
A Deep Quantitative Type System
Giulio Guerrieri
University of Bath, Department of Computer Science, Bath, United Kingdom.

Willem B. Heijltjes
University of Bath, Department of Computer Science, Bath, United Kingdom.
http://willem.heijltj.es/

Joseph W.N. Paulus
Rijksuniversiteit Groningen, The Netherlands

Abstract
We investigate intersection types and resource lambda-calculus in deep-inference proof theory.
We give a unified type system that is parametric in various aspects: it encompasses resource
calculi, intersection-typed lambda-calculus, and simply-typed lambda-calculus; it accommodates
both idempotence and non-idempotence; it characterizes strong and weak normalization; and it does
so while allowing a range of algebraic laws to determine reduction behaviour, for various quantitative
effects. We give a parametric resource calculus with explicit sharing, the “collection calculus”, as a
Curry–Howard interpretation of the type system, that embodies these computational properties.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Lambda calculus

Keywords and phrases Lambda-calculus, Deep inference, Intersection types, Resource calculus

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.33

Funding This work was supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with
sharing and unsharing

Acknowledgements We would like to thank Ugo Dal Lago, Delia Kesner, Luc Pelissier, Nicolas Wu,
and the anonymous referees for their constructive engagement with our work.

1 Introduction

Of the various qualitative and quantitative approaches to λ-calculus, which include intersection
types [15, 16, 23], resource calculi [9, 30, 21], and relational models [31, 33], many are known
to be related, often in deep and interesting ways. We are curious if there is a common
foundation, a question that we approach through deep-inference proof theory. Here, we give
a unified, structural perspective on intersection types and resource calculi, in the form of a
deep quantitative proof system. It is both a simple type system for a resource calculus, the
collection calculus that we introduce here, and an intersection type system for an explicit-
substitution calculus, the structural λ-calculus [3, 4]. In both cases, it can be parameterized
in various algebraic laws to obtain different quantitative effects.

The computational side of deep inference

Deep inference, as a family of proof formalisms, has remarkable properties: quasi-polynomial
proof complexity and normalization for propositional classical logic [28, 12], non-elementary
proof compression for first-order classical logic [5], and the ability to express logics for which
no sequent calculus can exist [39], among others. It is a natural question if such striking
features can be put to computational use. In previous work in this direction, the second
author and co-authors derived two atomic λ-calculi, which characterize different versions of
full laziness, from the duplication properties of intuitionistic deep inference [26, 37].

© Giulio Guerrieri, Willem B. Heijltjes, and Joseph W.N. Paulus;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 33; pp. 33:1–33:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0469-4279
http://willem.heijltj.es/
https://doi.org/10.4230/LIPIcs.CSL.2021.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2

(λx.N)M (λ〈x1, . . . , xn〉.N) 〈M, . . . ,M〉

Γ
λ

A→ (Γ ∧A)

A→

Γ ∧ A 4
A ∧ . . . ∧A

Γ ∧A ∧ . . . ∧A
N

B

∧
∆
M

A

(A→B) ∧A
@

B

Γ
λ

(A ∧ . . . ∧A)→ (Γ ∧A ∧ . . . ∧A)

(A ∧ . . . ∧A) →
Γ ∧A ∧ . . . ∧A

N

B

∧

∆ 4
∆ ∧ . . . ∧∆

∆
M

A

∧ . . . ∧
∆
M

A

((A ∧ . . . ∧A)→B) ∧A ∧ . . . ∧A
@

B

(1) (3)

Γ
λ

(A ∧ . . . ∧A)→ (Γ ∧A ∧ . . . ∧A)

A ∧ . . . ∧A5

A
→

Γ ∧A ∧ . . . ∧A
N

B

∧
∆
M

A

(A→B) ∧A
@

B

(2)

Γ
λ

(A ∧ . . . ∧A)→ (Γ ∧A ∧ . . . ∧A)

(A ∧ . . . ∧A) →
Γ ∧A ∧ . . . ∧A

N

B

∧

∆
M

A

A 4
A ∧ . . . ∧A

((A ∧ . . . ∧A)→B) ∧A ∧ . . . ∧A
@

B

Figure 1 Deriving resource calculus by proof transformations. The derivation top left is for the
lambda-term (λx.N)M . The blue contraction rule (4) passes through the yellow abstraction rule
(λ) in step (1), ending up as the inverted rule (5) to reflect that (→) reverses “polarity” on the left;
it then passes through the application rule (@) in step (2); and duplicates the argument derivation
M in step (3). The resulting derivation, top right, is for an interpretation of the original term as a
resource term (λ〈x1, . . . , xn〉.N) 〈M, . . . ,M〉, where the variables xi represent the occurrences of x.
Categorically, (λ) and (@) are the η and ε transformations of the adjunction between (→) and (∧),
while (4) is the diagonal map for (∧); the steps (1)–(3) then reflect the (di)naturality of these maps,
and the inversion of (4) to (5) reflects the contravariance of (→) in its first argument.

In this paper, we investigate intersection types [15] and resource lambda-calculi [9] from the
perspective of deep inference. We will work in the formalism open deduction [25]; see Section 3
for an introduction. We start by observing that in lambda-calculus and natural deduction,
duplication and beta-reduction are intimately related: in an abstraction λx.N , the bound
occurrences of x in N represent a potential duplication, which can only be effected by a beta-
step on (λx.N)M . Systems like sequent calculi, proof nets, and explicit-substitution calculi
may separate beta-reduction and duplication by an explicit contraction rule. Deep inference
goes one step further: contraction rules may pass through other proof rules. We illustrate this
in Figure 1. For a simply-typed open-deduction proof, one may carry out all latent duplication
by pushing the contractions through the proof in the way of the example, until they disappear
at the top or bottom of the proof. Doing so transforms a simple type derivation for a lambda-
term into a (non-idempotent) intersection-type derivation, or equivalently into a simple type
derivation for a corresponding resource term. The result is familiar from resource calculi,
which may unfold the redex (λx.N)M to (λ〈x1, . . . , xn〉.N)〈M, . . . ,M〉 where the variables
xi represent the n occurrences of x in N . Crucially, in open deduction this transformation
applies not only to redexes, but to individual abstractions and applications.

G. Guerrieri, W.B. Heijltjes, and J.W.N. Paulus 33:3

In Figure 1, the conjunction (∧) has two distinct rôles: its standard rôle in the application
rule, in typing NM , plus that of creating a collection of derivations, in typing 〈M, . . . ,M〉.
We separate both rôles by introducing an intersection type operator (+) for collections,
leaving the conjunction in its traditional rôle. We give the operator (+), and the rules for
it to interact with (∧), below: (1) as is characteristic of connectives in open deduction, (+)
applies to derivations as well as formulas, giving a derivation from A+C to B+D; (2) the
contraction rule (4) is modified to transform a conjunction into an intersection; and (3)
conjunction and intersection are interchanged by a (non-invertible) medial rule (m).

(1)
A

B

+
C

D

(2)
A+B

4

A∧B
(3)

(A+B)∧(C+D)
m

(A∧C)+(B∧D)

Our construction makes essential use of the characteristic properties of open deduction.
Firstly, operators apply to derivations as well as formulas, as in (1) above. Via the Curry–
Howard correspondence this gives us a natural, simultaneous treatment of collections of terms
and collections of types, giving a tight correspondence between resource terms and their type
derivations. Secondly, medial-style rules [11, 38, 6] are unique to deep-inference systems, and
are at the root of many of the contributions of the theory, including the complexity results
for classical logic mentioned above, and both atomic lambda-calculi.

The most salient feature of our approach is that the calculus and the type system can be
parameterized in various algebraic laws, which captures for instance the familiar distinction
between idempotent and non-idempotent intersection types. This is made possible by our
structural approach: once the above constructions (1–3) are available, the proof system is in
principle agnostic about the further properties of collections.

Our technical exposition starts with a system of simple types in open deduction, in
Section 3, for the Structural λ-Calculus λj of Accattoli and Kesner [3, 4], which we recall in
Section 2 and here abbreviate SC. The work of Accattoli and Kesner derives the SC, and the
related Linear Substitution Calculus (LSC, [1]), from an extensive search for good reduction
properties in explicit-substitution calculi, inspired by linear logic. Here, we observe that the
SC also arises as a natural Curry–Howard-style interpretation of intuitionistic open deduction.
We view this as further support for our proof-theory based approach. A version of the SC
with linear use of variables was the basis for both atomic λ-calculi [26, 37].

A precursor to the present work is the workshop paper [27]. Proofs are in the Appendix.

Related work Intersection types, in their idempotent variant, have been studied to charac-
terize several kinds of normalization [15, 16, 36]. The non-idempotent variant introduced in
[23] is strictly related to linear logic [18, 19] and induces a well-known denotational model of
the λ-calculus and linear logic: relational semantics [13, 34]. The literature about intersection
types is huge, let us mention [14] for a survey and [2] for recent developments.

Resource-sensitive calculi [9, 30] can be seen as a “dynamic” counterpart of non-idempotent
intersection types, often inspired by linear logic, see for instance [21, 22, 33].

