆ converge, which may be V
itself. Since the schemes of ∀I and ∃E do not produce converging paths (except
at the conclusion of ∃E), the node C cannot be the binder node N , nor any
other node that is in a position to bind V . Also, the node A cannot be the

75



binder of N , since both ∀I and ∃E do not bind any nodes in their conclusion.

?>=<89:;76540123 A ///.-,()*+B

����?>=<89:;76540123 C
OO

// ///.-,()*+D
��

GF ED
Γ′

����
OO GF EDΓ ����

Let Γ be the path indicated above, from N through C and D to V . We construct
a path Γ′, from N through C, A, B and D to V (it may happen that Γ and
Γ′ are switched). Now either M is on Γ, proving the theorem, or it is not, in
which case the argument can be repeated for Γ′ and ∆. Since ∆ is finite, and
with each repetition the new path Γi shares a larger part of its tail with ∆,
eventually ∆ will be a subpath of some path Γn and M will be on Γn. �

Finally, we will show that also under the t-merge operation, binding is preserved.

Theorem 4.20 If the nth node on a rooted path Γ binds target(Γ) in G,
then the same holds in t-merge(G).

Proof: let M be the nth node on Γ and let M ′ be bind(target(Γ)) in t-merge(G),
where both are the same node m in G. The bisimulation between both graphs
is the set membership relation. Since the nodes on Γ are pairwise bisimilar, we
have m ∈M ; for both targets of Γ their binders are required to be bisimilar as
well, providing m ∈M ′. By Lemma 4.12 M = M ′.

This suffices to show that if G conforms to Restriction 3.17, then so does
t-merge(G). The requirements of that restriction are, roughly, that every rooted
path to a node that is bound crosses the binder. �

4.3 Adding and removing backpointers

The actual step in the translation that adds the backpointers is rather unspec-
tacular. In the graph resulting from the v-merge procedure each binding node
has only one bound node, to which it is connected through the closed assump-
tion port, bound variable port or deactivated variable port. It now suffices to
remove the index of that variable or assumption node, and add a backpointer
towards the binder node.

Definition 4.21 For any pre-proof graph G back(G) is the graph obtained
by removing the index of a node M and adding bind(M) = N whenever M is
bound by N .

76



Optionally, tidying up would involve removing obsolete indices from the indices
set. As with the trans and merge operations, we will prove that the back
operation preserves binding.

Theorem 4.22 Let N and M be nodes in a pre-proof graph G with unique
binding. Then N binds M in back(G) if and only if N binds M in G.

Proof: by definition. Unique binding is required if the bind relation is to be a
function in back(G). �

Theorem 4.23 Let G be a clean pre-proof graph in which variables and
assumptions are uniquely bound, and in which no node is both bound and free.
Then back(G) conforms to Restriction 3.17 (repeated below).

Proof: let the node N bind the node V in G. Then on all rooted paths to V in
G a candidate binder edge γ with source N can be found. Let M and M ′ be
nodes such that M is outside and M ′ is inside the scope of N ; which means M
is not on a path from N to V , but M ′ is. Furthermore, let δ be an edge from
M to M ′.

If M is not on any path from N to V , then there is a rooted path to M that
does not cross N , which we will call ∆. Since M ′ is on a path from N to V ,
there is a path from M ′ to V that does not cross N , called ∆′, unless M ′ = N .
There will thus be a rooted path to V , consisting of ∆, δ and ∆′, by which V
is either free or bound by some other node than N , a contradiction.

As for the other three conditions in the restriction: candidate binder edges have
been chosen such that they exclude specific nodes from the scope of their source
node, matching the demands of Restriction 3.17. �

For easier reference the restriction on binding in proof graphs is repeated here:

Restriction 3.17 Let N be a binder node and let Γ be the scope of N . Then
the following statements must hold:

• for all nodes M,M ′ such that there is an edge from M to M ′, if M /∈ Γ
but M ′ ∈ Γ, then M ′ = N .

• If N is a ∨E-node then the right minor premise and right closed assump-
tion are outside the left scope, and the left minor premise and left closed
assumption are outside the right scope of N .

• If N is a ∨E-node or ∃E-node then the major premise of N must be
outside Γ.

• If N is a ∀I-node or ∃E-node then its conclusion must be outside Γ.

The operation that removes backpointers and replaces them with fresh indices
is dubbed ‘fresh ’, and will be presented next.

77



Glancing forward, when fresh indices are appointed to bisimilar formula graphs,
reading back these graphs is anticipated to result in α-equivalent formulas. Yet
corresponding subformulas in the premises and conclusion of inferences in a
proof are required to be identical, not merely α-equivalent. For most inference
schemes in graphs this is solved by sharing the same formula graph. However,
for the quantifier schemes this was impossible due to the substitutions involved.
Instead of sharing the same formula graph, ∀I-, ∀E-, ∃I- and ∃E-schemes have
formula graphs that are bisimilar modulo identification of two nodes.

The solution will be to find the variables that should have the same index with
the help of the bisimulation modulo identification relation.

Definition 4.24 In a proof graph G, let R be the union of the all the smallest
bisimulation modulo identification-relations that satisfy Restriction 3.16 (com-
pliance to the schemes in Appendix B). The relation varlink is then the relation
that holds for two variable nodes V and V ′ whenever R(bind(V ), bind(V ′))
holds.

Definition 4.25 For a proof graph G the clean pre-proof graph fresh(G) is
identical to G in all respects except the following:

• The bind function in fresh(G) is empty.

• For all assumption and variable nodes V in G, if V ∈ dom(bind) in G then
index(V ) = I in fresh(G) for some I /∈ indicesG .

• For two nodes V, V ′ ∈ dom(bind) in G, index(V ) = index(V ′) only if
varlink(V, V ′) holds in G.

Again, we need to prove that binding is preserved, under the fresh operation.
We will also show that binding remains unique in the resulting graph. That is,
however, dependent on certain conditions. In the fresh operation some quan-
tifiers will have bound variable nodes that receive the same index. Potentially
one of those quantifier nodes may get ‘in between’ a node and its intended
binder, which variable node then ends up with a different binder than before
the operation.

To show that this scenario cannot occur with proof graphs, we need some more
results on the bisimulation modulo identification relation. To get into the right
mood, the same proof is first presented for regular bisimulations.

Lemma 4.26 In a proof graph there is no path (of length greater than zero)
between two bisimilar nodes.

Proof: let N and M be bisimilar nodes and let Γ be a path from N to M . Then
there must be a path Γ′ from M to a node M ′, consisting of the same sequence
of ports as Γ, only traversing different nodes.

78



Since the nodes on Γ and Γ′ are pairwise bisimilar, M and M ′ are bisimilar.
Consequently there must be a path Γ′′ from M ′ to a bisimilar node M ′′, and so
on indefinitely. The concatenation of all paths Γ, Γ′ etc. forms an infinite path,
which is impossible in a finite acyclic graph. �

Lemma 4.27 In a proof graph, when N ∼∼∼ P
Q M and there is a non-zero

length path from N to M , then there is a path from P to Q or from Q to P .

Proof: let Γ be the path from N to M . If N and M were regularly bisimilar,
there would be two infinite paths starting at each of them (and overlapping most
of the way). Let ∆ = 〈Γ,Γ′,Γ′′, . . .〉 be that hypothetical infinite path starting
at N , and let ∆′ = 〈Γ′,Γ′′,Γ′′′, . . .〉 be the same path starting at M .

Every nth pair of nodes N ′ on ∆ and M ′ on ∆′, N ′ ∼∼∼PQ M ′. Since proof graphs
are finite, some N ′ and M ′ must be P and Q. Since all nodes on ∆ (except
those on Γ) are also on ∆′, there is a path from P to Q or vice versa. Of course,
if one of P and Q is on Γ, then there is a path from that node to M and from
M to the other, Q or P . �

A remark should be made regarding the previous lemma. To prevent the two
paths ∆ and ∆′ from being infinite, they must end at P and Q, at the same
point relative to each other. There is no other way to end them, since each edge
is unique at each node. If, at some node on ∆, a different path would branch off
towards P , then from that node ∆ still continues, and what would be required
of ∆′ is that it branches off at exactly the same point, and continues in its
original direction.

The significance of the result becomes clear when we look at the inference
schemes that require the presence of some bisimulation modulo identification.
Each involves at least one variable node that is bound (just) outside the range
of the required relation. Since variable nodes have no edges, there can be no
path from that node to the one it is identified with. And there can also be no
path in the other direction, since that would create a path to the variable node
that goes around its binder.

Theorem 4.28 Let N and M be nodes in a proof graph G. Then N binds
M in fresh(G) if and only if N binds M in G.

Proof: by example. Suppose N is a ∨E-node and M is the left closed assumption
of N . Since the new indices are fresh, the node M has a unique index, say, u.
Thus N is the only node that could bind M , since it is the only node whose
closed assumption has index u.

That M may not be free means that every rooted path in fresh(G) to M has
to cross the edge 〈N, left minor premise〉—ignoring the closed assumption-edge
itself for simplicity. The left scope of N consists of all nodes on any path from
N to M , including M itself. Any path from a root to M shares its final part
with some path from N to M , even if it is only the node N itself. The first

79



requirement of Restriction 3.17 is that a path may only enter the scope of N at
N itself; in other words, any path from a root node to M must cross N . The
second and third requirement of Restriction 3.17 ensure that the correct port
is used on that path: the major premise, right minor premise and right closed
assumption must be outside the scope of N . Any path crossing one of those will
never reach M , since acyclicity prevents N from reoccurring on that path.

