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Abstract. We present the spinal atomic λ-calculus, a typed λ-calculus
with explicit sharing and atomic duplication that achieves spinal full
laziness: duplicating only the direct paths between a binder and bound
variables is enough for beta reduction to proceed. We show this calculus
is the result of a Curry–Howard style interpretation of a deep-inference
proof system, and prove that it has natural properties with respect to
the λ-calculus: confluence and preservation of strong normalisation.

Keywords: Lambda-Calculus · Full laziness · Deep inference · Curry–
Howard

1 Introduction

In the λ-calculus, a main source of efficiency is sharing : multiple use of a single
subterm, commonly expressed through graph reduction [27] or explicit substi-
tution [1]. This work, and the atomic λ-calculus [16] on which it builds, is an
investigation into sharing as it occurs naturally in intuitionistic deep-inference
proof theory [26]. The atomic λ-calculus arose as a Curry–Howard interpreta-
tion of a deep-inference proof system, in particular of the distribution rule given
below left, a variant of the characteristic medial rule [10, 26]. In the term cal-
culus, the corresponding distributor enables duplication to proceed atomically,
on individual constructors, in the style of sharing graphs [21]. As a consequence,
the natural reduction strategy in the atomic λ-calculus is fully lazy [27, 4]: it
duplicates only the minimal part of a term, the skeleton, that can be obtained
by lifting out subterms as explicit substitutions. (While duplication is atomic
locally, a duplicated abstraction does not form a redex until also its bound vari-
ables have been duplicated; hence duplication becomes fully lazy globally.)
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Distribution:
A→ (B ∧C)

d
(A→ B) ∧ (A→ C)

Switch:
(A→ B) ∧C

s
A→ (B ∧C)

We investigate the computational interpretation of another characteristic
deep-inference proof rule: the switch rule above right [26].5 Our result is the
spinal atomic λ-calculus, a λ-calculus with a refined form of full laziness, spine
duplication. In the terminology of [4], this strategy duplicates only the spine of
an abstraction: the paths to its bound variables in the syntax tree of the term.6

We illustrate these notions in Figure 1, for the example λx.λy.((λz.z)y)x.
The scope of the abstraction λx is the entire subterm, λy.((λz.z)y)x (which may
or may not be taken to include λx itself). Note that with explicit substitution,
the scope may grow or shrink by lifting explicit substitutions in or out. The
skeleton is the term λx.λy.(wy)x where the subterm λz.z is lifted out as an (ex-
plicit) substitution [λz.z/w]. The spine of a term, indicated in the second image,
cannot naturally be expressed with explicit substitution, though one can get an
impression with capturing substitutions: it would be λx.λy.wx, with the sub-
term (λz.z)y extracted by a capturing substitution [(λz.z)y/w]. Observe that
the skeleton can be described as the iterated spine: it is the smallest subgraph
of the syntax tree closed under taking the spine of each abstraction, i.e. that
contains the spine of every abstraction it contains.

These notions give rise to four natural duplication regimes. For a shared ab-
straction to become available as the function in a β-redex: laziness duplicates
its scope [22]; Full laziness duplicates its skeleton [27]; Spinal full laziness du-
plicates its spine [8]; optimal reduction duplicates only the abstraction λx and
its bound variables x [21, 3].7

While each of these duplication strategies has been expressed in graphs and
labelled calculi, the atomic λ-calculus is the first term calculus with Curry–
Howard corresponding proof system to naturally describe full laziness. Likewise,
the spinal atomic λ-calculus presented here is the first term calculus with Curry–
Howard corresponding proof system to naturally describe spinal full laziness.