Approaches to resource calculi and intersection types from a proof-theoretic perspective
are uncommon; for the former, since qualitative and quantitative properties are already
captured through the term calculus, and for the latter since the restriction that intersection
types can only be formed for proofs of the same term is a fundamental departure from
traditional logical systems; exceptions to the latter are [35, 20].

A different unified perspective, via category theory, is given in [32]; the conceptual
difference is that their approach is extensional (characterizing qualitative systems through
their properties) where ours is intensional (we give an underlying syntactic structure).

CSL 2021

33:4

2 The structural λ-calculus

Our point of departure is the structural λ-calculus (SC) of Accattoli and Kesner [3, 4], an
explicit-substitution λ-calculus where closures are evaluated by decomposition and linear
substitution. This puts the dynamic behaviour of the calculus away from implicit substitution,
and closer to graph reduction; we prefer to call it an explicit-sharing calculus instead.

As an interpretation of deep inference, other calculi with explicit sharing would be equally
suitable, such as λlxr of Kesner and Lengrand [29]; we choose the SC for its concise notation.

I Definition 1. The terms r, s, t of the SC are defined by the grammar

r, s, t ····= x | ts | λx.t | t[x← s]

with from left to right: a variable; an application; an abstraction, which binds x in t; and a
closure, which binds x in t.

We call [x← s] a sharing, abbreviated to [φ], and write [Φ] for a sequence of sharings
[x1 ← s1] . . . [xn ← sn], or t[Φ] when applied as closures to a term t. We write {t/x} for the
(capture-avoiding) substitution of t for x, and |t|x for the number of free occurrences of x
in t. The set of free variables of a term t is denoted by fv(t).

I Definition 2. The reduction rules of the SC are the contextual closure of the rules below.

(λx.t)[Φ]s b t[x← s][Φ] (beta)
t{x/y}[x← s] c t[x← s][y← s] |t|x, |t|y ≥ 1 (copy)

t[x← s] e t{s/x} |t|x = 1 (evaluate)
t[x← s] d t |t|x = 0 (delete)

We set ¬b = c ∪ d ∪ e and sc = b ∪ ¬b.

The beta-rule includes the closures [Φ] so that these do not block the redex: it acts at a
distance. This mimicks graph reduction and obviates the need to permute closures. In the
copy rule, the notation t{x/y} is used to separate the occurrences of x into two (non-empty)
classes: those that occur as x in t and those that occur as y in t. The sharing [x← s] can then
be duplicated and split among them. This is used to isolate a variable with one occurrence,
to which the evaluate rule then applies, whose substitution {s/x} is linear.

For a rewrite relation , we write for its reflexive-transitive closure, and for
reduction to normal form. The λ-calculus embeds into the SC without using a translation,
as λ-terms are the SC-terms that do not have closures. The unfolding t• of a term t, defined
below, evaluates all closures by substitutions, which interprets SC-terms as λ-terms.

x• = x λx.t• = λx.t• (ts)• = t•s• (t[x← s])• = t•{s•/x}.

I Proposition 3 (Simulations). Let t be a SC-term and s be a λ-term.
1. From SC to λ-calculus: If t b t

′ then t• β t
′•; if t ¬b t

′ then t• = t′
•.

2. From λ-calculus to SC: If s β s
′ then s b ¬b s

′.

I Proposition 4 (Collated results from [4]). The SC has the following key properties.
1. The normal forms of ¬b are exactly the λ-terms.
2. The normal forms of sc are exactly the β-normal λ-terms.
3. For any SC-term t, one has t ¬b t

•; in particular, t = t• for any λ-term.
4. The relations b, ¬b, and sc are confluent; b and ¬b are strongly normalizing.
5. Preservation of strong normalization: if a λ-term t has an infinite sc-reduction, then it

has an infinite β-reduction.

G. Guerrieri, W.B. Heijltjes, and J.W.N. Paulus 33:5

3 A deep type system

Open deduction is a dialect of deep-inference proof theory, introduced by Guglielmi, Gun-
dersen, and Parigot [25], where proofs are constructed in two directions: horizontally by
connectives, and vertically by rules. We give a brief formal introduction.

A derivation from a premise formulaX to a conclusion formula Z is constructed inductively
as below, with from left to right: a propositional atom a, where X = Z = a; horizontal
construction with a connective ?, where X = X1 ? X2 and Z = Z1 ? Z2; and vertical
construction with an inference rule r from Y1 to Y2. Boxes serve as parentheses (since
derivations extend in two dimensions) and may be omitted.

X

Z

····= a |
X1

Z1

?

X2

Z2

|

X

Y1
r

Y2

Z

Derivations are considered up to associativity of vertical construction. One may consider
formulas as derivations that omit vertical construction. The binary ? may be generalized to
0-ary, unary, and n-ary operators, and it may have negative arguments where a derivation
becomes inverted, exchanging premise and conclusion, such as to the left of an implication—
though we will avoid the need for these. Composition of a derivation from X to Y and one
from Y to Z, depicted by a dashed line, is a defined operation:

X

Y

Y

Z

··=

a

a

Z

=
a

Z

X

a

a

=
X

a

X1

Y1

?

X2

Y2

Y1

Z1

?

Y2

Z2

=

X1

Y1

Y1

Z1

?

X2

Y2

Y2

Z2

X

Y1
r

Y2

Y3

Y3

Z

=

X

Y1
r

Y2

Y3

Y3

Z

X

Y1

Y1

Y2
r

Y3

Z

=

X

Y1

Y1

Y2
r

Y3

Z

We specialize the above to a proof system for conjunction-implication intuitionistic logic,
similar to that of Brünnler and McKinley [10], through the grammar and inference rules
below. Note the inclusion of the unit > as a 0-ary operator, and the restriction of the left
subderivation of (→) to a formula, to avoid introducing inverted derivations. The rules are:
abstraction (λ), application (@), and n-ary contraction (4) on the left and the invertible rules
for associativity, symmetry, and unitality of conjunction on the right. A 0-ary contraction,
with conclusion >, is a weakening. We will leave the invertible rules implicit in derivations,
and consider conjunction modulo associativity and unitality.

X

Y

····= a | > |
X1

Z1

∧

X2

Z2

| Y →

X2

Z2

|

X

Y1
r

Y2

Z

X
λ

Y → (X ∧ Y)
X ∧(Y ∧Z)

=
(X ∧Y)∧Z

(X → Y) ∧X
@

Y

X ∧Y
=

Y ∧X

X 4
X ∧ · · · ∧X

X ∧>
=

X

CSL 2021

33:6

Ax

Γ~y
4

Γ~y

t

A→B

∧

Γ~y

s

A
@

B

Γ~y
λ

A→

Γ~y ∧Ax

t

B

Γ~y
4

Γ~y ∧
Γ~y

s

A

Γ~y ∧Ax

t

B

Γ~x

t

A

∧
∆~y

4

>

=
A

x ts λx.t t[x← s] t

Figure 2 An open-deduction system of simple types for the structural λ-calculus. In ts, both t
and s are given the same context Γ~y with ~y = fv(t) ∪ fv(s) by applying the rules 4 and = as in the
rightmost construction, where ~x ∩ ~y = ∅; and similarly for t[x← s].

Typing the structural λ-calculus

We give an open-deduction system of simple types for the SC. Not all derivations correspond
to a term: the calculus picks out a subset of derivations, imposes certain equivalences, and
guides reduction. The latter is essential, since naïve reduction in the proof system creates
cycles of contractions duplicating each other: this example is from [10]—see there for detail.

I Example 5 ([10]). The natural reductions for a contraction or weakening rule are to
duplicate respectively to delete the derivation above it (see also Figure 3). Applied naïvely,
this reduction is non-terminating by the example below (all explicit rules are contractions).

A

A ∧ A>
A

A ∧ A>
A

=

A

A ∧ A>

A
A ∧A

A ∧ A
>

A

A
A ∧A

A

A ∧ A>
∧

A

A ∧ A>

A
>

A

A
A ∧A

A

A ∧ A>
∧ A
>

A

=

A
A ∧A

A ∧ A
>

A

A ∧ A>
A

=

A

A ∧ A>
A

A ∧ A>
A

The type system is in Figure 2. A term t is typed by a derivation from Γ to A, which we
indicate as below left. The structured types A and Γ are respectively a basic type and a context
type, generated by the respective grammars below. A context type Γ = A1 ∧ · · · ∧An in the
premise of the derivation for t types a vector of context variables ~x = x1, . . . , xn, which include
the free variables of t, but may be expanded to include variables not occurring in t via the
rightmost derivation in Figure 2. We make context variables explicit as Γ~x = A

x1
1 ∧ · · · ∧A

xn
n .

A derivation for t:
Γ
t

A

Basic types: A,B,C,D ····= a | A→B

Context types: Γ,∆,Λ,Σ ····= > | A | Γ∧∆

In the calculus, contraction is implicit via the use of variables (and made explicit in the
reduction rules by considering variable occurrences). Correspondingly, we consider derivations
modulo the equivalences (44) and (44) below right, where in (44) both contractions have
the same width (the same number of formulas X respectively Y in the conclusion).