For the other assumption-closing nodes and for variable binding the above ar-
gument can be reproduced straightforwardly, except that some variable nodes
receive the same index. This is exactly the case for two variable nodes V and V ′

when varlink(V, V ′) holds, which, in turn, happens when the quantifiers binding
V and V ′ are required to be bisimilar or bisimilar modulo identification of some
nodes P and Q. Yet because of Lemma 4.27 such quantifiers cannot be on the
same path, and thus cannot interfere with each other. �

4.4 The read operation

After the backpointers in a proof graph have been replaced by fresh indices, the
result is a clean pre-proof graph. The read operation will read the information
contained in the graph; to help with the correctness proofs it will also be able
to interpret empty nodes.

Definition 4.29 The read : nodes → deductions function is defined as
follows: for all nodes N with label(N) ∈ r-labels, if label(N) = ass then

read(N) = read(C)index (N),

if label(N) = ε0 then
read(N) = repr(N),

and otherwise

read(N) =
read(Nm+1) . . . read(Nn)

read(C)
(label(N), index(N1) . . . index(Nm)),

where: C = succ(N, conclusion) and
Ni = succ(N, pi),

for assumption-type ports p1 . . . pm ∈

ports(N) and premise-type ports pm+1 . . . pn ∈ ports(N), in the same order
as in the list on page 106.

For nodes N with label(N) ∈ f-labels, the following table gives read(N) for

80



each different label:

label(N) read(N)

∧ (read(N1)) ∧ (read(N2))
∨ (read(N1)) ∨ (read(N2))
→ (read(N1))→ (read(N2))
⊥ ⊥
∀ ∀index(N1)(read(N2))
∃ ∃index(N1)(read(N2))

var index(N)
Pn index(N)(read(N1), . . . , read(Nn))
ε1 repr(N)

where Ni = succ(N, pi) for ports p1 . . . pn ∈ ports(N), in the order of the list
on page 106.

For an entire graph G, we define read(G) to be the set

{read(N)|N is a root node of G}

When a node N in G is shared, we have multiple subdeductions read(N) in
read(G). For instance, suppose N is the target of 〈M,major premise, N〉 and
〈M ′, right premise, N〉, then both the major premise of read(M) and the right
premise of read(M ′) will be the deduction read(N). We will refer to each as an
occurrence of read(N).

In general, we want two bisimilar graphs to result in the same proof when they
are read, but the replacement of backpointers by fresh indices prevents this.
Lemma 4.30 shows that graphs that are bisimilar after the assignment of fresh
indices, do produce one and the same proof.

Lemma 4.30 For two clean pre-proof graphs G and H, if two nodes N ∈ G
and M ∈ H are bisimilar (N ≡M), then read(N) = read(M).

Proof: (we show only the case that N and M are rule nodes other than empty
or assumption nodes, other cases are similar) let R be the bisimulation such
that R(N,M). Then, firstly, label(N) = label(M). Secondly, for all ports
pi ∈ ports(N), if Ni and Mi are the nodes such that succ(N, pi) = Ni and
succ(M, pi) = Mi, then R(Ni,Mi) holds (for 1 ≤ i ≤ n with n the number of
ports in ports(N)). Also, if Ni and Mi are variable or assumption nodes, we
have (index(Ni) = index(Mi)). Since N and M are rule nodes, read(N) and
read(M) are respectively:

read(Nm+1) . . . read(Nn−1)
read(Nn)

(label(N), read(bind(N1)) . . . read(bind(Nm)))

read(Mm+1) . . . read(Mn−1)
read(Mn)

(label(M), read(bind(M1)) . . . read(bind(Mm)))

81



If for all 1 ≤ i ≤ n read(Ni) = read(Mi), and read(bind(Ni)) = read(bind(Mi))
whenever Ni and Mi are assumption or variable nodes, read(N) = read(M). �

The ports used in the proof graph framework have been named after the con-
nection they represent. For instance, the major premise-port of a ∃E-node links
that node to the inference that is its major premise—or at least, whose conclu-
sion is that major premise. These names were chosen to correspond not just for
convenient interpretation (port names are omitted from most pictures) but to
allow the paths in a graph to be traced through a deduction as well.

Some information that was implicit in deductions has been made explicit in
graphs, such as proper variables and proper terms. Also, in natural deduction
the assumption class closed by an inference is indicated only by its marker,
where in graphs it is indicated by an assumption node, which has both the
marker and the formula. Apart from these differences, paths in graphs can be
directly applied to proofs.

Lemma 4.31 Let Γ be a path in a graph G. Then the target of Γ when it is
traced through read(G) is an occurrence of the deduction read(target(Γ)).

Proof: by induction. We take an implication introduction node N as example.
The properties of N in G are as follows:

label(N) =→I
succ(N, conclusion) = N1

succ(N, premise) = M
succ(N, closed assumption) = A

The deduction read from N is then:

read(N) =
read(M)
read(N1)

(→I,index (A))

Let Γ be a path to N in G. Then, since Γ as a node in the unfolding of G is
bisimilar to N , read(Γ) = read(N). Next, suppose that the subdeduction found
at the end of Γ in read(G) is read(N) (this is the induction hypothesis). Let
Γ′ be the path Γ with the added edge 〈N, conclusion〉, and let Γ′′ be Γ with
〈N, premise〉 added. Then target(Γ′) = N1 while the conclusion of read(N) is
read(N1), and target(Γ′′) = M while the subdeduction at the premise of N is
read(M). �

Theorem 4.32 The unfolding of a clean pre-proof graph G and the deduc-
tion that can be read from it, read(G), can be mapped onto eachother in a
one-to-one fashion (i.e. they are isomorphic).

Proof: we map assumption nodes onto assumptions, other rule nodes onto infer-
ences, and formula nodes onto connectives, quantifiers, propositions and variable
occurrences. For a node Γ in the unfolding of G with label L, if Γ is a rule node

82



the last inference in read(Γ) is of the type L; if Γ is a formula node then the
primary connective in read(Γ) is of type L. If Γ is a variable node or assump-
tion node the variable letter or assumption marker of read(Γ) corresponds to
the index of Γ.

This, together with the previous lemma, ensures that the node Γ in the unfolding
of G can be mapped onto the inference or connective found at Γ in read(G). �

The last, important result of this section will be that the bisimulation modulo
identification relation can represent a substitution.

Theorem 4.33 In a proof graph G, let N and M be two formula nodes that
are bisimilar modulo identification of nodes X and Y , and let no path exist from
M to X. Then for nodes N , M , X and Y in fresh(G) the following statement
will hold:

read(M) = read(N)[read(Y )/read(X)]

Proof: only the cases that differ from the theorem above will be discussed. Let
R be the minimal witness for N ∼∼∼Y

X M . For a path Γ from M to M ′ and from
N to N ′, either M ′ = Y and N ′ = X, or M ′ and N ′ are variable nodes and R
holds between their binders—other cases are similar to the previous theorem.

In the first case, there will be an occurrence of read(Y ) in read(M) at the same
location where there is an occurrence of read(X) in read(N). In the second
case, the relation varlink will hold between the variable nodes M ′ and N ′, so
they will be assigned the same index in fresh(G). �

83



5 Graph Rewriting

5.1 Rewrite steps

A rewrite step for proof graphs consists of several smaller operations. Some
rewrite steps require duplication of parts of the graph, others require nodes to
be merged, and after most steps some obsolete nodes have to be removed. In
this section we will explain the schemes found in Appendix C and formalize the
supporting operations.

The additional operations are copy and clean, and the rewrite operations them-
selves are divided into contractions, permutations and simplifications—although
‘contraction’ will informally be used for all three.

Definition 5.1 A rewrite step is a sequence of operations conforming to one
of the following three templates:

1) G
copyMN⇒ G′

contractMN⇒ G′′
cleanSR⇒ H

2) G
copyMN⇒ G′

permuteMN⇒ G′′
cleanSR⇒ H

3) G
simplifyN⇒ G′

cleanSR⇒ H

where G is a rooted proof graph, and contract, permute and simplify are the
steps described by the schemes in Appendix C, in which N and M are the
elimination and introduction nodes of the contraction. In each line R is the
root node of G, and S is the target of the dotted arrow labeled (1) in the right
hand side of the contraction scheme.

The two additional operations are defined below.

Definition 5.2 The copy operation is defined as follows:

copyMN (G) is a graph H such that

• nodesG ⊆ nodesH

• originals is the smallest subset of nodesG containing N , closed under
‘scope’, i.e. if K ∈ originals and L is in the scope of K, then L ∈
originals

• duplicates is the set nodesH−nodesG

• Rcopy is a bisimulation consisting of a bijection from originals to dupli-
cates and the identity relation on nodesG − originals

84



• for all nodes N ′ ∈ G the label, successor, index and bind functions re-
main the same in H, except when succ(N ′, p) = M and N ′ 6= N ; then
succ(N ′, p) = M ′ in H for the node M ′ for which Rcopy(M,M ′) holds

Definition 5.3 The clean operation is defined as follows:

cleanSR(G) = GR if R ∈ G, and
GS otherwise

The clean operation simply confines the resulting graph to all the nodes reach-
able from the original root node. The node S featuring in the definition is a
provision made in case the original root node was the elimination node of the
contraction, and has been removed from the graph.