Switch and Spine. One way to describe the skeleton or the spine of an abstraction
within a λ-term is through explicit end-of-scope markers, as explored by Berkling
and Fehr [7], and more recently by Hendriks and Van Oostrom [18]. We use
their adbmal ( λ) to illustrate the idea: the constructor λx.N indicates that the
subterm N does not contain occurrences of x (or that any that do occur are

5 The switch rule is an intuitionistic variant of weak or linear distributivity [12] for
multiplicative linear logic.

6 There is a clash of (existing) terminology: the spine of an abstraction, as we use
here, is a different notion from the spine of a λ-term, which is the path from the
root to the leftmost variable, as used e.g. in head reduction and abstract machines.

7 Interestingly, Balabonski [5] shows that for weak reduction (where one does not
reduce under an abstraction) full laziness and spinal full laziness are both optimal
(in the number of beta-steps required to reach a normal form).
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Fig. 1: Balanced and unbalanced typing derivations for λx.λy.((λz.z)y)x, with
corresponding graphical representations of the term. The variable x has type A
and y, z type A→B, shortened to BA. The left derivation isolates the skeleton
of λx, and the right derivation its spine, both by the subderivations in braces.

not available to a binder λx outside λx.N). The scope of an abstraction thus
becomes explicitly indicated in the term. This opens up a distinction between
balanced and unbalanced scopes: whether scopes must be properly nested, or
not; for example, in λx.λy.N , a subterm λy. λx.M is balanced, but λx. λy.M is
not. With balanced scope, one can indicate the skeleton of an abstraction; with
unbalanced scope (which Hendriks and Van Oostrom dismiss) one can indicate
the spine. We do so for our example term λx.λy.((λz.z)y)x below.

Balanced scope/skeleton: λx.λy.( λy.( λx.λz.z)y)( λy.x)
Unbalanced scope/spine: λx.λy.( λx.( λy.λz.z)y)( λy.x)

A closely related approach is director strings, introduced by Kennaway and
Sleep [19] for combinator reduction and generalized to any reduction strategy by
Fernández, Mackie, and Sinot in [13]. The idea is to use nameless abstractions
identified by their nesting (as with De Bruijn indices), and make the paths to
bound variables explicit by annotating each constructor with a string of directors,
that outline the paths. The primary aim of these approaches is to eliminate α-
conversion and to streamline substitution. Consequently, while they can identify
the spine, they do not readily isolate it for duplication.

The present work starts from our observation that the switch rule of open
deduction functions as a proof-theoretic end-of-scope construction (see [25] for
details). However, it does so in a structural way: it forces a deconstruction of
a proof into readily duplicable parts, which together may form the spine of
an abstraction. The derivations in Figure 1 demonstrate this, as we will now
explain—see the next section for how they are formally constructed.

The abstraction λx corresponds in the proof system to the implication A→,
explicitly scoping over its right-hand side. On the left, with the abstraction rule
(λ), scopes must be balanced, and the proof system may identify the skeleton;
here, that of λx as the largest blue box. Decomposing the abstraction (λ) into
axiom (a) and switch (s), on the right the proof system may express unbalanced
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scope. It does so by separating the scope of an abstraction into multiple parts;
here, that of λx is captured as the two top-level red boxes. Each box is ready to
be duplicated; in this way, one may duplicate the spine of an abstraction only.

These two derivations correspond to terms in our calculus. The subterms
not part of the skeleton (i.e. λz.z) remain shared and we are able to duplicate
the skeleton alone. This is also possible in [16]. In our calculus we are also able
to duplicate just the spine by using a distributor. We require this construct as
otherwise we break the binding of the y-abstraction. The distributor manages
and maintains these bindings. The y-abstraction in the spine (y⟨a⟩) is a phantom-
abstraction, because it is not real and we cannot perform β-reduction on it.
However, it may become real during reduction. It can be seen as a placeholder
for the abstraction. The variables in the cover (a) represent subterms that both
remain shared and are found in the distributor.