G. Guerrieri, W.B. Heijltjes, and J.W.N. Paulus 33:7

Γ∧
Λ

[Φ]

Σ
λ

A→

Γ∧Σ∧Ax

t

B

∧

∆
s

A

@
B

(λx.t)[Φ]s b t[x← s][Φ]

Γ∧
Λ

[Φ]

Σ
∧

∆
s

A

Γ∧Σ∧Ax

t

B

Γ~z

s

A

Ax
4

Ax∧Ax

t{x/y}[x← s] c t[x← s][y ← s]

(|t|x, |t|y ≥ 1)

Γ~z
4

Γ~z ∧Γ~z

Γ~z

s

A

Ax

∧

Γ~z

s

A

Ay

Γ
s

A

Ax
4

Ax

t[x← s] e t{s/x}

(|t|x = 1)

Γ
s

A

Ax

Γ~z

s

A

Ax
4

>

t[x← s] d t

(|t|x = 0)

Γ~z
4

>

Figure 3 Subject reduction for the simply-typed structural λ-calculus

X 4

X ∧ · · · ∧X ∧
Y 4

Y ∧ · · · ∧Y ∼ X ∧Y
4

(X ∧Y)∧ · · · ∧(X ∧Y)
(44)

X 4

X ∧ · · · ∧X ∧X

X ∧ · · · ∧X ∧ X 4

X ∧ · · · ∧X

∼ X 4

X ∧ · · · ∧X ∧X ∧ · · · ∧X (44)

We consider the unary contraction equivalent to an identity (below left), though we may
choose to deploy it as a “marker” to differentiate between an explicit substitution t[x← s]
where |t|x = 1 (with unary contraction) and the implicit substitution t{s/x} to which it
reduces (without). We include a naturality equation for the abstraction (below right), to
capture the equation (λx.t){s/z} = λx.t{s/z} (where x 6= z) for subsitution.

X 4
X

∼ X

Y

Z
λ

X→(Z ∧X)

∼

Y
λ

X→

Y

Z

∧X

CSL 2021

33:8

Typing derivations for the reduction rules are given in Figure 3. For the rules (c, d, e) we
omit the term t from the derivations, for brevity. The figure witnesses that:

I Proposition 6 (Subject reduction). SC reduction preserves typing.

4 The collection calculus

We extend the SC with an abstract notion of collection, applied to terms, types, and derivations.
The resulting collection calculus (CC) is a resource λ-calculus that is parameterised in a
specific choice of collection, such as sets, multisets, or with a minor modification, sequences.
We generate collections syntactically, by combining empty 〈〉 and singleton 〈t〉 collections
with a binary append operator +, and then consider these modulo standard algebraic laws.

I Definition 7. The collection calculus (CC) is given by the terms and collection terms:

r, s, t ····= x | tτ | λx.t | t[x← τ] ρ, σ, τ ····= 〈〉 | 〈t〉 | σ+τ

where terms are as for the SC, and collection terms are empty, singleton, and append.

The collection calculus is parameterized in a collection algebra, a preorder (≤) over collection
terms generated by a selection of algebraic equalities and inequalities, which governs the
behaviour of collections under reduction. A reduction step on a closure t[x← τ] will treat
the collection τ modulo (≤): it will correspond to a (non-deterministic) syntactic reduction
on t[x←σ] for a chosen σ such that τ ≤ σ. Conceptually, (≤) implements the structural
aspects of reduction, such as duplication, deletion, and exchange.

The algebraic laws are the following, where σ = τ means that both σ ≤ τ and τ ≤ σ.
Commensurate with the intuition of (≤) as a reduction relation, it satisfies reflexivity (τ ≤ τ),
transitivity (if ρ ≤ σ and σ ≤ τ then ρ ≤ τ), and contextual closure (if ρ ≤ σ then τ +ρ ≤ τ +σ

and ρ + τ ≤ σ + τ). The current presentation further assumes associativity, unitality, and
symmetry (below), so that collections are multisets. Relaxing these laws will be discussed in
Section 7. The laws of redundancy, duplicability, and idempotence are optional parameters.

Associativity ρ+(σ+τ) = (ρ+σ)+τ Redundancy τ ≤ 〈〉
Unitality 〈〉+τ = τ = τ +〈〉 Duplicability τ ≤ τ +τ

Symmetry σ+τ = τ +σ Idempotence τ = τ +τ

Reduction is non-deterministic, and produces an (idempotent) formal sum of terms at the
meta-level, distinct from collection terms and the append operator.

I Definition 8. The reduction rules of the CC are the contextual closure of the rules below.

(λx.t)[Φ]τ b t[x← τ][Φ] (beta)

t{x/y}[x← τ] c
∑

τ ≤ ρ+σ

t[x← ρ][y←σ] |t|x, |t|y ≥ 1 (copy)

t[x← τ] e
∑
τ ≤〈s〉

t{s/x} |t|x = 1 (evaluate)

t[x← τ] d
∑
τ ≤〈〉

t |t|x = 0 (delete)

We set ¬b = c ∪ d ∪ e, and cc = b ∪ ¬b.

G. Guerrieri, W.B. Heijltjes, and J.W.N. Paulus 33:9

Observe that for a closure t[x← τ], the number of occurrences |t|x determines which reduction
step applies, while the collection algebra (≤) determines what reducts are obtained. For the
evaluate and delete steps, the sum implements the possibility of deadlock: the result is either
a singleton or the empty sum 0. The laws of redundancy and duplicability allow deletion
respectively duplication of the terms in a collection.

I Example 9. We have the following ¬b-reductions, writing 〈t1, . . . , tn〉 for 〈t1〉+ · · · +〈tn〉,
where the row (1) gives the reducts for the plain collection algebra (collections as multisets);
(2) gives those with redundancy; (3) those with duplicability; and (4) those with both laws.

x〈x〉[x← 〈s, t〉] ¬b x[x← 〈s, t〉] ¬b x〈x〉[x← 〈s〉] ¬b

s〈t〉+ t〈s〉 0 0 (1)
s〈t〉+ t〈s〉 s+ t 0 (2)
s〈t〉+ t〈s〉 0 s〈s〉 (3)
s〈s〉+ s〈t〉+ t〈s〉+ t〈t〉 s+ t s〈s〉 (4)

Traditionally, intersection type systems have featured idempotence instead of duplicability,
rendering collections as sets. While natural from an algebraic perspective, duplicability and
redundancy are a closer match with the reduction behaviour of contraction and weakening rules.
The missing direction is also derived through redundancy and unitality: τ + τ ≤ τ + 〈〉 = τ .

With duplicability or idempotence, the copy reduction step produces infinite sums, since
the class of collections {σ + ρ | τ ≤ σ + ρ} is infinite as soon as τ is non-empty. However,
most duplication may safely be delayed. Writing σ ⊆ τ for the sub-multiset relation (i.e. each
element of σ occurs at least as many times in τ), the copy rule may be restricted to those
reducts where ρ, σ ⊆ τ . Likewise, with redundancy, deletion may be delayed and relegated to
evaluate and delete steps, restricting copy to reducts where τ ⊆ ρ+ σ. And with both laws,
we only need consider ρ, σ = τ .

I Example 10. We consider the reduction from (λz.z〈z〉)〈x, x, y〉, which starts as follows.

(λz.z〈z〉)〈x, x, y〉 b z〈z〉[z ← 〈x, x, y〉] c
∑

〈x,x,y〉≤ ρ+σ

w〈z〉[w← ρ][z ←σ]

With the plain collection algebra, this sum consists of:

w〈z〉[w← 〈〉][z ← 〈x, x, y〉] + w〈z〉[w← 〈x〉][z ← 〈x, y〉] + w〈z〉[w← 〈y〉][z ← 〈x, x〉]
+ w〈z〉[w← 〈x, x, y〉][z ← 〈〉] + w〈z〉[w← 〈x, y〉][z ← 〈x〉] + w〈z〉[w← 〈x, x〉][z ← 〈y〉]

This reduces to zero, since no summand has both ρ and σ as singletons. With redundancy,
reduction continues as below left—by delaying deletion as discussed previously, the above
copy step is not affected, and recall that the meta-level sum is idempotent. With only
idempotence, both occurrences of x may be collapsed and reduction instead continues as
below right. While we need to consider additional reducts for the copy rule above, such as
w〈z〉[w← 〈x, y〉][z ← 〈y〉], these do not add normal forms, since x and y may not be deleted.
With also redundancy, x〈x〉 or y〈y〉 are added as normal forms.

redundancy: . . . e x〈x〉 + x〈y〉 + y〈x〉 idempotence: . . . e x〈y〉 + y〈x〉

Reduction does not produce x〈x, y〉 or y〈x, y〉, nor does it produce x〈〉 or y〈〉. By contrast,
given idempotence, z〈z, z〉[z ← 〈x, x, y〉] does (non-deterministically) reduce to x〈x, y〉 and
y〈x, y〉. The meaning of the algebraic laws is not to equate terms, as idempotence would

CSL 2021

33:10

z〈z〉 and z〈z, z〉, but to govern the behaviour of collections under reduction. This is standard
for resource calculi, and the alternative would severely complicate reduction: evaluating a
closure t[x← τ] would require duplication within any collection σ in t where x ∈ fv(σ).