Figure 5.5 shows the scheme for existential quantifier contraction. The only
other contraction that requires merging, universal quantifier contraction, was
informally discussed in section 2.10, so with this example all cases are covered.

?>=<89:;76540123 J ///.-,()*+ J1

?>=<89:;76540123∃I M

OO

''PPPPPPPPPP

/.-,()*+var
P

?>=<89:;76540123ass
K

?>_ _

���
�
�
�
�
�

///.-,()*+K1

?>=<89:;76540123 L
(2)

OOOO

(3)



?>=<89:;76540123∃E N

CC

??�����

ON //

''NNNNNNNNNN

(1)

OOOO

/.-,()*+var
Q

ggN N N N N

⇒

?>=<89:;76540123 J ///.-,()*+ J1

/.-,()*+var
P

/.-,()*+K1

merge

�
�

�

�
"

&
)

?>=<89:;76540123 L

(2)

WWWW

(3)

TTTT

(1)

AA AA

Figure 5.5: ∃-contraction

The left graph in Figure 5.5 will be called G and the right graph H. Throughout
the schemes in Appendix C the introduction and elimination node of the con-
traction have been named M and N . The functions of the other nodes are, as
usual, given by the direction of the edges upon leaving the node; for example,
L is the minor premise of N , because the edge towards it leaves N at the upper
right side.

Each dotted arrow represents a set of predecessors. The dotted arrow labeled
(1), in all schemes, represents the predecessors of the elimination node of the

85



contraction—if there are no predecessors to that node, the arrow may be taken
to indicate the intended root node of the resulting graph. In H, (1) points to the
node L, which means that all predecessors of N in G have become predecessors
of L in H:

∀α, p if succ(α, p) = N in G then succ(α, p) = L in H.

The node K is the assumption closed by M . All occurrences of that assumption
should be substituted by I, the premise of the ∃I-node J :

∀α, p if succ(α, p) = K in G then succ(α, p) = J in H.

The nodes Q and P are the proper variable of M , and the proper term of
J , respectively. All occurrences of Q in the subproof of L, and those are all
occurrences in the graph G, should be replaced by P :

∀α, p if succ(α, p) = Q in G then succ(α, p) = P in H.

The nodes whose predecessors have been removed do not return in the right
graph, which means that they do not occur in H. They may be manually
deleted or one can wait for the clean step to handle it.

The dashed arrow labeled merge indicates that the nodes K1 and J1, which are
the conclusions of K and J , should be merged (let G′ be the result of the above
three edge redirecting steps):

H = mergeR(G′) where R is the bisimulation between J1 and K1

Of course it needs to be shown that there is such a bisimulation:

Lemma 5.4 For three graphs G, G′, G′′ and three nodes α, β and γ, if
G ∼∼∼ α

β G′, G′ ∼∼∼ β
γ G′′ and no node bisimilar to β occurs in G and G′′, then

G ∼∼∼α
γ G′′.

Proof: let R be the bisimulation modulo identification from G to G′ and let S
be the one from G′ to G′′. Let N , N ′ and N ′′ be nodes in G, G′ and G′′ such
that R(N,N ′) and S (N ′, N ′′).

For R two cases may be distinguished: either N and N ′ have the same labels and
idices and R holds between their successors and binders, or N = α and N ′ = β.
For S a similar distinction can be made: N ′ and N ′′ may have matching labels
and indices while S holds for their successors and binders, or N ′ = β and
N ′′ = γ. Since N and N ′′ may not be bisimilar to β, the first case for R and
the second case for S are mutually exlusive, and vice versa.

Focusing on N and N ′′, the two options left are that N = α and N ′′ = γ, or
that N and N ′′ have matching labels and indices and that R ◦ S holds between
their successors and binders. Thus, R◦S is a bisimulation modulo identification
of α and γ, and G ∼∼∼α

γ G′′ holds. �

86



Perhaps unsurprisingly, the previous lemma covers precisely the cases of ∀-
contraction and ∃-contraction. Figure 5.6 shows the formula nodes of the ∃-
contraction in Figure 5.5. The case for ∀-contraction is similar (see also Fig-
ure 2.43).

/.-,()*+∀ M1

��
ML

JK
qq

ll

/.-,()*+ J1
(1)

����

/o/o/o /.-,()*+
(2)

����

/o/o/o /.-,()*+K1

(3)

����/.-,()*+var
P

Rdef

Q _ m
/.-,()*+var

R

:;

=<�
�
�
�
�

Rdef

Q _ m
/.-,()*+var

Q

⇒

/.-,()*+ J1
(1)

����

/.-,()*+K1

(3)

xxxx/.-,()*+var
P

Figure 5.6: The conclusions of a ∀-contraction

The subgraph of J1, the subgraph of the subformula of M1 and the subgraph of
K1 in Figure 5.6 correspond to the graphs G, G′ and G′′ in the previous lemma;
the variable nodes P , R and Q correspond to α, β and γ. The binding of R
by M1 ensures that the subgraphs of J1 and K1 cannot contain nodes bisimilar
to R: R itself is not reachable from outside the scope of M1, and since J1 and
K1 are the conclusion nodes of some of the rule nodes in the contraction, any
quantifier binding P and Q as a predecessor of J1 or K1 would also violate scope
regulations. In this particular case, from Lemma 5.4 follows J1

∼∼∼P
Q K1.

Figure 5.6 also shows the result of the contraction. Most importantly, all edges
to Q have been redirected towards P . Since in the left graph J1 and K1 are
bisimilar modulo identification of P andQ, and in the right graph all occurrences
of Q have become occurrences of P , J1 and K1 are bisimilar.

5.2 Confluence

In this section we will explore how rewriting in graphs relates to rewriting in
deductions. With the help of Figure 5.7

Lemma 5.5 If the root node N of a proof graph G forms a contraction,
permutation or simplification, together with a node M , then the last inferences
in fresh ◦ read(G) form a contraction, permutation or simplification as well. If
H is the result of contracting N and M , then fresh ◦ read(H) is the result of
contracting the last inferences in fresh ◦ read(G).

Proof: let G and H be the left and right graph of the universal quantifier con-
traction scheme shown in Figure 5.7. Reading back G and H gives (contrasted

87



?>=<89:;76540123 L
(2)



///.-,()*+ L1

?>=<89:;76540123∀I M

OO

%%LLLLLLLL

/.-,()*+var
P

eeL
L

L
L

?>=<89:;76540123∀E N

OO

$$JJJJJJJJ ///.-,()*+N1

(1)

OOOO

/.-,()*+var
Q

⇒

?>=<89:;76540123 L

(2)

����

///.-,()*+ L1

/.-,()*+N1

merge

�

�

)

(1)

OOOO

/.-,()*+var
Q

Figure 5.7: Universal quantifier contraction

with the desired result):

read(G) = read(H) =

read(L)
read(M1)

(∀I)

read(N1)
(∀E)

read(L)[read(Q)/read(P )]

.... (1)

A
∀x.A[x/a]

(∀I)

A[t/a]
(∀E)

⇒
.... (1)

A

}
[t/a]

where the node M1 is the conclusion of M (not present in the illustration). Note
that read(M1) and read(N1) are formulas, where read(L) is a deduction. Since
P is bound in G it receives a fresh index in fresh(G), which ensures that all
occurrences of that index as a variable letter in read(L) have been replaced by
occurences of the index of Q after the contraction. �

The trouble is, however, that in a graph a contraction may be shared. In that
case it does not correspond to a single contraction in a deduction. If, in a graph
G, the node N is the root of a contraction, and no other node than N reads back
to the same deduction as N , then contracting N corresponds to contracting all
occurrences of the subdeduction read(N) in read(G).

Unfortunately there is no guarantee for different nodes N and M that read(N)
is different from read(M). We will need to pinpoint the precise subdeductions
that have actually been read from the node N itself. This can be done by tracing
all rooted paths to N and mapping them onto the deduction.

Let N be the elimination node of the contraction in Figure 5.8. The step labeled
(1) then represents the contraction of all contractions in D that are at the end

88



D
(1) // // D′

G
rewrite

//

read

OO

G′

read

OO

Figure 5.8: Confluence for proof graph rewriting

of a path to N in G.

By Lemma 4.31 the deduction occurring in D at the end of the equivalent of
a rooted path to N in G, is read(N). The contraction in the step (1) is of the
same type as the graph contraction in the step labeled rewrite in Figure 5.8.
This, and the acyclicity of proof graphs, guarantees that the contractions in D
do not interfere with each other.

89



6 Correctness and Completeness

In this chapter we will show that proof graphs are a correct and complete rep-
resentation of natural deduction. It will be demonstrated that each deduction
translates to a valid proof graph, and vice versa, that reading a proof graph
always results in a correct deduction. Furthermore the reversibility of the trans-
lation and reading procedures will be shown.

Regarding the reversibility of the translation procedure, the diagram in Fig-
ure 6.1 shows the different steps in the translation of a deduction D. The first
step trans produces a clean pre-proof graph G1, merging assumptions and vari-
ables in G1 results in a clean pre-proof graph G2, adding backpointers to G2

produces G3, and finally merging proper terms results in G4. The result of the
translation, G4, is a proof graph, indicated by the circle in the diagram.