Skeleton: λx.λy.(ay)x [a← λz.z]
Spine: λx.y⟨a⟩.(a)x [y⟨a⟩ ∣λy. [a← (λz.z)y]]

Our investigation is then focused on the interaction of switch and distribution
(later observed in the rewrite rule l5). The use of the distribution rule allows us
to perform duplication atomically, and thus provides a natural strategy for spinal
full laziness. In Figure 1 on the right, this means duplicating the two top-level
red boxes can be done independently from duplicating the yellow box.

2 Typing a λ-calculus in open deduction

We work in open deduction [15], a formalism of deep-inference proof theory, using
the following proof system for (conjunction–implication) intuitionistic logic. A
derivation from a premise formula X to a conclusion formula Z is constructed
inductively as in Figure 2a, with from left to right: a propositional atom a,
where X = Z = a; horizontal composition with a connective →, where X =
Y → X2 and Z = Y → Z2; horizontal composition with a connective ∧, where
X = X1 ∧ X2 and Z = Z1 ∧ Z2; and rule composition, where r is an inference
rule (Figure 2b) from Y1 to Y2. The boxes serve as parentheses (since derivations
extend in two dimensions) and may be omitted. Derivations are considered up to
associativity of rule composition. One may consider formulas as derivations that
omit rule composition. We work modulo associativity, symmetry, and unitality
of conjunction, justifying the n-ary contraction, and may omit ⊺ from the axiom
rule. A 0-ary contraction, with conclusion ⊺, is a weakening. Figure 2b: the
abstraction rule (λ) is derived from axiom and switch. Vertical composition of
a derivation from X to Y and one from Y to Z, depicted by a dashed line, is a
defined operation, given in Figure 2c, where ∗ ∈ {∧,→}.

2.1 The Sharing Calculus

Our starting point is the sharing calculus (ΛS), a calculus with an explicit sharing
construct, similar to explicit substitution.
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Fig. 2: Intuitionistic proof system in open deduction

Definition 1. The pre-terms r, s, t, u and sharings [Γ ] of the ΛS are defined
by:

s, t ∶∶= x ∣ λx.t ∣ s t ∣ t[Γ ] [Γ ] ∶∶= [x1, . . . , xn ← s]

with from left to right: a variable; an abstraction, where x occurs free in t and
becomes bound; an application, where s and t use distinct variable names; and
a closure; in t[x⃗← s] the variables in the vector x⃗ = x1, . . . , xn all occur in t and
become bound, and s and t use distinct variable names. Terms are pre-terms
modulo permutation equivalence (∼):

t[x⃗← s][y⃗ ← r] ∼ t[y⃗ ← r][x⃗← s] ({y⃗} ∩ (s)fv = {})

A term is in sharing normal form if all sharings occur as [x⃗ ← x] either at
the top level or directly under a binding abstraction, as λx.t[x⃗← x].

Note that variables are linear : variables occur at most once, and bound variables
must occur. A vector x⃗ has length ∣ x⃗ ∣ and consist of the variables x1, . . . , x∣ x⃗ ∣.

An environment is a sequence of sharings [Γ ] = [Γ1] . . . [Γn]. Substitution is
written {t/x}, and {t1/x1} . . .{tn/xn} may be abbreviated to {ti/xi}i∈[n].

Definition 2. The interpretation J− K ∶ Λ→ ΛS is defined below.

Jx K = x Jλx.t K = λx.J t K J s t K = J s K J t K J t[x⃗← s] K = J t K{J s K/xi}i∈[n]

The translation LN M of a λ-term N is the unique sharing-normal term t
such that N = J t K. A term t will be typed by a derivation with restricted types,
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Basic Types: A,B,C ∶= a ∣ A→ B Context Types: Γ,∆,Ω ∶= A ∣ ⊺ ∣ Γ ∧∆
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Fig. 3: Typing system for ΛS

as shown below, where the context type Γ = A1∧⋅ ⋅ ⋅∧An will have an Ai for each
free variable xi of t. We connect free variables to their premises by writing Ax

and Γ x⃗. The ΛS is then typed as in Figure 3.