I Proposition 11. The normal forms of ¬b and cc are (non-deterministic sums over)
terms of the form s0 respectively t0 given as follows.

s0 ····= x | s0〈s0, . . . , s0〉 | λx.s0 t1 ····= x | t1〈t0, . . . , t0〉 t0 ····= t1 | λx.t0

I Definition 12. The unfolding t• of a CC-term t and substitution for collections {τ/x}
are defined as follows.

x• = x

(tτ)• = t•τ•

(λx.t)• = λx.t•

(t[x← τ])• = t•{τ•/x}
〈t1, . . . , tn〉• = 〈t•1, . . . , t•n〉

x{σ/x} =
∑
σ≤〈s〉 s

x{σ/y} =
∑
σ≤〈〉 x (if x 6= y)

(tτ){σ/y} =
∑
σ≤σ1+σ2

(t{σ1/y})(τ{σ2/y})

(λx.t){σ/y} = λx.(t{σ/y})

t[x← τ]{σ/y} =
∑
σ≤σ1+σ2

t{σ1/y}[x← τ{σ2/y}]

〈〉{σ/y} =
∑
σ≤〈〉 〈〉

〈t〉{σ/y} = 〈t{σ/y}〉

(τ1 +τ2){σ/y} =
∑
σ≤σ1+σ2

τ1{σ1/y}+τ2{σ2/y}

A single closure t[x← τ] is evaluated by a substitution t{τ/x}, and the unfolding of a term
evaluates all closures, commensurate with ¬b-reduction to normal form in a way that we
make precise below.

I Proposition 13. ¬b-Reduction of a CC-term t is strongly normalizing, and confluent in
the following sense: if t ¬b

∑
s∈S s and t• =

∑
r∈R r then S ⊆ R.

I Proposition 14. Without idempotence and duplicability, CC-terms are strongly normalizing.

A main purpose of resource calculi is to provide quantitative bounds on the length of
reduction sequences. We will measure the length of non-deterministic reduction paths,
which select only one term from a formal sum of reducts, by a reduction weight |t| derived
from the constructors in a term t. With the plain collection algebra, the number of beta
steps is bounded by the number of abstractions and applications. For non-beta steps, a
reduction path t[x← τ] ¬b t{τ/x} where |t|x = n consists of 2n − 1 steps (n − 1 copy
steps and n evaluate steps) if n ≥ 1, or one delete step if n = 0. This gives the constraints
that variables contribute 2 to the reduction weight, weakenings contribute 1, and sharings
otherwise contribute −1. Then |t| is defined as follows, where x /∈ fv(r) but x ∈ fv(s):

|x| = 2 |λx.r| = |r|+ 2 |r[x← τ]| = |r|+ |τ |+ 1
|tτ | = |t|+ |τ | |λx.s| = |s| |s[x← τ]| = |s|+ |τ | − 1 |〈t1, . . . , tn〉| =

n∑
i=1
|ti|

In the absence of further algebraic laws, quantitative bounds are exact; with redundancy,
they are upper bounds; and with duplicability, they are lower bounds.

I Proposition 15. The length of a (non-deterministic) reduction sequence s cc t is:
1. without algebraic laws, exactly |s| − |t|;
2. with only redundancy, at most |s| − |t|;
3. with only duplicability, at least |s| − |t|.

G. Guerrieri, W.B. Heijltjes, and J.W.N. Paulus 33:11

5 A deep quantitative type system

Figure 4 gives an open-deduction proof system for a logic of quantitative types. Unlike the
two-sorted CC, which has separate sorts for terms and collection terms, the type system is
single-sorted, and the constructors empty 〈〉 and append + are included with the regular
types and derivations. The inference rules include a modified n-ary contraction (4), with the
0-ary case given below, the m×n-ary medial (m), specialized to the dimensions 0×0, 2×0,
1×1, 0×2, and 2×2 below, and the rule (≤) that implements the algebraic laws for types.
The inequality (≤) as a typing rule represents a generalized structural rule, generalizing the
weakening, contraction, and exchange rules familiar from sequent calculi and other proof
systems. A similar algebraic rule appears in the intersection type system of [7].

〈〉
4

>
>

m
〈〉

〈〉∧〈〉
m

〈〉
X

m
X

>
m

>+>
(W +X)∧(Y +Z)

m
(W ∧Y)+(X ∧Z)

The operators append and empty are parameterized by the same algebraic laws as for collection
terms: we assume associativity, unitality, and symmetry, though these can be relaxed without
fear of inconsistency, and optional are redundancy, duplicability, and idempotence.

Associativity A+(B+C) = (A+B)+C Redundancy A ≤ 〈〉
Unitality 〈〉+A = A = A+〈〉 Duplicability A ≤ A+A

Symmetry A+B = B+A Idempotence A = A+A

Figure 5 presents a type system for the collection calculus within the open-deductive quantit-
ative system. A term t is typed by a derivation over structured types, defined below, with as
conclusion a basic type A and as premise a context type Γ, which is itself a conjunction over
collection types I. The premise Γ of a derivation for t types a vector of context variables ~x
that includes the free variables of t, made explicit by writing Γ~x = I

x1
1 ∧ · · · ∧Ixn

n .

A derivation for t:
Γ~x

t

A

Basic types: A,B,C,D ····= a | I→A
Collection types: I, J,K,L ····= 〈〉 | A | I+J

Context types: Γ,∆,Λ,Σ ····= > | I | Γ∧∆

In typing a collection of terms τ = 〈t1, . . . , tn〉, the medial generates the type of each context
variable x, by combining the types I1 through In for x in each ti into the type I1 + · · · +In.
For convenience, we capture the effect of the n×0-medial by abbreviating contexts of empty
collections by Γ~x〈〉 = 〈〉x1 ∧ · · · ∧〈〉xn , and that of the n×2-medial by an operator (++):

Γ~x〈〉
m

〈〉

(Γ++∆)~x
m

Γ~x +∆~x
with (I1∧ · · · ∧In)++(J1∧ · · · ∧Jn) ∆= (I1 +J1)∧ · · · ∧(In+Jn)

An example is the derivation (5), for the term (λz.z〈z〉)〈x, x, y〉 of Example 10.

>
λ

((A→B)+A)→
((A→B)+A)z

4

(A→B)z ∧Az
@

B

∧

((A→B)+A)x
≤

((A→B)+A+〈〉)x
∧

Ay
≤

(〈〉+〈〉+A)y
m

(A→B)x∧ 〈〉
y

4

>
=

A→B

+
Ax∧

〈〉y
4

>
=

A

+

〈〉x
4

>
∧Ay

=
A

≤
(A→B)+A

@
B

(5)

CSL 2021

33:12

X

Z

····= a | > |
X1

Z1

∧

X2

Z2

| Y →
X2

Z2

|

X

Y1
r

Y2

Z

| 〈〉 |
X1

Z1

+

X2

Z2

X
λ

Y →(X ∧Y)
(X→Y)∧X

@
Y

X ∧(Y ∧Z)
=

(X ∧Y)∧Z
X ∧Y

=
Y ∧X

X ∧>
=

X

X1 + · · · +Xn
4

X1∧ · · · ∧Xn

(X1
1 + · · · +X

1
n)∧ · · · ∧(Xm

1 + · · · +X
m
n)

m
(X1

1 ∧ · · · ∧X
m
1)+ · · · +(X1

n∧ · · · ∧Xm
n)

X
≤

Y
(X ≤ Y)

Figure 4 An open-deduction system for quantitative types

The inequality for collection terms τ ≤ σ, which expands during reduction, is captured
in derivations by a permutation across the ≤ inference rule. We give associativity and
duplicability as an example:

X

X ′
+

Y

Y ′
+

Z

Z ′

≤
(X ′ + Y ′) + Z ′

≤

X + (Y + Z)
≤

X

X ′
+

Y

Y ′
+

Z

Z ′

X

Y
≤

Y + Y

≤

X ≤
X

Y

+

X

Y

Typing the collection calculus imposes several equivalences on the quantitative open-deduction
system. In Figure 6 we give the equivalences due to interaction of contraction and medial,
and medial with itself: the first two are the splitting and associativity of contraction (44)
and (44), adjusted from the simple type system for the SC; the latter two (mm) and (mm) are
associativity laws for the medial. We equate the 1×1-medial and the unary contraction with
the identity, illustrated below left, though we may choose to leave these rules as “markers” in
the derivation for the term constructs 〈s〉, respectively t[x← τ] where |t|x = 1, to eliminate
both with the rewrite rule for t[x← 〈s〉], as in Figure 7. We assume the following two
naturality laws, for abstraction and medial.

X m
X

∼ X

X 4
X

∼ X

Y

Z
λ

X→(Z ∧X)

∼

Y
λ

X→

Y

Z

∧X

X1

Z1

+X2 ∧(Y1 +Y2)

m
(Z1∧Y1)+(X2∧Y2)

∼

(X1 +X2)∧(Y1 +Y2)
m

X1

Z1

+X2 (X2∧Y2)

Figure 7 gives typing derivations for the reduction rules of the collection calculus, witnessing
the following proposition.

I Proposition 16 (Subject reduction). The quantitative type system for the collection calculus
satisfies subject reduction.