D

trans
��2

2222222 =
(6.7)

D1 =
(6.8)

D2 =α
(6.9)

D5

G1

v-merge
//

read

EE








G2

back
//

read

EE








G3

t-merge
//?>=<89:;G4

fresh
// G5

read

EE









Figure 6.1: Relating the results of reading back the stages of the translation

For the three clean pre-proof graphs in the translation process, the deduction
Di is the result of reading back the graph Gi. The other graphs, G3 and G4,
contain backpointers, which have to be removed before the read function can
be applied. The importance of the diagram lies in the relations between the
deductions. Above each is the number of the theorem that proves it; the three
theorems referred to can be found later in this chapter.

D1

trans

t�� ��
44444444

?>=<89:;G
fresh

�// G1

read
EE









G2

v-merge

�// G3

back

�// G4

t-merge

�//?>=<89:;G5

?>=<89:;G ≡
(6.11) ?>=<89:;G5

Figure 6.2: Translating an arbitrary graph

Figure 6.2 shows the other side of the story. Starting with an arbitrary proof
graph G, first the backpointers are removed to obtain the clean pre-proof graph
G1. From that graph the deduction D1 is read. The complete translation proce-

90



dure, consisting of the consecutive operations trans , v-merge, back and t-merge
is then applied to D1, resulting in a proof graph G5. If all is well, this proof graph
should be bisimilar to the proof graph that we started out with, i.e. G ≡ G5.

6.1 Building a proof graph

Nearly all the required premises have been proved to show that the translation
from proofs to graphs produces a valid proof graph. The missing link is the
proof that the translation of a substitution actually results in two graphs that
are bisimilar modulo identification.

Lemma 6.1 In the complete translation of a deduction the requirements for
bisimulations modulo identification, in the schemes for ∀I, ∀E, ∃I and ∃E, are
met.

Proof: by the example below. For the following translation:

trans ◦ v-merge ◦ back ◦ t-merge(
∀x.A
A[t/x]

(∀E) )

we will show that N ∼∼∼ T
X M holds, where M is the conclusion of the ∀E-node,

which is the root node, and N is the subformula of the conclusion node (the
∀-node) of the premise of the ∀E-node; the node X is the bound variable of
the ∀-node, and the node T the proper term of the ∀E-node; see also the graph
below.

?>=<89:;76540123 ///.-,()*+∀ ML

JK
oo

��?>=<89:;76540123∀E
OO

//

��??????????
/.-,()*+M ∼∼∼ T

X

����

/.-,()*+N

����/.-,()*+T /.-,()*+var
X

:;

=<�
�
�
�
�
�

oo

In trans(D) (where D is the deduction above) M = trans(A[t/x]) and N =
trans(A). Let Γ be a path at the end of which a variable x occurs free in A.
Then at the end of Γ in A[t/x] the term t will occur.

By the isomorphism between deductions and unfoldings, any free occurrence of
x in A is matched by a free occurrence of a variable node with index x in the
unfolding of trans(A). In trans(D) if source(Γ) = N then target(Γ) is a variable
node with index x; similarly if source(Γ) = M then target(Γ) is the root node
of a graph trans(t). Moreover, the proper term of the ∀E-node will also be a
graph trans(t), and the bound variable of the ∀-node will be a variable node
with index x.

91



After the v-merge step, all free occurrences of x at N will be merged with its
bound variable, to form the node X. Since all variables free in t must remain
free in all occurrences of t in A[t/x], those variable occurrences will also be free
at M . By Theorem 4.19 free variable nodes in the subgraph of M with the same
index will be bound by the same node, if they become bound when trans(D) is
a subgraph of some larger graph. This ensures that all occurrences of trans(t)
as target(Γ) in trans(A[t/x]) are bisimilar to the proper term of the ∀E-node,
and that they are all merged to form T during the t-merge step.

The bisimulation modulo identification can now be constructed between the
targets of each path Γ starting at M and Γ starting at N . �

The theorem below proves that any deduction can be translated to a proof
graph.

Theorem 6.2 For any deduction D trans ◦ v-merge ◦ back ◦ t-merge(D) is a
proof graph.

Proof: trans ◦v-merge◦back ◦t-merge(D) must be shown to obey the restrictions
on proof graphs. Each will be listed and dealt with in turn.

Restriction 3.7 (acyclicity): by Lemma 4.7 trans(D) is acyclic. Both v-merge
and t-merge, since they are based on a bisimulation relation, cannot create
new cycles, and in the back operation no edges are changed, only indices and
backpointers.

Restriction 3.11 (one-to-one correspondence of binder nodes and bound nodes):
in trans(D) nodes are uniquely bound, and the v-merge procedure unifies all
bound nodes of the same binder into one.

Restriction 3.16 (correctness of represented inferences): the similarity between
the schemes in Appendix B and those in Appendix D ensures that trans ◦
merge ◦ back(D) conforms to the former when regular edges are concerned. The
correctness of the backpointers in the schemes is implied by the correctness of
binding, shown above and below, and the possibility of constructing the required
bisimulations modulo identification is guaranteed by Lemma 6.1.

Restriction 3.17 (correctness of binding): by Theorem 4.8, binding is unique in
trans(D); by Theorem 4.17 the same holds for trans ◦ v-merge(D). The link be-
tween uniqueness of binding and Restriction 3.17 is expressed inTheorem 4.23,
which also shows that trans ◦v-merge◦back(D) conforms to that restriction. Fi-
nally, Theorem 4.20 demonstrates that the t-merge step preserves conformation
to that restriction as well. �

92



6.2 Reversibility of the translation

This section will mostly concentrate on showing the reversibility of the trans
operation, in the sense that first translating a deduction, and then reading back
the resulting graph using the read function, gives the original deduction again.
The proof consists of several parts; reversibility will be proven separately for
the initial steps trans0 and trans1, for formulas, and finally for deductions.

After dealing with the trans , the reversibility of the v-merge, back and t-merge
operations will be shown, to complete the whole translation sequence.

Lemma 6.3 For any deduction D read(trans0(D)) = D, and for any formula
A read(trans1(A)) = A.

Proof: the trans0-step for the deduction D with conclusion C and the trans1-
step for the formula A are shown below.

trans0(D) =

D

?>=<89:;76540123ε0 N0 ///.-,()*+ε1 N1

C

trans1(A) =
/.-,()*+ε1 M1

A

read(trans0(D)) = read(N0) = repr(N0) = D
read(trans1(A)) = read(M1) = repr(M1) = A �

Lemma 6.4 For an empty formula node N in a pre-proof graph G, read(N)
for N ∈ G is the same formula as read(N) for N ∈ transN (G).

Proof: by the example below, the translation scheme for implication.

/.-,()*+ε1 N /.-,()*+→ N

�������

��;;;;;

⇒
transN

/.-,()*+ε1 N′ /.-,()*+ε1N′′

A→ B A B

in G : read(N) = repr(N) = A→ B
in transN (G) : read(N) = read(N ′)→ read(N ′′)

= repr(N ′)→ repr(N ′′) = A→ B �

In a translation step transN nothing changes for any already existing nodes other
than N , except that predecessors may be added. Since the read function only
looks at successors, the reading back of other nodes than N remains unchanged
in a step transN as well. Combining the two previous lemmas then gives the
following theorem:

93



Theorem 6.5 For any formula A trans ◦ read(A) = A. �

To prove the same for deductions, the example of implication introduction is
used, repeated in Figure 6.3.

[A]u
D
B

A→ B
(→I,u)

Au
[A]u
D
B

/.-,()*+→ N1

�������

��

/.-,()*+→ N1

�������

��

/.-,()*+ L1

⇒
transN0

?>=<89:;76540123ε0 L0 ///.-,()*+ L1

/.-,()*+M1 ?>=<89:;76540123ε0 M0 ///.-,()*+M1

?>=<89:;76540123ε0 N0
BC

GF //

?>=<89:;76540123→I N0

OO@A

OO

BC

GF //

(A) (B) (A) (B)

Figure 6.3: The translation scheme for implication introduction

Lemma 6.6 For an inference node N in a pre-proof graph G, read(N) for
N ∈ G is the same deduction as read(N) for N ∈ transN (G).

Proof: by the example in Figure 6.3. We show that the deduction read from the
node N0 is the same before and after its translation. Below are the deductions
as they are read from the scheme, where G is the graph on the left.

in G:

read(N0) =
[A]u
D
B

A→ B
(→I,u)

in transN0(G):

read(N0) =
read(M0)
read(N1)

(label(N0), index(L0)) =

[A]u
D

read(M1)
read(L1)→ read(M1)

(→I,u)

It needs to be shown that read(L1) = A and that read(M1) = B. Earlier,
in Lemma 4.4, it was shown that for an empty node that represents a proof
with conclusion C, upon completion of the translation the conclusion node is
isomorphic to the direct translation of the formula C. In this case, that means
that N1 is isomorphic to trans(A → B), and that L1 and M1 are isomorphic

94



to trans(A) andtrans(B), respectively. Applying the previous theorem gives
read(L1) = A and read(M1) = B. �

Straightforward combination of the above lemmas yields the desired result of
reversibility of the trans operation.

Theorem 6.7 For any deduction D

trans ◦ read(D) = D. �

The following theorem will show the reversibility of the v-merge operation, using
results obtained earlier.

Theorem 6.8 For a rooted clean pre-proof graph G

v-merge ◦ read(G) = read(G).