3 The Spinal Atomic λ-Calculus

We now formally introduce the syntax of the spinal atomic λ-calculus (ΛSa ), by
extending the definition of the sharing calculus in Definition 1 with a distributor
construct that allows for atomic duplication of terms.

Definition 3 (Pre-Terms). The pre-terms r, s, t, closures [Γ ], and envi-

ronments [Γ ] of the ΛSa are defined by:

t ∶∶= x ∣ s t ∣ x⟨ y⃗ ⟩.t ∣ t[Γ ] [Γ ] ∶∶= [Γ ] ∣ [Γ ][Γ ]
[Γ ] ∶∶= [x⃗← t] ∣ [x⃗ ∣ y⟨ z⃗ ⟩ [Γ ]]

Our generalized abstraction x⟨ y⃗ ⟩.t is a phantom-abstraction, where x a
phantom-variable and the cover y⃗ will be a subset of the free variables of
t. It can be thought of as a “delayed” abstraction: x is a binder, but possibly
not in t itself, and instead in the terms substituted for the variables y⃗; in other
words, x is a capturing binder for substitution into y⃗. We define standard λ-
abstraction as the special case λx.t ≡ x⟨x ⟩.t, and generally, when we refer to
x⟨ y⃗ ⟩ as a phantom-abstraction (rather than an abstraction) we assume y⃗ ≠ x.

The distributor u[x⃗ ∣ y⟨ z⃗ ⟩ [Γ ]] binds the phantom-variables x⃗ in u, while its

environment [Γ ] will bind the variables in their covers; intuitively, it represents a
set of explicit substitutions in which the variables x⃗ are expected to be captured.

The distributor is introduced when we wish to duplicate an abstraction, as
depicted in Figure 4a. The sharing node (○) duplicates the abstraction node,
creating a distributor (depiced as the sharing and unsharing node (●), together
with the bindings of the phantom-variables (depicted with a dashed line). The
variables captured by the environment are the variables connected to sharing
nodes linked with a dotted line. Notice one sharing node can be linked with mul-
tiple unsharing nodes, and vice versa. Duplication of applications also duplicates
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Fig. 4: Graphical illustration of the distributor

the dotted line (Figure 4b), but these can be removed later if the term does not
contain the variable bound to the unsharing (Figure 4c). These subterms are
those which are not part of the spine. Eventually, we will reach a state where
the only sharing node connected to the unsharing node is the one that shared
the variable bound to the unsharing, allowing us to eliminate the distributor
(Figure 4d). The purpose of the dotted line is similar to the brackets of optimal
reduction graphs [21, 24], to supervise which sharing and unsharing match.

Terms are then pre-terms with sensible and correct bindings. To define terms,
we first define free and bound variables and phantom variables; variables are
bound by abstractions (not phantoms) and by sharings, while phantom-variables
are bound by distributors.

Definition 4 (Free and Bound Variables). The free variables (−)fv and
bound variables (−)bv of a pre-term t are defined as follows

(x)fv = {x} (x)bv = {}
(s t)fv = (s)fv ∪ (t)fv (s t)bv = (s)bv ∪ (t)bv

(x⟨x ⟩.t)fv = (t)fv − {x} (x⟨x ⟩.t)bv = (t)bv ∪ {x}
(x⟨ y⃗ ⟩.t)fv = (t)fv (x⟨ y⃗ ⟩.t)bv = (t)bv

(u[x⃗← t])fv = (u)fv ∪ (t)fv − {x⃗} (u[x⃗← t])bv = (u)bv ∪ (t)bv ∪ {x⃗}

(u[x⃗ ∣ y⟨ y ⟩ [Γ ]])fv = (u[Γ ])fv − {y} (u[x⃗ ∣ y⟨ y ⟩ [Γ ]])bv = (u[Γ ])bv ∪ {y}
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(u[x⃗ ∣ y⟨ z⃗ ⟩ [Γ ]])fv = (u[Γ ])fv ∪ {y} (u[x⃗ ∣ y⟨ z⃗ ⟩ [Γ ]])bv = (u[Γ ])bv