Typing restricts reduction in the collection calculus: the terms in a collection may have
different types, and only those with the same type as a given variable may be substituted for

G. Guerrieri, W.B. Heijltjes, and J.W.N. Paulus 33:13

Ax

(Γ++∆)~y
m

Γ~y + ∆~y

4

Γ~y

t

I→A

∧

∆~y

τ

I
@

A

Γ~y
λ

I→

Γ~y ∧Ix

t

A

(Γ++∆)~y
m

Γ~y + ∆~y

4

Γ~y ∧
∆~y

τ

I

Γ~y ∧Ix

t

A

x tτ λx.t t[x← τ]

Γ~y〈〉
m

〈〉

Γ~y
m

Γ~y

t

A

(Γ++∆)~y
m

Γ~y

σ

I

+

∆~y

τ

J

Γ~x

t

A

∧

∆~y
〈〉

m
〈〉

4

>
=

A

〈〉 〈t〉 σ+τ t

Figure 5 Typing the collection calculus in open deduction. In the constructions tτ and t[x← τ]
the contexts of both derivations are expanded to cover the same context variables ~y , using the
bottom-right figure. For non-empty collection derivations the context is expanded for every term,
while empty collections are given for any context variables ~y .

it. The example (6) gives the typed ¬b-reduction (omitting the first b-step) of Example 10
with duplicability and redundancy. The typed reduction results in only two of the four
summands of the untyped reduction: the remaining two, y〈x〉 and y〈y〉, are not well-typed
with respect to this reduction, since the derivation for z〈z〉[z ← 〈x, x, y〉] does not assign y
the correct type to appear in function position.

((A→B)+A)x
≤

((A→B)+A+〈〉)x
∧

Ay
≤

(〈〉+〈〉+A)y
m

(A→B)x∧ 〈〉
y

4

>
=

A→B

+
Ax∧

〈〉y
4

>
=

A

+

〈〉x
4

>
∧Ay

=
A

≤
((A→B)+A)z

4

(A→B)z ∧Az
@

B

((A→B)+A)x
4

(A→B)x ∧ Ax
@

B

+

(A→B)x ∧ Ay
@

B

z〈z〉[z ← 〈x, x, y〉] ¬b x〈x〉 + x〈y〉

(6)

I Theorem 17. A typed CC-term is strongly normalizing.

CSL 2021

33:14

(X1
1 + · · · +X

1
n)∧ · · · ∧(Xm

1 + · · · +X
m
n)

m
(X1

1 ∧ · · · ∧X
m
1)+ · · · +(X1

n∧ · · · ∧Xm
n)

4

(X1
1 ∧ · · · ∧X

m
1 ∧ · · · ∧X

1
n∧ · · · ∧Xm

n)

∼ X
1
1 + · · · +X

1
n

4

X
1
1 + · · · +X

1
n

∧ · · · ∧
X
m
1 + · · · +X

m
n

4

X
m
1 + · · · +X

m
n

(44)

X1 + · · · +Xn+Y1 + · · · +Ym
4

X1∧ · · · ∧Xn∧
Y1 + · · · +Ym

4

Y1∧ · · · ∧Ym
∼ X1 + · · · +Xn+Y1 + · · · +Ym

4

X1∧ · · · ∧Xn∧Y1∧ · · · ∧Ym
(44)

X1 ++ · · · ++Xn++Y1 ++ · · · ++Ym
m

X1 + · · · +Xn+
Y1 ++ · · · ++Ym

m
Y1 + · · · +Ym

∼ X1 ++ · · · ++Xn++Y1 ++ · · · ++Ym
m

X1 + · · · +Xn+Y1 + · · · +Ym
(mm)

(X1 ++ · · · ++Xn)∧
Y1 ++ · · · ++Yn

m
Y1 + · · · +Yn

m
(X1∧Y1)+ · · · +(Xn∧Yn)

∼ (X1 ++ · · · ++Xn)∧(Y1 ++ · · · ++Yn)
m

(X1∧Y1)+ · · · +(Xn∧Yn)
(mm)

Figure 6 Equivalences for contraction and medial

6 Intersection types

Resource calculi aim to provide a notion of approximation of λ-terms, as an alternative to that
given by Böhm trees. The purpose of collections in such calculi is to approximate arbitrary
duplication (of a function argument) by a pre-determined, finite amount of duplication.
Figure 1 in the introduction demonstrates how in deep inference, this pre-determined
duplication can be implemented by rewriting. The difference with Böhm trees is exactly that
the latter do not separate duplication from beta-reduction, where resource calculi do.

In our case, a CC-term may approximate an SC-term, which we formalize below by the
relation t � s. Via this approximation the quantitative type system of the CC becomes an
intersection type system for the SC, similar to the approach of Kfoury [30].

I Definition 18. The uniformity law requires CC-terms to be uniform, as follows. A collection
term t flattens to a structural λ-term s, and s expands to t, by the inductive relation t � s:

x � x
t�s τ�u
tτ � su

t � s
λx.t � λx.s

t � s τ � u
t[x← τ] � s[x←u] 〈〉 � u

t � u
〈t〉 � u

σ�u τ�u
σ+τ � u

A uniform collection term t is one equipped with a flattening s, written as the pair t � s.

Subterms of a uniform term receive their annotation inductively. Observe that s in t � s is
uniquely defined except at subterms of the form 〈〉 in t. During reduction, collections must be
kept uniform: every term ti in a collection 〈t1, . . . , tn〉 � t must be reduced simultaneously,
along a reduction t sc s. We need the following, which is an immediate induction.

I Proposition 19. If t � s sc s
′ then t cc t

′ � s′ for some CC-term t′.

I Definition 20. A uniform reduction step (t � s) (t′ � s′) is a reduction step s s′

lifted to a corresponding reduction t t′ along the inductive definition of �.

G. Guerrieri, W.B. Heijltjes, and J.W.N. Paulus 33:15

Γ∧
Λ

[Φ]

Σ
λ

Ix→

Γ∧Σ∧Ax

t

A

∧

∆
τ

I

@
A

(λx.t)[Φ]τ b t[x← τ][Φ]

Γ∧
Λ

[Φ]

Σ
∧

∆
τ

I

Γ∧Σ∧Ix

t

A

(Γ++∆)~z
m

Γ~z

σ

I

+

Γ~z

ρ

J

(I +J)x
4

Ix∧Jx

t{x/y}[x←σ+ρ] c t[x←σ][y ← ρ]

(|t|x, |t|y ≤ 1)

(Γ++∆)~z
m

Γ~z +∆~z

4

Γ~z ∧∆~z

Γ~z

σ

I

Ix

∧

∆~z

ρ

J

Jy

Γ
m

Γ
s

A

Ax
4

Ax

t[x← 〈s〉] e t{s/x}

(|t|x = 1)

Γ
s

A

>
m
〈〉

〈〉x
4

>

t[x← 〈〉] d t

(|t|x = 0)
>

Figure 7 Subject reduction for the typed collection calculus

A derivation for a uniform CC-term u � t is an intersection type derivation for the SC-
term t. With idempotence, we have idempotent intersection types; without, non-idempotent
intersection types. Both characterize weak normalization, since a collection 〈〉 � t may be
equipped with a non-normalizing SC-term t, and nevertheless typed by the empty type 〈〉.
To capture strong normalization, we adjust the type system to ask a typing witness for t.

I Definition 21. The strength law introduces an inference rule s and replaces the typing law
for 〈〉 � t by:

A
s
〈〉

〈〉 � t :

Γ~y
m

Γ~y

r�t

A
s

〈〉

for some uniform CC-term r � t

I Theorem 22. A structural λ-term t is weakly [strongly] normalizing if and only if there is
a typed, [strong,] uniform CC-term u � t.

CSL 2021

33:16

7 Discussion and future work

Type uniformity and simple types Analogous to term uniformity, a type uniformity law
may require that a quantitative type comes equipped with a flattening onto a simple type:

a � a
I � B A � C
I→A � B→C 〈〉 � A

I � A J � A
I+J � A > � >

Γ � Σ ∆ � Λ
Γ∧∆ � Σ∧Λ

Without further algebraic laws, type uniformity gives a quantitative version of simple types.
With also redundancy and duplicability quantitative types collapse to simple types, as a
collection and its flattening will behave equivalently. With type uniformity but not term
uniformity, opposite to intersection types, we obtain a typed non-deterministic calculus,
where a collection 〈t1, . . . , tn〉 of type I � A represents a non-deterministic choice over terms
ti of type A. Exploring this connection more deeply is future work.

Relaxing associativity, unitality, symmetry In the quantitative type system, the laws of
associativity, unitality, and symmetry apply to collections, and separately to the conjunction,
through the corresponding proof rules. These laws can safely be relaxed, though for that to
be meaningful, they must be relaxed for the conjunction as well as for collections.