Proof: by lemma 4.17 v-merge(G) and G are bisimilar. By lemma 4.30, which
states that bisimilar clean pre-proof graphs yield the same deduction when read,
read(v-merge(G)) = read(G). �

The remaining part of the reversibility proof will be compressed into one the-
orem. This is because the intermediate stages cannot be read back directly, as
they require the replacement of backpointers by fresh variables first.

Theorem 6.9 For a rooted clean pre-proof graph G

read(G) =α back ◦ t-merge ◦ fresh ◦ read(G).

Proof: regular edges and binding are treated separately. Regular edges and
paths, as well as the properties of nodes, remain untouched in the back and
fresh operations, and thus remain unchanged between (G) and back(G), and
between back ◦ t-merge(G) andback ◦ t-merge ◦ fresh(G). Bisimilarity ensures
that edges and paths are preserved between back(G) and back ◦ t-merge(G).

By the isomorphism between the unfolding of a graph and the deduction read
from it, expressed by Theorem 4.32, regular edges are also preserved between G
and read(G), and between back ◦ t-merge ◦ fresh(G) and back ◦ t-merge ◦ fresh ◦
read(G). This completes the chain and shows that rooted paths are preserved
between read(G) and back ◦ t-merge ◦ fresh ◦ read(G), and that the same path
traced through both graphs ends at matching inferences or connectives.

The preservation of binding was also shown for each operation. Theorem 4.32
showed it for the read function, Theorem 4.22 for the back operation, Theo-
rem 4.20 shows it for the t-merge operation, and Theorem 4.28 for the fresh
operation. It should be emphasized that the property preserved in all these
theorems is of the form ‘the nth node on a path Γ binds target(Γ)’. �

95



6.3 Reading back a proof graph

The core of the reversibility proof for the reading of a deduction from a graph will
be the theorem below. It shows that bisimilar proof read back to α-equivalent
deductions.

Theorem 6.10 Two proof graphs G and H are bisimilar if and only iffresh ◦
read(G) =α fresh ◦ read(H) (where α-equivalence may include renaming of
proper variables).

Proof: first let G and H be bisimilar. Then for any rooted path Γ the label
of target(Γ) will be the same in G and H; consequently, in fresh ◦ read(G) and
fresh ◦ read(H) all inferences, connectives, free variables and open assumption
markers will correspond.

For a rooted path Γ, if target(Γ) is bound then by Restriction 3.17 it is bound
by some node on Γ, say the nth node. For the same path Γ in H, the exact
same is true.

By Theorem 4.28 the nth node on Γ (say N) binds target(Γ) in fresh(G). By
Lemma 4.26 N cannot occur on Γ again. If any other binder node M in fresh(G)
has a closed assumption, bound variable or proper variable with the same index,
then that node is bisimilar modulo some identification to N . By Lemma 4.27
M is then not on Γ. Therefore the nth edge γ is also the last candidate binder
on Γ for target(Γ) in both fresh(G) and fresh(H).

By Theorem 3.33 the presence of a candidate binder edge on a path is preserved
between bisimilar clean pre-proof graphs. Thus the nth edge is the last can-
didate binder on Γ for target(Γ) in the unfoldings of fresh(G) and fresh(H) as
well. Finally the correspondence between unfoldings and readings of a graph,
expressed by Theorem 4.32, implies that again the nth inference or connective on
Γ binds the assumption or variable occurrence at the end of Γ in fresh ◦ read(G)
and fresh ◦ read(H).

For the other direction, suppose G and H are not bisimilar. Then for some
path Γ target(Γ) in G and target(Γ) in H differ in their label or index, or have
non-bisimilar binders. Should the difference lie with the label or index, then
fresh ◦ read(G) and fresh ◦ read(H) will surely not be α-equivalent.

Although not bisimilar, the binders of target(Γ) in G in H must still lie on Γ.
Then in G target(Γ) is bound by the nth node, and in H target(Γ) is bound
by the mth node on Γ, where n 6= m. By the same argument as above, then
in fresh ◦ read(G) target(Γ) is bound by the mth inference or connective on Γ,
while in fresh ◦ read(H) target(Γ) is bound by the mth inference or connective.
Again, fresh ◦ read(G) and fresh ◦ read(H) are not α-equivalent. �

96



For the next theorem, the above theorem and the results on the translation
procedure are combined to show the reversibility of the read function.

Theorem 6.11 For any proof graph G,

G ≡ fresh ◦ read ◦ trans ◦ v-merge ◦ back ◦ t-merge(G).

Proof: by Theorems 6.7, 6.8 and 6.9 we have (abbreviating the translation
sequence of trans , v-merge, back and t-merge to translation):

fresh ◦ read(G) =α fresh ◦ read ◦ translation ◦ fresh ◦ read(G),

after which Theorem 6.10 can be applied to produce the desired result. �

Finally, it will be demonstrated that any proof graph reads back to a (nearly)
correct deduction.

Theorem 6.12 For an arbitrary proof graph G fresh ◦ read(G) is a valid
deduction, with the exception that open assumptions may contain proper vari-
ables.

Proof: comparison of the schemes in Appendix A with the definition of the read
function will reveal that the individual inferences in fresh ◦ read(G) are correct;
for the inferences involving substitution, Theorem 4.33 demonstrates that a
substitution is correctly represented by a bisimulation modulo identification.

It then remains to show that the restrictions on ∀I- and ∃E-applications are
met. Taking the mentioned exception into account, these read that the proper
variable of the inference may not occur free in an assumption that is open at
(the minor premise of) the inference itself, but closed in fresh ◦ read(G).

Let the variable a be the proper variable of a ∀I-application, and let a be free
in an assumption Au that is closed by an →I-application in fresh ◦ read(G).
All assumption closure, as wel as variable binding by ∀I- and ∃E-nodes, is
expressed by backpointers in proof graphs, and is preserved under the fresh
step (see Theorem 4.28). The variable letter a and the assumption marker u are
thus fresh in fresh(G), which implies that each is attributed to only one node.

Let V be the variable node with index a and let V ′ be the assumption node
with index u. All occurrences of the variable a and the assumption Au have
been read from the nodes V and V ′ respectively. Since a is free in Au, there is
a path ∆ from V ′ to V that is free of candidate binders for V . Let N ′ be the
→I-node that closes V ′ and let N be the ∀I-node that binds V .

By (the interpretation of) Restriction 3.17 all rooted paths in G to V should
cross N . Since N ′ closes V ′ there is an edge from N ′ to V ′ using the closed
assumption port. The path ∆ connects V ′ to V , so there must be a path from
N to N ′, to prevent a rooted path to N ′ from connecting to V , through the
closed assumption port of N ′ and the path ∆.

97



In the deduction read from fresh(G), then, any occurrence of an inference closing
assumption class Au is in the subdeduction of the ∀I-application that binds a.
Consequently, Au cannot be open in the subdeduction of that ∀I-application.�

98



7 Conclusions

At the outset the goal was to develop a system of natural deduction, using
graphs, that is more elegant than the original and treats variables a little better.
As was already indicated, the attributed degree of success can be a matter of
taste, but overall it must be concluded that a graph system for natural deduction
was indeed implemented.

To help with the further assessment a summary of the distinctive properties of
proof graphs will be given, and, where relevant, contrasted with those of natural
deduction.

One of the primary goals, developed throughout the second chapter, was to have
all variable occurrences that can philosophically be attributed to the same vari-
able, represented by a single node. A convenient consequence of this choice was
that a fairly simple representation of substitution could be implemented, in the
form of the bisimulation modulo identification. Extending the same principle to
assumptions has also helped in simplifying substitution in the rewrite schemes.

The next achievement is the uniform treatment of assumption closure and two
forms of variable binding, by quantifiers and by inferences. Almost all of the
definitions and results regarding binding are applicable to all three variants.

Concerning the elegance of proof graphs, a less than optimal result are the com-
plicated restrictions. Although the required form of inferences can be expressed
in pictures, the restrictions needed for a correct representation of binding are
not that beautiful. On the other hand, these should be compared to the explicit
restrictions on quantifier inferences, and to the implicit definition of variable
binding in deductions.

The use of backpointers, although already an old idea, has also proven useful. In
particular it has made bisimulations modulo identification manageable; no real
effort was required to deal with the exceptions present in regular substitution
regarding variable binding.

Finally, the rewriting part of the graph system is probably a little more elaborate
than that of deductions. There are two smaller operations involved, copying and
cleaning up, and the merging utility is used as well, while the pictures used to
describe the actual rewrite steps contain a lot of information, which can make
them hard to interpret.

Overall, it looks like graphs perform a little better than regular deductions,
though it should also be mentioned that implementing graphs is in itself a lot
more complicated than implementing trees.

Of greater importance than the technical performance is the fact that proof
graphs bring these features to the surface. Although most of the implemented

99



features are well-documented, in proof graphs they are explicit to the system
itself. That, and the detailed treatment of sharing, are the main merits of this
thesis.

7.1 Further investigations

A few things need to be said on what the next step should be. The first is that
since this thesis presents a completed system of graphs and nothing but a com-
pleted system of graphs, there are few angles for further research. However, two
of the remaining questions are of great importance, and cannot go unmentioned.