Definition 5 (Free and Bound Phantom-Variables). The free phantom-
variables (−)fp and bound phantom-variables (−)bp of the pre-term t are
defined as follows

(x)fp = {} (x)bp = {}
(s t)fp = (s)fp ∪ (t)fp (s t)bp = (s)bp ∪ (t)bp

(x⟨x ⟩.t)fp = (t)fp
(c⟨ x⃗ ⟩.t)fp = (t)fp ∪ {c} (c⟨ x⃗ ⟩.t)bp = (t)bp

(u[x⃗← t])fp = (u)fp ∪ (t)fp (u[x⃗← t])bp = (u)bp ∪ (t)bp
(u[x⃗ ∣ c⟨ c ⟩ [Γ ]])fp = (u[Γ ])fp − {x⃗}

(u[x⃗ ∣ c⟨ y⃗ ⟩ [Γ ]])fp = (u[Γ ])fp ∪ {c} − {x⃗} (u[x⃗ ∣ c⟨ y⃗ ⟩ [Γ ]])bp = (u[Γ ])bp ∪ {x⃗}

The free covers (u)fc and bound covers (u)bc are the covers associated with
the free phantom-variables (u)fp respectively the bound phantom-variables (u)bp
of u; that is, if x occurs as x⟨ a⃗ ⟩ in u and x ∈ (u)fp then ⟨a⃗⟩ ∈ (u)fc. When
bound, x and the variables in a⃗ may be alpha-converted independently. When
a distributor u[x⃗ ∣ y⟨ z⃗ ⟩ [Γ ]] binds the phantom-variables x⃗ = x1, . . . , xn where
each xi occurs as xi⟨ a⃗i ⟩ in u, then for technical convenience we may make the
covers explicit in the distributor itself, and write

u[x1⟨ a⃗1 ⟩ . . . xn⟨ a⃗n ⟩ ∣ y⟨ z⃗ ⟩ [Γ ]] .

The environment [Γ ] is expected to bind exactly the variables in the covers ⟨a⃗i⟩.
We apply this and other restrictions to define the terms of the calculus.

Definition 6. Terms t ∈ ΛSa are pre-terms with the following constraints

1. Each variable may occur at most once.
2. In a phantom-abstraction x⟨ y⃗ ⟩.t, {y⃗} ⊆ (t)fv.
3. In a sharing u[x⃗← t], {x⃗} ⊆ (u)fv.

4. In a distributor u[x1⟨ a⃗1 ⟩ . . . xn⟨ a⃗n ⟩ ∣ y⟨ z⃗ ⟩ [Γ ]]
(a) {x1, . . . , xn} ⊆ (u)fp;

(b) the variables in ⋃i≤n{a⃗i} are free in u and bound by [Γ ].
(c) the variables in {z⃗} occur freely in the environment [Γ ].

Example 1. Here we show some pre-terms that are not terms.

– c⟨x ⟩.y (violates condition 2)
– xy[x, z ← w] (violates condition 3)
– e2⟨w2 ⟩.w2 ((e1⟨w1 ⟩.w1) z)[e1⟨w1 ⟩, e2⟨w2 ⟩ ∣ c⟨ z ⟩ [w1,w2 ← x⟨x ⟩.x y]]

(violates condition 4a)

We also work modulo permutation with respect to the variables in the cover
of phantom-abstractions. Let x⃗ be a list of variables and let x⃗P be a permutation
of that list, then the following terms are considered equal.