For the collections of the CC, these laws can likewise be relaxed straightforwardly. However,
corresponding to the conjunction in the type system is the variable policy of the CC, where
associativity, unitality, and symmetry are implicit. Technically, the free variables of a term
form a set, though since their number of occurrences is significant—in particular, it drives the
reduction rules—they morally form a multiset. To relax these laws, then, the calculus must
be reformulated. Consider the following linear variant of the structural λ-calculus, where
variables occur once but abstractions and closures bind a vector ~x = x1 . . . xn of variables:

t ····= x | tτ | λ~x.t | t[~x ← τ]

Symmetry of conjunction becomes explicit in the order of variables in a vector ~x. Relaxing
symmetry of (+) but not (∧) yields a linear λ-calculus for intuitionistic multiplicative linear
logic as in [8], where (→) behaves as ((), and (∧) and (+) together behave as (⊗) (strictly,
also the distinction between terms and collection terms should be collapsed). Symmetry of
conjunction is relaxed by imposing that variables are bound in the same order as they occur;
i.e. the free variables of a term must become a vector, and binding restricted accordingly:

fv(x) = x

fv(tτ) = ~x~y where fv(t) = ~x, fv(τ) = ~y

fv(λ~x.t) = ~y where fv(t) = ~y~x

fv(t[~y1 ← τ]) = ~x~y2~z where fv(t) = ~x~y1~z, fv(τ) = ~y2 .

Such a construction significantly reduces the expressivity of the calculus. However, it is pos-
sible that such non-commutativity can model aspects of sequential (imperative) computation;
investigating this is future work. Going further, associativity or unitality can be relaxed
by replacing vectors ~x with collections over variables, akin to pattern-matching, though the
limited expressiveness casts doubt on how useful this would be.

Further algebraic laws The present exposition restricts itself to a sample of common
algebraic laws. It is clear that there is potentially a large range of laws that would fit
within the current framework, as long as the fundamental proof rules 4, m, ≤ are unimpeded.
Establishing this range is future work. In a similar direction, connections with the exponentials
of linear logic, and their light versions [24], are also of interest.

G. Guerrieri, W.B. Heijltjes, and J.W.N. Paulus 33:17

References
1 Beniamino Accattoli. An abstract factorization theorem for explicit substitutions. In 23rd

International Conference on Rewriting Techniques and Applications (RTA’12) , RTA 2012,
May 28 - June 2, 2012, Nagoya, Japan, volume 15 of LIPIcs, pages 6–21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.RTA.2012.6.

2 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and split
bounds, fully developed. Journal of Functional Programming, 30:e14, 2020. doi:10.1017/
S095679682000012X.

3 Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In International
Workshop on Computer Science Logic (CSL), 2010.

4 Beniamino Accattoli and Delia Kesner. Preservation of strong normalisation modulo per-
mutations for the structural lambda-calculus. Logical Methods in Computer Science, 8(1),
2012.

5 Juan P. Aguilera and Matthias Baaz. Unsound inferences make proofs shorter. Journal of
Symbolic Logic, 84(1):102–122, 2019.

6 Andrea Aler Tubella and Alessio Guglielmi. Subatomic proof systems: Splittable systems.
ACM Transactions on Computational Logic (TOCL), 19(1:5):1–33, 2018.

7 Hendrik Pieter Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. The Journal of Symbolic Logic, 48(4):931–940,
1983.

8 Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. A term calculus for intu-
itionistic linear logic. In International Conference on Typed Lambda Calculi and Applications,
pages 75–90, 1993.

9 Gérard Boudol. The lambda-calculus with multiplicities. In International Conference on
Concurrency Theory (CONCUR), 1993.

10 Kai Brünnler and Richard McKinley. An algorithmic interpretation of a deep inference system.
In nternational Conference on Logic for Programming Artificial Intelligence and Reasoning
(LPAR), pages 482–496, 2008.

11 Kai Brünnler and Alwen Tiu. A local system for classical logic. In 8th International Conference
on Logic for Programming Artificial Intelligence and Reasoning (LPAR), volume 2250 of Lecture
Notes in Computer Science (LNCS), pages 347–361, 2001.

12 Paola Bruscoli, Alessio Guglielmi, Tom Gundersen, and Michel Parigot. Quasipolynomial
normalisation in deep inference via atomic flows. Logical Methods in Computer Science, 12(2),
2016.

13 Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational semantics:
the exponentials. Annals of Pure and Applied Logic, 109(3):205–241, 2001. doi:10.1016/
S0168-0072(00)00056-7.

14 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

15 Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for lambda-terms.
Archiv für mathematische Logik und Grundlagenforschung, 19(1):139–156, 1978.

16 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

17 Ugo Dal Lago, Giulio Guerrieri, and Willem Heijltjes. Decomposing probabilistic lambda-
calculi. In Foundations of Software Science and Computation Structures - 23rd International
Conference, FOSSACS 2020, volume 12077 of Lecture Notes in Computer Science, pages
136–156. Springer, 2020. doi:10.1007/978-3-030-45231-5_8.

18 Daniel de Carvalho. The relational model is injective for multiplicative exponential linear
logic. In 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29
- September 1, 2016, Marseille, France, pages 41:1–41:19, 2016. URL: https://doi.org/10.
4230/LIPIcs.CSL.2016.41, doi:10.4230/LIPIcs.CSL.2016.41.

CSL 2021

http://dx.doi.org/10.4230/LIPIcs.RTA.2012.6
http://dx.doi.org/10.1017/S095679682000012X
http://dx.doi.org/10.1017/S095679682000012X
http://dx.doi.org/10.1016/S0168-0072(00)00056-7
http://dx.doi.org/10.1016/S0168-0072(00)00056-7
http://dx.doi.org/10.1007/978-3-030-45231-5_8
https://doi.org/10.4230/LIPIcs.CSL.2016.41
https://doi.org/10.4230/LIPIcs.CSL.2016.41
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.41

33:18

19 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Mathematical Structures in Computer Science, 28(7):1169–1203, 2018. doi:10.1017/
S0960129516000396.

20 Thomas Ehrhard. Non-idempotent intersection types in logical form. In Jean Goubault-Larrecq
and Barbara König, editors, Foundations of Software Science and Computation Structures,
FoSSaCS 2020, volume 12077 of LNCS, pages 198–216, Cham, 2020. Springer International
Publishing.

21 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer
Science, 309(1–3):1–41, 2003.

22 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Theoretical Computer Science, 403:347–372, 2008.

23 Philippa Gardner. Discovering needed reductions using type theory. In Theoretical Aspects of
Computer Software, International Conference TACS ’94, Sendai, Japan, April 19-22, 1994,
Proceedings, volume 789 of Lecture Notes in Computer Science, pages 555–574. Springer, 1994.
URL: https://doi.org/10.1007/3-540-57887-0_115, doi:10.1007/3-540-57887-0_115.

24 Jean-Yves Girard. Light linear logic. Information and Computation, 143(2):175–204, 1998.
25 Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A proof calculus which reduces

syntactic bureaucracy. In Rewriting Techniques and Applications (RTA), pages 135–150, 2010.
26 Tom Gundersen, Willem Heijltjes, and Michel Parigot. Atomic lambda-calculus: a typed

lambda-calculus with explicit sharing. In 28th IEEE Symposium on Logic in Computer Science
LICS, pages 311–320, 2013.

27 Willem Heijltjes and Joe Paulus. Deep-inference intersection types. Extended abstract,
presented at the workshop Twenty Years of Deep Inference (TYDI), Oxford, 2018. Available
at http://willem.heijltj.es/pdf/2018-heijltjes-paulus.pdf, 2018.

28 Emil Jeřábek. Proof complexity of the cut-free calculus of structures. Journal of Logic and
Computation, 19(2):323–339, 2009.

29 Delia Kesner and Stéphane Lengrand. Resource operators for lambda-calculus. Information
and Computation, 205(4):419–473, 2007.

30 A.J. Kfoury. A linearization of the lambda-calculus and consequences. Journal of Logic and
Computation, 10(3):411–436, 2000.

31 Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. Weighted relational
models of typed lambda-calculi. In 28th IEEE Symposium on Logic in Computer Science
(LICS), pages 301–310, 2013.

32 Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fibrations and
intersection types. Proceedings of the ACM on Programming Languages, 2(POPL), 2018.

33 C.-H. Luke Ong. Quantitative semantics of the lambda-calculus: Some generalisations of the
relational model. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), 2017.

34 Luca Paolini, Mauro Piccolo, and Simona Ronchi Della Rocca. Essential and relational
models. Mathematical Structures in Computer Science, 27(5):626–650, 2017. doi:10.1017/
S0960129515000316.

35 Elaine Pimentel, Simona Ronchi Della Rocca, and Luca Roversi. Intersection Types from a
proof-theoretic perspective. Fundamenta Informaticae, 121(1-4):253–274, 2012.

36 G. Pottinger. To H. B. Curry: essays on combinatory logic, lambda calculus and formalism,
chapter A type assignment for the strongly normalizable λ-terms, pages 561–577. Academic
Press, London, 1980.

37 David Sherratt, Willem Heijltjes, Tom Gundersen, and Michel Parigot. Spinal atomic lambda-
calculus. In Jean Goubault-Larrecq and Barbara König, editors, Foundations of Software
Science and Computation Structures - 23rd International Conference, FOSSACS 2020, volume
12077 of LNCS, pages 582–601, Cham, 2020. Springer International Publishing. doi:10.1007/
978-3-030-45231-5_30.

http://dx.doi.org/10.1017/S0960129516000396
http://dx.doi.org/10.1017/S0960129516000396
https://doi.org/10.1007/3-540-57887-0_115
http://dx.doi.org/10.1007/3-540-57887-0_115
http://willem.heijltj.es/pdf/2018-heijltjes-paulus.pdf
http://dx.doi.org/10.1017/S0960129515000316
http://dx.doi.org/10.1017/S0960129515000316
http://dx.doi.org/10.1007/978-3-030-45231-5_30
http://dx.doi.org/10.1007/978-3-030-45231-5_30

G. Guerrieri, W.B. Heijltjes, and J.W.N. Paulus 33:19

38 Alwen Tiu. A local system for intuitionistic logic. In International Conference on Logic for
Programming Artificial Intelligence and Reasoning (LPAR), pages 242–256, 2006.