The close reader may have noticed that the rewriting of graphs receives rel-
atively little attention. The reason behind this is that due to size and time
constraints a major topic was dropped during the writing of this thesis, being
the complexity of rewriting. Although in essence similar to the rewrite rules for
proofs, the graph rules behave very differently where duplication is concerned.
For deductions, the implication contraction is the main cause of complexity,
leading to hyperexponential growth, while permutations are linear. In graphs
each individual permutation and implication contraction is equally complex:
they are linear when not shared, and at most duplicate the graph when shared.
The question is then of course how these rules interact on a larger scale; do proof
graphs in the end exhibit hyperexponential growth as well, or is the limited form
of sharing sufficient to reduce complexity?

The other topic covers different variants of natural deduction. One question is
whether proof graphs can be expanded to cover natural deduction for classical
logic. Although the first guess could well be ‘of course’, the addition of another
assumption discharging rule might prove very non-trivial. Another question
could be how proof graphs correspond to Fitch-style proofs, also known as flag
deductions. Instead of building a tree, these deductions use line numbers to
refer to premises, in essence forming a graph. The translation from this proof
system to proof graphs and back could be very straightforward—or very much
not so.

100



Bibliography

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53
of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge, 2001.

Stefan Blom. Term Graph Rewriting: Syntax and Semantics. PhD thesis, De-
partment of Mathematics and Informatics, Vrije Universiteit, Amsterdam,
2001.

Kit Fine. Reasoning with Arbitrary Objects. Blackwell, Oxford, 1985.

Gerhard Gentzen. Untersuchungen über das logische schliessen I, II. Mathema-
tische Zeitschrift, 39:176–210, 405–431, 1935. English translation in Gentzen
[1969], pages 68–131.

Gerhard Gentzen. The Collected Papers of Gerhard Gentzen. North-Holland
Publ. Co., Amsterdam, 1969. English translations of Gentzen’s papers, ed.
M. E. Szabo.

Dag Prawitz. Natural deduction. A Proof-theoretical Study. Almqvist and Wik-
sell, Stockholm, 1965.

Richard Statman. Structural Complexity of Proofs. PhD thesis, Department of
Philosophy, Stanford University, Stanford, 1974.

Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory, vol-
ume 43 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, 1996.

101



Appendices

Appendix A: Natural deduction schemes

Inference rules

Au

....
⊥
A

(⊥E)

[A]u....
B

A→ B
(→I,u)

....
A→ B

....
A

B
(→E)

....
A

....
B

A ∧B
(∧I)

....
A ∧B
A

(∧EL)

....
A ∧B
B

(∧ER)

....
A

A ∨B
(∨IL)

....
B

A ∨B
(∨IR)

....
A ∨B

[A]u....
C

[B]v....
C

C
(∨E,u,v)

....
∀x.A
A[t/x]

(∀E)

....
A[a/x]
∀x.A

(∀I)

Restrictions on ∀I: a = x or
a is not free in A; a is not free
in open assumptions

....
A[t/x]
∃x.A

(∃I)

....
∃x.A

[A[a/x]]u....
C

C
(∃E,u)

Restrictions on ∃E: a = x or
a is not free in A; a is not free
in C or in open assumptions
except [A[a/x]]u

102



Contractions

∧L-contraction: .... (1)

A

....
B

A ∧B
(∧I)

A
(∧EL)

⇒
.... (1)

A

∧R-contraction: ....
A

.... (1)

B
A ∧B

(∧I)

B
(∧ER)

⇒
.... (1)

B

∨L-contraction:
.... (1)

A
A ∨B

(∨IL)

[A]u.... (2)

C

[B]v....
C

C
(∨E,u,v)

⇒

.... (1)

[A].... (2)

C

∨R-contraction:
.... (1)

B
A ∨B

(∨IR)

[A]u....
C

[B]v.... (2)

C
C

(∨E,u,v)

⇒

.... (1)

[B].... (2)

C

→-contraction:
[A]u.... (1)

B
A→ B

(→I,u)

.... (2)

A
B

(→E)

⇒

.... (2)

[A].... (1)

B

∀-contraction: .... (1)

A
∀x.A[x/a]

(∀I)

A[t/a]
(∀E)

⇒
.... (1)

A

}
[t/a]

∃-contraction: .... (1)

A[t/a]
∃x.A[x/a]

(∃I)

[A]u.... (2)

C

C
(∃E,u)

⇒

.... (1)

[A].... (2)

C

}
[t/a]

103



Permutations

∨-permutation:

.... (1)

A ∨B

[A]u.... (2)

C

[B]v.... (3)

C
C

(∨E,u,v)
.... (4)

D
(?E)

⇒ .... (1)

A ∨B

[A]u.... (2)

C

.... (4)

D
(?E)

[B]v.... (3)

C

.... (4)

D
(?E)

D
(∨E,u,v)

∃-permutation:

.... (1)

∃x.A

[A[a/x]]u.... (2)

C
C

(∃E)
.... (3)

D
(?E)

⇒ .... (1)

∃x.A

[A[a/x]]u.... (2)

C

.... (3)

D
(?E)

D
(∃E)

Simplifications

∨L-simplification:

....
A ∨B

[A]u.... (1)

C

[B]v....
C

C
(∨E,u,v)

⇒
.... (1)

C

Where [A]u

contains zero
instances of Au

∨R-simplification:

....
A ∨B

[A]u....
C

[B]v.... (1)

C
C

(∨E,u,v)

⇒
.... (1)

C

Where [B]v

contains zero
instances of Bv

∃-simplification:

....
∃x.A

[A]u.... (1)

C
C

(∃E,u)

⇒
.... (1)

C

Where [A]u

contains zero
instances of Au

104



Appendix B: Inference schemes for proof graphs

Legend

?>=<89:;76540123 rule node

/.-,()*+ formula node

index

// edge

// // multiple edges

// // indicates scope
and predecessors

�� // // no path

//____ backpointer

bisimulation

/o/o /o/o /o/o bisimulation
modulo identification

/.-,()*+ /o/o /o/o /o/o

����

/.-,()*+
����

bisimulation
modulo identification
of nodes M and N/.-,()*+

Rdef

T _ j
M /.-,()*+N

105



List of ports

left closed assumption

closed assumption

right closed assumption

 assumption-type ports

major premise

left premise

premise

right premise

left minor premise

minor premise

right minor premise


premise-type ports

conclusion

proper term

proper variable

bound variable

}
variable-type ports

left subformula

subformula

right subformula

antecedent

consequent

argument 1

argument 2

argument 3
...


subformula-type ports

106



Formula nodes

Bound variables: /.-,()*+var //____ binding
quantifier

/.-,()*+var //___ /.-,()*+∀ or /.-,()*+∃
/.-,()*+var //____ binding

rule node
/.-,()*+var //__ ?>=<89:;76540123∀I or ?>=<89:;76540123∃E

Free variables: /.-,()*+var //____ variable
letter

/.-,()*+var //___ x y etc.

Falsum: /.-,()*+⊥

Predicates:

/.-,()*+pn //___

{{xxxxx
##GGGGG

predicate
letter

argument 1 argument n

/.-,()*+pn //__

�������
��????? P Q etc.

/.-,()*+ /.-,()*+

Conjunction:

/.-,()*+∧
||yyyy

""EEEE

left
subformula

right
subformula

/.-,()*+∧
�������

��?????

/.-,()*+ /.-,()*+

Disjunction:

/.-,()*+∨
||yyyy

""EEEE

left
subformula

right
subformula

/.-,()*+∨
�������

��?????

/.-,()*+ /.-,()*+

Implication:

/.-,()*+→
||yyyyy

""FFFFF

antecedent consequent

/.-,()*+→
�������

��?????

/.-,()*+ /.-,()*+

Universal quantification:
/.-,()*+∀
��

// bound
variable

subformula

/.-,()*+∀
��
ML

JK
oo

/.-,()*+

����/.-,()*+var

:;

=<�
�
�
�
�

oo

Existential quantification:
/.-,()*+∃
��

// bound
variable

subformula

/.-,()*+∃
��
ML

JK
oo

/.-,()*+

����/.-,()*+var

:;

=<�
�
�
�
�

oo

107



Rule nodes

Open assumptions:

marker ?>=<89:;76540123ass //oo_ _ conclusion u v etc. ?>=<89:;76540123assoo_ _ _ ///.-,()*+
Closed assumptions:

discharging
rule node

?>=<89:;76540123ass //oo_ _ _ conclusion ?>=<89:;76540123∨E ?>=<89:;76540123→I or ?>=<89:;76540123∃E ?>=<89:;76540123assoo_ _ _ ///.-,()*+

Falsum elimination:

premise

?>=<89:;76540123⊥E
OO

// conclusion

?>=<89:;76540123 ///.-,()*+⊥
?>=<89:;76540123⊥E
OO

///.-,()*+
Conjunction introduction:

left
premise\\999

right
premiseBB���?>=<89:;76540123∧I // conclusion

/.-,()*+∧
}}{{{{

{{

?>=<89:;76540123 ///.-,()*+
?>=<89:;76540123 ///.-,()*+

?>=<89:;76540123∧I

>>

<<yyyyy BC

GF //

Conjunction elimination (left):

premiseOO

?>=<89:;76540123∧EL // conclusion

?>=<89:;76540123
OO

///.-,()*+∧
��������

��999999

?>=<89:;76540123∧EL ///.-,()*+ /.-,()*+
Conjunction elimination (right):

premiseOO

?>=<89:;76540123∧ER // conclusion

?>=<89:;76540123 ///.-,()*+∧
zzvvvv

��
/.-,()*+

?>=<89:;76540123∧ER

OO

///.-,()*+
Disjunction introduction (left):

premiseOO

?>=<89:;76540123∨IL // conclusion

/.-,()*+∨
�������

��;;;;;

?>=<89:;76540123 ///.-,()*+ /.-,()*+
?>=<89:;76540123∨IL

OO BC

GF //

108



Disjunction introduction (right):

premiseOO

?>=<89:;76540123∨IR // conclusion

/.-,()*+∨
xxrrrr

��
/.-,()*+

?>=<89:;76540123 ///.-,()*+
?>=<89:;76540123∨IR

OO BC

GF //

Disjunction elimination:

major
premise

left & right
assumptions

left
& right
minor

premises

?>=<89:;76540123∨E
bbFFFFFF

OO OO ::vvvvvv
::vvvvvv // conclusion

?>=<89:;76540123 ///.-,()*+∨
||zzzz

��

?>=<89:;76540123ass //GF

���
�
�
�
�
�
�
�
�

/.-,()*+

/._ _

���
�
�
�
�
�
�

?>=<89:;76540123ass //_ _ /.-,()*+

?>=<89:;76540123

OOOO

ED
��

?>=<89:;76540123

OOOO

((RRRRRRRR

?>=<89:;76540123∨E

@
?????

G
??�����

//

EE������
66lllllll

ON //

?> //

/.-,()*+
Implication introduction:

premise

closed
assumption

?>=<89:;76540123→Ioo

OO

// conclusion

/.-,()*+→
�������

��

?>=<89:;76540123ass?>

89�
�
�
�
�
�

//

///.-,()*+

?>=<89:;76540123

OOOO

///.-,()*+
?>=<89:;76540123→I
OOHI

ON //

BC

GF //

Implication elimination:

major
premise

minor
premise

?>=<89:;76540123→E
\\9999

BB����
// conclusion

?>=<89:;76540123 ///.-,()*+→
�������

||

?>=<89:;76540123 ///.-,()*+
?>=<89:;76540123→E //

>>

<<yyyyy /.-,()*+

109



Universal quantifier introduction:

premise

?>=<89:;76540123∀I
OO

//

&&LLLLLLL conclusion

proper
variable

/.-,()*+∀
��
ML

JK
oo

?>=<89:;76540123 ///.-,()*+

����

/o/o /o/o /o/o /.-,()*+

����

?>=<89:;76540123∀I
OO

%%LLLLLLLL
BC

GF //

/.-,()*+var

eeL
L

L
L

Rdef

V _ h
/.-,()*+var

:;

=<�
�
�
�
�
�
�

oo

Universal quantifier elimination:

premise

?>=<89:;76540123∀E
OO

//

&&LLLLLLLL conclusion

proper
term

?>=<89:;76540123 ///.-,()*+∀ ML

JK
oo

��?>=<89:;76540123∀E
OO

//

��??????????
/.-,()*+ /o/o /o/o /o/o

����

/.-,()*+

����/.-,()*+
Rdef

V _ h
/.-,()*+var

:;

=<�
�
�
�
�
�

oo

Existential quantifier introduction:

premise

?>=<89:;76540123∃I
OO

//

&&LLLLLLLL conclusion

proper
term

/.-,()*+∃
��
ML

JK
oo

?>=<89:;76540123 ///.-,()*+

����

/o/o /o/o /o/o /.-,()*+

����

?>=<89:;76540123∃I
OO

%%LLLLLLLL

BC

GF //

/.-,()*+
Rdef

V _ h
/.-,()*+var

:;

=<�
�
�
�
�
�
�

oo

Existential quantifier elimination:

major
premise

assumption
minor

premise

?>=<89:;76540123∃E
eeKKKKK

OO 88qqqqqq //

''NNNNNN conclusion

proper
variable

?>=<89:;76540123 ///.-,()*+∃
��
ML

JK
oo

?>=<89:;76540123ass?>

���
�
�
�
�
�

///.-,()*+ /o/o /o/o /o/o

����

/.-,()*+

����

?>=<89:;76540123

OOOO

ED
��?>=<89:;76540123∃E

@
????

G
??����

ON //

BB���
//

9?????

//

/.-,()*+
/.-,()*+var

I
_ _ _

__?
?

?

Rdef

U _ i
/.-,()*+var

:;

=<�
�
�
�
�
�
�
�
�
�

oo

110



Appendix C: Rewrite schemes for proof graphs

Contractions

Conjunction contraction (left):

?>=<89:;76540123 K ?>=<89:;76540123 L

?>=<89:;76540123∧I M

__?????

??�����

?>=<89:;76540123∧EL
N

OO

(1)

OOOO

⇒

?>=<89:;76540123 K ?>=<89:;76540123 L

(1)

YYYY

Conjunction contraction (right):

?>=<89:;76540123 K ?>=<89:;76540123 L

?>=<89:;76540123∧I M

__?????

??�����

?>=<89:;76540123∧ER
N

OO

(1)

OOOO

⇒

?>=<89:;76540123 K ?>=<89:;76540123 L

(1)

EE EE

Disjunction contraction (left):

?>=<89:;76540123 H ?>=<89:;76540123ass
I

GF_ _

���
�
�
�
�
�
�
�
�

/._ _

���
�
�
�
�
�

?>=<89:;76540123ass
J

_ _

?>=<89:;76540123∨IL
M

OO

?>=<89:;76540123 K
(2)

OOOO

?>=<89:;76540123 L

OOOO

?>=<89:;76540123∨E N

__?????

??�����

77oooooooo

ON //

?> //

(1)

OOOO

⇒

?>=<89:;76540123 H

?>=<89:;76540123 K

(2)

llll

(1)

AA AA

111



Disjunction contraction (right):

?>=<89:;76540123 H ?>=<89:;76540123ass
I

GF_ _

���
�
�
�
�
�
�
�
�

/._ _

���
�
�
�
�
�

?>=<89:;76540123ass
J

_ _

?>=<89:;76540123∨IR
M

OO

?>=<89:;76540123 K

OOOO

?>=<89:;76540123 L
(2)

OOOO

?>=<89:;76540123∨E N

__?????

??�����

77oooooooo

ON //

?> //

(1)

OOOO

⇒

?>=<89:;76540123 H

?>=<89:;76540123 L

(2)

mmmm

(1)

33 33

Implication contraction:

?>=<89:;76540123ass
J

?>

89�
�
�
�
�
�

//

?>=<89:;76540123 K

?>=<89:;76540123 L
(2)

OOOO

?>=<89:;76540123→I M

OOHI

ON //

?>=<89:;76540123→E N

__?????

C
������

OO

(1)

OOOO

⇒

?>=<89:;76540123 K

?>=<89:;76540123 L

(2)
33 33

(1)

YYYY

112



Universal quantifier contraction:

?>=<89:;76540123 L
(2)



///.-,()*+ L1

?>=<89:;76540123∀I M

OO

%%LLLLLLLL

/.-,()*+var
P

eeL
L

L
L

?>=<89:;76540123∀E N

OO

$$JJJJJJJJ ///.-,()*+N1

(1)

OOOO

/.-,()*+var
Q

⇒

?>=<89:;76540123 L

(2)

����

///.-,()*+ L1

/.-,()*+N1

merge

�

�

)

(1)

OOOO

/.-,()*+var
Q

Existential quantifier contraction:

?>=<89:;76540123 J ///.-,()*+ J1

?>=<89:;76540123∃I M

OO

''PPPPPPPPPP

/.-,()*+var
P

?>=<89:;76540123ass
K

?>_ _

���
�
�
�
�
�

///.-,()*+K1

?>=<89:;76540123 L
(2)

OOOO

(3)



?>=<89:;76540123∃E N

CC

??�����

ON //

''NNNNNNNNNN

(1)

OOOO

/.-,()*+var
Q

ggN N N N N

⇒

?>=<89:;76540123 J ///.-,()*+ J1

/.-,()*+var
P

/.-,()*+K1

merge

�
�

�

�
"

&
)

?>=<89:;76540123 L

(2)

WWWW

(3)

TTTT

(1)

AA AA

113



Permutations

Disjunction permutation:

?>=<89:;76540123ass
H

GF_ _

���
�
�
�
�
�
�
�
�

///._ _

���
�
�
�
�
�

?>=<89:;76540123ass
I

_ _

?>=<89:;76540123 J ?>=<89:;76540123 K

OOOO

?>=<89:;76540123 L

OOOO

?>=<89:;76540123∨E M

__?????

??�����

77ooooooooo

ON //

?>

///.-,()*+ P

?>=<89:;76540123?E
N

OO

///.-,()*+ Q

(1)

OOOO

⇒

?>=<89:;76540123ass
H

GF_ _

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�

///._ _

���
�
�
�
�
�
�
�
�
�
�
�

?>=<89:;76540123ass
I

_ _

?>=<89:;76540123 J ?>=<89:;76540123 K

OOOO

?>=<89:;76540123 L

OOOO

?>=<89:;76540123?E
N′

OO

��

/.-,()*+ P

?>=<89:;76540123?E
N′′

OO

///.-,()*+ Q

?>=<89:;76540123∨E M

NN

GG����������

77ooooooooo

ON //

?>

>>

(1)