39 Alwen Fernanto Tiu. A system of interaction and structure II: The need for deep inference.
Logical Methods in Computer Science, 2(2):4:1–24, 2006.

CSL 2021

33:20

Appendix
A Encoding non-idempotent intersection types and resource calculi

Resource λ-calculus The λ-calculus with multiplicities by Boudol [9] features two-sorted
collections P,Q with both non-duplicable and duplicable elements, the latter indicated M∞:

M,N ····= x | NP | λx.N | N [P/x] P,Q ····= 1 | M | (P |P) | M∞

It employs weak head reduction, with β-reduction occurring in head context H and closures
evaluated by substituting into head variables H{x}: (borrowing the CC-notation [Φ])

H ····= {} | HP | H[P/x]
H{(λx.N)[Φ]P} b H{N [P/x][Φ]}
H{x}[(N |P)/x] s H{N}[P/x]

Note that s-reduction is non-deterministic. The two-sorted collections can be imported into
the CC ad-hoc by admitting collections t∞ and the law t∞ ≤ 〈t〉+t∞. b-Reduction is as in
the CC, and informally translating N to t, P to τ , and H to h, s-reduction is simulated by:

h{x}[x← 〈t〉+τ] c h{y}[y← 〈t〉][x← τ] e h{t}[x← τ]

Non-idempotent intersection types Kfoury in [30] gives non-idempotent intersection types
via a resource calculus with uniformity. Resource terms are given below, where a term N is
well-formed if it flattens to a regular λ-term N . β-Reduction on N is defined along N .

M,N,P ····= x | λx.N | N.P1 ∧ · · · ∧ Pn (n ≥ 1)

x = x

N = M

λx.N = λx.M

N = M { Pi = Q}1≤i≤n
N.P1 ∧ · · · ∧ Pn = M Q

A system of simple types λ∧ for the resource calculus, given below, then generates a system
of non-idempotent intersection types λ for the regular λ-calculus by flattening the terms in
each typing rule. We use our notational conventions for types, and define the ∪ operator by
letting (Γ~x ∧∆~y) ∪ (Λ~y ∧Σ~z) = Γ~x ∧(∆++Λ)~y ∧Σ~z if ~x and ~z share no variables.

x :A ` x :A
Γ, x : I ` N :B

Γ ` λx.N : I→B
I 6=〈〉

Γ ` N :B
Γ ` λx.N :A→B

Γ ` N : (A1+ . . .+An)→B {∆i ` Pi :Ai}1≤i≤n
Γ ∪∆1 ∪ · · · ∪∆n ` N.P1 ∧ · · · ∧ Pn :B

Systems λ∧ and λ are effectively a restriction of the typed collection calculus to terms without
closures, with the laws of uniformity and strength. Strictly, also symmetry is dropped, but
there is no loss of expressiveness because the conjunction remains symmetric and because of
uniformity. We introduce an admissible proof rule for the ∪ operator:

(Γ~x ∧∆~y) ∪ (Λ~y ∧Σ~z)
∪

(Γ~x ∧∆~y)+(Λ~y ∧Σ~z)
=

Γ~x ∧(∆++Λ)~y ∧Σ~z
m

Γ~x ∧∆~y ∧

Σ~z〈〉
m

〈〉
4

>

+

Γ~x〈〉
m

〈〉
4

>

∧Λ~y ∧Σ~z

Systems λ∧ and λ are then encoded as follows, where N �M is N = M , and where the
constructions for application and collections are kept separate, with ∆ = ∆1 ∪ · · · ∪ ∆n,

G. Guerrieri, W.B. Heijltjes, and J.W.N. Paulus 33:21

P = P1 ∧ · · · ∧ Pn, and I = A1 + · · ·+An.

Ax

Γ
λ

Ix→

Γ∧Ix

N�M

B

Γ
λ

Ax→

Γ∧
Ax

s
〈〉

4

>

Γ
N�M

B

Γ ∪∆
∪

Γ+∆
4

Γ
N�M

I→B

∧

∆
P�Q

I
@

B

∆1 ∪ . . . ∪∆n
∪

∆1

P1�Q

A1

+ . . . +

∆n

Pn�Q

An

B Omitted proofs and lemmas in Section 2

I Remark 23 (Free variable and translation). For every SC-term t, fv(t•) ⊆ fv(t). The proof is
by straightforward induction on t.

I Lemma 24 (Substitution). For any sharing terms t and u, we have (t{u/x})• = t•{u•/x}.

Proof. By straightforward induction on t. The only interesting case is the one with sharing:
if t = r[y← s] (we can suppose without loss of generality that y /∈ fv(u) ∪ {x}), then
t{u/x} = r{u/x}{u/x}[y← s{u/x}] and t• = r•{s•/y}; by induction hypothesis, r′ =
(r{u/x})• = r•{u•/x} and s′ = (s{u/x})• = s•{u•/x} = s′, hence

(t{u/x})• = r′•{s′•/y} = r•{u•/x}{s•{u•/x}/y} = r•{s•/y}{u•/x} = t•{u•/x}. J

I Proposition 3 (Simulations). Let t be a SC-term and s be a λ-term.
1. From SC to λ-calculus: If t b t

′ then t• β t
′•; if t ¬b t

′ then t• = t′
•.

2. From λ-calculus to SC: If s β s
′ then s b ¬b s

′.

Proof. 1. Both proofs are by induction on the SC-term t. We omit some cases that easily
follows from the induction hypothesis.

Let us prove that if t b t
′, then t• β t

′•. Cases of interest:
If t = (λy.s)[x1 ← r1] . . . [xn ← rn]u b s[y←u][x1 ← r1] . . . [xn ← rn] = t′, then we
can suppose without loss of generality that y /∈

⋃n
i=1 fv(ri) ∪ {x} and so

t• = (λy.s•){r•1/x1} . . . {r•n/xn}u• = (λy.s•{r•1/x1} . . . {r•n/xn})u•

β s
•{r•1/x1} . . . {r•n/xn}{u•/y} = s•{u•/y}{r•1/x1} . . . {r•n/xn}

= (s[y←u])•{r•1/x1} . . . {r•n/xn} = t′•

where the second to last equality holds because of substitution lemma (Lemma 24).
If t = u[x← s] b u[x← s′] = t′ with s b s′ then, by induction hypothesis,
s• ∗

β s
′• and so t• = u•{s•/x} ∗

β u
•{s′•/x} = t′•.

Let us prove that if t ¬b t
′, then t• = t′•. Cases of interest:

Copy: if t = s{x/y}[x←u] c s[x←u][y←u] = t′, we can suppose without loss of
generality that y /∈ fv(u). By Lemma 24, (s{x/y})• = s•{x/y} and (s[x←u])• =
s•{u•/x} = (s{u/x})•. Thus,

t• = (s{x/y})•{u•/x} = s•{x/y}{u•/x} = s•{u•/x}{u•/y} = (s[x←u])•{u•/y} = t′•.

Delete: if t = s[x←u] d s = t′ then x /∈ fv(s) and hence x /∈ fv(s•) by Remark 23,
so t• = s•{u•/x} = s• = t′•.

CSL 2021

33:22

Evaluate: if t = u[x← s] e u{s/x} = t′ then, by substitution lemma (Lemma 24),

t• = s•{u•/x} = (s{u/x})• = t′•.

2. See [4, proof of Lemma 2.4] and apply Proposition 4.1 below (proved independently). J

I Proposition 4 (Collated results from [4]). The SC has the following key properties.
1. The normal forms of ¬b are exactly the λ-terms.
2. The normal forms of sc are exactly the β-normal λ-terms.
3. For any SC-term t, one has t ¬b t

•; in particular, t = t• for any λ-term.
4. The relations b, ¬b, and sc are confluent; b and ¬b are strongly normalizing.
5. Preservation of strong normalization: if a λ-term t has an infinite sc-reduction, then it

has an infinite β-reduction.

Proof. 1. Clearly, every λ-term is normal for ¬b because there is no sharing. Conversely,
if t is a sharing term that is normal for ¬b then there are no context C and no sharing
terms s and u such that t = C〈s[x←u]〉, otherwise if |s|x = 0 then t would not be normal
for d, if |s|x = 1 then t would not be normal for e, if |s|x > 1 then t would not be
normal for c; therefore, t has no sharings and hence is a λ-term.

2. Since sc= b ∪ ¬b and in SC the normal forms of ¬b are exactly the λ-terms, it is
enough to observe that a λ-term t is normal for b if and only if there are no λ-context C
and λ-terms s and u such that t = C〈(λx.s)u〉, which amounts to say that t is β-normal.

3. First, if t is a λ-term then t• = t since there are no sharings in t. Now, let t be a SC-term,
with t ¬b s (such a s exists because ¬b is strongly normalizing, [4, Lemma 2.10]);
as s is a λ-term (Proposition 4.1), we have just shown that s = s•; by Proposition 3.1,
s• = t• and so t ¬b t

•.
4. Strong normalization of b is trivial (each step decreases the number of applications).

Strong normalization of ¬b is proved in [4, Lemma 2.10]
Accattoli and Kesner [3, 4] already proved confluence of sc (using Tait–Martin-Löf’s
technique based on parallel reduction) and of ¬b (via Newman’s lemma). Here we
present a simpler, modular and more informative proof, which relies on the confluence of
β reduciton.
It is easy to check that b has the diamond property and hence is confluent.
Concerning confluence of ¬b, suppose s ¬b t ¬b u. By Proposition 4.3, s ¬b s

•

and r ¬b r
•. According to Proposition 3.1, s• = t• = r•.

Concerning confluence of sc, suppose s sc t sc u. By Proposition 4.3, s ¬b s
•

and r ¬b r
•. According to Proposition 3.1, s• β t• β r

•. By confluence of β ,
s• β u β r• and so s ¬b s

•
b ¬b u ¬b b r• ¬b r by Proposition 3.2.

5. See [4, Lemma 3.5] J

C Omitted proofs and lemmas in Section 4

Let |t|px be the maximal number of free occurrences of x that may appear in a ¬b-reduction
sequence from the CC-term t. Formally:

|x|px = 1 |y|px = 0 |tτ |px = |t|px + |τ |px |λy.t|px = |t|px

|t[y← τ]|px = |t|px + max{1, |t|py} · |τ |px |〈t1, . . . , tn〉|px =
n∑
i=1
|ti|px

I Remark 25. For any CC-term, |t|px = 0 if and only if |t|x = 0.

G. Guerrieri, W.B. Heijltjes, and J.W.N. Paulus 33:23

I Lemma 26. For any CC-term t, if |t|x, |t|y ≥ 1, then |t{x/y}|px = |t|px + |t|py

Proof. By induction on t. J

Inspired by [4], let us define the size ‖t‖ of a CC-term t the following multiset of natural
numbers (well-ordered by the multiset ordering):

‖x‖ = [] ‖λx.t‖ = ‖t‖ ‖tτ‖ = ‖t‖+ ‖τ‖

‖t[y← τ]‖ = ‖t‖+ [|t|px] + max{1, |t|px} · ‖τ‖ ‖〈t1, . . . , tn〉‖ =
n∑
i=1
‖ti‖

I Lemma 27. Without duplicability, ‖τ‖ ≥ ‖σ‖ for any collection τ ≥ σ

Proof. Trivial. J

I Lemma 28. Let u be a CC-term.
1. If |u|x = 1 then ‖u[x← τ]‖ > ‖u{〈s〉/x}‖ for any CC-term s such that τ ≥ 〈s〉.
2. ‖u{x/y}‖ = ‖u‖.

Proof. Both are by induction on the CC-term t. J

I Proposition 13. ¬b-Reduction of a CC-term t is strongly normalizing, and confluent in
the following sense: if t ¬b

∑
s∈S s and t• =

∑
r∈R r then S ⊆ R.

Proof. Let us prove that t ¬b
∑n
i=1 ti 3 t′ implies ‖t‖ > ‖t′‖, by induction on t. Cases:

Delete: if t = s[x← τ] d
∑
τ≤〈〉 s 3 t′ with |s|x = 0, then t′ = s. By Remark 25, |s|px = 0.

So, ‖t‖ = ‖s‖+ [|s|px] + max{1, |s|px} · ‖τ‖ = ‖s‖+ [|s|px] + ‖τ‖ > ‖s‖ = ‖t′‖.
Substitution: if t = u[x← τ] e

∑
τ≤〈s〉 u{s/x} 3 t′ with |u|x = 1, then t′ = u{s/x}. By

Lemma 28.1, ‖t‖ = ‖u[x← τ]‖ > ‖u{〈s〉/x}‖ = t′.
Copy: if t = s{x/y}[x← τ] c

∑
τ≤ρ+σ s[x← ρ][y←σ] 3 t′ with |s|x, |s|y ≥ 1, then

t′ = s[x← ρ][y←σ].

‖t‖ = ‖s{x/y}‖+ [|s{x/y}|px] + max{1, |s{x/y}|px} · ‖τ‖
= ‖s‖+ [|s|px + |s|py] + max{1, |s{x/y}|px} · ‖τ‖ L. 28.2 and 26
= ‖s‖+ [|s|px + |s|py] + |s{x/y}|px · ‖τ‖ Rmk. 25
= ‖s‖+ [|s|px + |s|py] + (|s|px + |s|py) · ‖τ‖ L. 26
> ‖s‖+ [|s|px] + |s|px · ‖ρ‖+ [|s|py + |s|px · |ρ|py] + (|s|py + |s|px · |ρ|py) · ‖σ‖ L. 27
= ‖s‖+ [|s|px] + |s|px · ‖ρ‖+ [|s|py + max{1, |s|px} · |ρ|py] + (|s|py + |s|px · |ρ|py) · ‖σ‖ Rmk. 25
= ‖s‖+ [|s|px] + |s|px · ‖ρ‖+ [|s[x← ρ]|py] + (|s|py + max{1, |s|px} · |ρ|py) · ‖σ‖ Rmk. 25
= ‖s‖+ [|s|px] + max{1, |s|px} · ‖ρ‖+ [|s[x← ρ]|py] + max{1, |s[x← ρ]|py} · ‖σ‖ Rmk. 25
= ‖s[x← ρ]‖+ [|s[x← ρ]|py] + max{1, |s[x← ρ]|py} · ‖σ‖
= ‖t′‖

The other cases smoothly follow from the induction hypothesis. J

I Proposition 15. The length of a (non-deterministic) reduction sequence s cc t is:
1. without algebraic laws, exactly |s| − |t|;
2. with only redundancy, at most |s| − |t|;
3. with only duplicability, at least |s| − |t|.

CSL 2021

33:24

Proof. Recall the definition of reduction weight |t| on page 10, where x /∈ fv(r) but x ∈ fv(s).
We consider each case; for the last two, observe that |t| is always positive.
1. Each rewrite step reduces |t| by exactly one: a step (λx.r)τ b r[x← τ] where x ∈ fv(r)

replaces an abstraction and application (weight zero) by a sharing (weight −1), and
(λx.s)τ b s[x← τ] where x ∈ fv(s) replaces weight 2 by weight 1; a c-step introduces a
sharing of weight −1; an e-step removes a sharing (weight −1) and a variable (weight 1);
and a d-step removes a weakening (weight 1).

2. By 1. above, and the observation that if τ ≤ σ then |τ | ≥ |σ|.
3. By 1. above, and the observation that if τ ≤ σ then |τ | ≤ |σ|. J

D Omitted proofs and lemmas in Section 5

I Theorem 17. A typed CC-term is strongly normalizing.

Proof sketch. We reduce the problem to typed normalization in a non-deterministic (or
probabilistic) λ-calculus, which are known to terminate (see e.g. [17]).

First, the copy rewrite rule is linear for contractions on different types, since no idem-
potence law (≥) applies. This corresponds to the following transformation on derivations:

Γ

A

+

∆

B

(A+B)x
4

A∧B

c

Γ∧∆
4

Γ

A

Ax

∧

∆

B

By

(A 6= B)

The transformation is applied throughout a proof, through abstractions and applications
(which are split, by Currying, into multiple), and is linear and so terminating. The result is
a derivation for a CC-term where every variable has a uniform type. A contraction cannot be
pushed past a (≥) instance of idempotence on the same type. This has the form below left.

We translate the remaining derivation into one for a simply-typed non-deterministic
λ-calculus, with a regular contraction rule and a type operator ⊕ with a co-diagonal rule
from A⊕A to A. The result is below right.

Γ1

A

+ · · · +

Γn

A
≥

A+A
4

A∧A

7→

Γ1

A

⊕ · · ·⊕
Γn

A
⊕

A
4

A∧A

This derivation is for a typed, non-deterministic λ-term, which is strongly normalizing, and
simulates reduction in both CC-terms. Consequently, these are strongly normalizing. J

E Omitted proofs and lemmas in Section 6

I Theorem 22. A structural λ-term t is weakly [strongly] normalizing if and only if there is
a typed, [strong,] uniform CC-term u � t.

Proof sketch. ⇒ Standard: normal forms can be typed, and subject expansion holds.
⇐ By Theorem 17 the typed CC-term s is strongly normalizing; hence t is strongly normalizing
if weakened terms are typed, and weakly normalizing if weakened terms remain untyped. J

	Introduction
	The structural -calculus
	A deep type system
	The collection calculus
	A deep quantitative type system
	Intersection types
	Discussion and future work
	References
	Encoding non-idempotent intersection types and resource calculi
	Omitted proofs and lemmas in sect:structural
	Omitted proofs and lemmas in sect:collection
	Omitted proofs and lemmas in sect:deep
	Omitted proofs and lemmas in sect:intersection