OOOO

Existential quantifier permutation:

?>=<89:;76540123ass
J

?>_ _

���
�
�
�
�
�

?>=<89:;76540123 K ?>=<89:;76540123 L

OOOO

?>=<89:;76540123∃E M

__?????

??�����

ON //

///.-,()*+ P

?>=<89:;76540123?E
N

OO

///.-,()*+ Q

(1)

OOOO

⇒

?>=<89:;76540123ass
J

?>_ _

���
�
�
�
�
�
�
�
�

?>=<89:;76540123 K ?>=<89:;76540123 L

OOOO

?>=<89:;76540123?E
N′

OO

��

/.-,()*+ P

?>=<89:;76540123∃E M

PP

??�����

ON //

///.-,()*+ Q

(1)

OOOO

114



Simplifications

Disjunction simplification (left):

?>=<89:;76540123ass
H

GF_ _

���
�
�
�
�
�
�
�
�

?>=<89:;76540123ass
I

/._ _ _ _ _

���
�
�
�
�
�

?>=<89:;76540123 J ?>=<89:;76540123 K
��

OOOO

?>=<89:;76540123 L

OOOO

?>=<89:;76540123∨E N

__?????

??�����

77oooooooo

ON //

?> //

(1)

OOOO

⇒ ?>=<89:;76540123 J ?>=<89:;76540123 K

(1)

>> >>

Disjunction simplification (right):

?>=<89:;76540123ass
H

GF_ _

���
�
�
�
�
�
�
�
�

///._ _

���
�
�
�
�
�

?>=<89:;76540123ass
I

_ _

?>=<89:;76540123 J ?>=<89:;76540123 K

OOOO

?>=<89:;76540123 L
��

OOOO

?>=<89:;76540123∨E N

__?????

??�����

77oooooooo

ON //

?>

(1)

OOOO

⇒ ?>=<89:;76540123 J ?>=<89:;76540123 L

(1)

33 33

Existential quantifier simplification:

?>=<89:;76540123ass
J

?>_ _

���
�
�
�
�
�

?>=<89:;76540123 K ?>=<89:;76540123 L
��

OOOO

?>=<89:;76540123∃E N

__?????

??�����

ON //

(1)

OOOO

⇒
?>=<89:;76540123 K ?>=<89:;76540123 L

(1)

>> >>

115



Appendix D: Proof-to-graph translation schemes

Formula translation schemes

Variables:

/.-,()*+ε1 N

⇒
transN

/.-,()*+var
N //____ x

x

Falsum:

/.-,()*+ε1 N

⇒
transN

/.-,()*+⊥ N

⊥

Predicates:

/.-,()*+ε1 N /.-,()*+pn
N //____

�������

��===== P

⇒
transN

/.-,()*+ε1 /.-,()*+ε1
P (x1, . . . , xn) x1 xn

Connectives:

/.-,()*+ε1 N /.-,()*+∧ N

�������

��=====

⇒
transN

/.-,()*+ε1 /.-,()*+ε1
A ∧B A B

Quantifiers:

/.-,()*+ε1 N /.-,()*+∀ N

��
ED
��⇒

transN
/.-,()*+ε1 /.-,()*+ε1

∀xA A x

116



Inference translation schemes

Assumptions:

Au

?>=<89:;76540123ε0 N ///.-,()*+ ⇒
transN u ?>=<89:;76540123ass

Noo_ _ _ _ ///.-,()*+

(A) (A)

Falsum elimination:

D
⊥
A

(⊥E)
D
⊥

⇒
transN

?>=<89:;76540123ε0 ///.-,()*+ε1
?>=<89:;76540123ε0 N ///.-,()*+ ?>=<89:;76540123⊥E N

OO

///.-,()*+
(A) (A) ⊥

Conjunction introduction:

D
A

E
B

A ∧B
(∧I)

D
A

E
B

/.-,()*+∧
�������

��

/.-,()*+∧
�������

��

/.-,()*+
⇒

transN

?>=<89:;76540123ε0 ///.-,()*+
/.-,()*+ ?>=<89:;76540123ε0 ///.-,()*+

?>=<89:;76540123ε0 N

BC

GF //

?>=<89:;76540123∧I N

RR

@@����� BC

GF //

(A) (B) (A) (B)

117



Conjunction elimination (left):

D
A ∧B
A

(∧EL)
D

A ∧B

⇒
transN

?>=<89:;76540123ε0 ///.-,()*+∧
��������

��:::::

?>=<89:;76540123ε0 N ///.-,()*+ ?>=<89:;76540123∧EL
N

OO

///.-,()*+ /.-,()*+ε1
(A) (A) B

Conjunction elimination (right):

D
A ∧B
B

(∧ER)
D

A ∧B

?>=<89:;76540123ε0 ///.-,()*+∧
��������

��

⇒
transN

/.-,()*+ε1
?>=<89:;76540123ε0 N ///.-,()*+ ?>=<89:;76540123∧ER

N

OO

///.-,()*+
(B) A (B)

Disjunction introduction (left):

D
A

A ∨B
(∨IL)

D
A

/.-,()*+∨
�������

��????? /.-,()*+∨
�������

��?????

/.-,()*+ /.-,()*+ ⇒
transN

?>=<89:;76540123ε0 ///.-,()*+ /.-,()*+
?>=<89:;76540123ε0 N

BC

GF //

?>=<89:;76540123∨IL
N

OO BC

GF //

(A) (B) (A) (B)

118



Disjunction introduction (right):

D
B

A ∨B
(∨IR)

D
B

/.-,()*+∨



��????? /.-,()*+∨



��?????

/.-,()*+ ⇒
transN

?>=<89:;76540123ε0 ///.-,()*+
?>=<89:;76540123ε0 N

BC

GF //

/.-,()*+ ?>=<89:;76540123∨IR
N

OO BC

GF //

/.-,()*+
(A) (B) (A) (B)

Disjunction elimination:

D
A ∨B

[A]u
E
C

[B]v
F
C

C
(∨E,u,v)

D
A ∨B Au Bv

[A]u
E
C

[B]v
F
C

?>=<89:;76540123ε0 ///.-,()*+∨
������

��

?>=<89:;76540123ε0 ///.-,()*+ε1
⇒

transN

?>=<89:;76540123ε0 ///.-,()*+ε1
?>=<89:;76540123ε0

��

?>=<89:;76540123ε0
$$IIIIII

?>=<89:;76540123ε0 N ///.-,()*+ ?>=<89:;76540123∨E N

VV......................

SS''''''''''''''''

OO

GG�������
77nnnnnn

///.-,()*+

(C) (C) A B

119



Implication introduction:

[A]u
D
B

A→ B
(→I,u)

Au
[A]u
D
B

/.-,()*+→
�������

��

/.-,()*+→
�������

��

/.-,()*+
⇒

transN

?>=<89:;76540123ε0 ///.-,()*+
/.-,()*+ ?>=<89:;76540123ε0 ///.-,()*+

?>=<89:;76540123ε0 N

BC

GF //

?>=<89:;76540123→I N

OO@A

OO

BC

GF //

(A) (B) (A) (B)

Implication elimination:

D
A→ B

E
A

B
(→E)

D
A→ B

E
A

?>=<89:;76540123ε0 ///.-,()*+→
��






��

⇒
transN

?>=<89:;76540123ε0 ///.-,()*+ε1
?>=<89:;76540123ε0 N ///.-,()*+ ?>=<89:;76540123→E N //

UU

AA����� /.-,()*+

(B) A (B)

Universal quantifier introduction:

D
A[a/x]
∀x.A

(∀I)
D

A[a/x]

?>=<89:;76540123ε0 ///.-,()*+ε1
?>=<89:;76540123ε0 N ///.-,()*+ ⇒

transN
?>=<89:;76540123∀I N

OO

//

((QQQQQQQQQQ /.-,()*+
/.-,()*+ε1

(∀x.A) a (∀x.A) A[a/x]

120



Universal quantifier elimination:

D
∀x.A
A[t/x]

(∀E)
D
∀x.A

?>=<89:;76540123ε0 ///.-,()*+ε1
?>=<89:;76540123ε0 N ///.-,()*+ ⇒

transN
?>=<89:;76540123∀E N

OO

//

''OOOOOOOOO /.-,()*+
/.-,()*+ε1

(A[t/x]) t (A[t/x]) ∀x.A

Existential quantifier introduction:

D
A[t/x]
∃x.A

(∃I)
D

A[t/x]

?>=<89:;76540123ε0 ///.-,()*+ε1
?>=<89:;76540123ε0 N ///.-,()*+ ⇒

transN
?>=<89:;76540123∃I N

OO

//

((PPPPPPPPPP /.-,()*+
/.-,()*+ε1

(∃x.A) t (∃x.A) A[t/x]

Existential quantifier elimination:

D
∃x.A

[A]u
E
C

C
(∃E,u)

D
∃x.A Au

[A]u
E
C

?>=<89:;76540123ε0 ///.-,()*+ε1
?>=<89:;76540123ε0 ///.-,()*+ε1

⇒
transN

?>=<89:;76540123ε0
&&NNNNNNNN

?>=<89:;76540123ε0 N ///.-,()*+ ?>=<89:;76540123∃E N

VV--------------

OO

==|||||
//

((RRRRRRRRR /.-,()*+
/.-,()*+ε1

(C) a (C) A[a/x] ∃x.A

121