Spinal Atomic Lambda-Calculus 589



c⟨ x⃗ ⟩.t ∶

(A→ Γ ) ∧∆
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Ac →
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Fig. 5: Typing derivations for phantom-abstractions and distributors

u[x⃗← t] ∼ u[x⃗P ← t] y⟨ x⃗ ⟩.t ∼ y⟨ x⃗P ⟩.t

Terms are typed with the typing system for ΛS extended with the distribution
inference rule. This rule is the result of computationally interpreting the medial
rule as done in [16]. We obtain this variant of the medial rule due to the restric-
tion for implications and to avoid introducing disjunction to the typing system.
The terms of ΛSa are then typed as in both Figure 3 and Figure 5. Note environ-
ments are typed by the derivations of all its closures composed horizontally with
the conjunction connective. Also note that in the case for phantom-abstraction is
similar for that of an abstraction, where we replace one occurrence of the simple
type A by the conjunction Γ .

3.1 Compilation and Readback.

We now define the translations between ΛSa and the original λ-calculus. First
we define the interpretation Λ → ΛSa (compilation). Intuitively, it replaces each
abstraction λx.− with the term x⟨x ⟩.−[x1, . . . , xn ← x] where x1, . . . , xn replace
the occurrences of x. Actual substitutions are denoted as {t/x}. Let ∣M ∣x denote
the number of occurrences of x in M , and if ∣M ∣x = n let M n

x
denote M with

the occurrences of x replaced by fresh, distinct variables x1, . . . , xn. First, the
translation of a closed term M is LM M′, defined below

Definition 7 (Compilation). The interpretation of λ terms, LΛ M′ ∶ Λ → ΛSa ,
is defined as

LM
n1
x1
. . .

nk
xk

M′[x11, . . . , x
n1

1 ← x1] . . . [x1k, . . . , x
nk

k ← xk]

where x1, . . . , xk are the free variables of M such that ∣M ∣xi = ni > 1 and
L− M′ is defined on terms as (where n ≠ 1 in the abstraction case):

Lx M′ = x
LMN M′ = LM M′ LN M′

Lλx.M M′ =
⎧⎪⎪⎨⎪⎪⎩

x⟨x ⟩.LM M′ if ∣M ∣x = 1

x⟨x ⟩.LM n
x

M′[x1, . . . , xn ← x] if ∣M ∣x = n

The readback into the λ-calculus is slightly more complicated, specifically
due to the bindings induced by the distributor. Interpreting a distributor con-
struct as a λ-term requires (1) converting the phantom-abstractions it binds in
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u into abstractions (2) collapsing the environment (3) maintaining the bindings
between the converted abstractions and the intended variables located in the
environment.

Definition 8. Given a total function σ with domain D and codomain C, we
overwrite the function with case x↦ v where x ∈D and v ∈ C such that

σ[x↦ v](z) ∶= if (x = z) then v else σ(z)

We use the map σ as part of the translation, the intuition is that for all
bound variables x in the term we are translating, it should be that σ(x) = x.
The purpose of the map γ is to keep track of the binding of phantom-variables.

Definition 9. The interpretation J− ∣ − ∣− K ∶ ΛSa × (V → Λ) × (V → V ) → Λ is
defined as

Jx ∣σ ∣γ K = σ(x) J s t ∣σ ∣γ K = J s ∣σ ∣γ K J t ∣σ ∣γ K

J c⟨ c ⟩.t ∣σ ∣γ K = λc.J t ∣σ[c↦ c] ∣γ K

J c⟨x1, . . . , xn ⟩.t ∣σ ∣γ K = λc.J t ∣σ[xi ↦ σ(xi){c/γ(c)}]i∈[n] ∣γ K

Ju[x1, . . . , xn ← t] ∣σ ∣γ K = Ju ∣σ[xi ↦ J t ∣σ ∣γ K]i∈[n] ∣γ K

Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ ]] ∣σ ∣γ K = Ju[Γ ] ∣σ ∣γ[ei ↦ c]i∈[n] K

Ju[e1⟨ w⃗1 ⟩, . . . , en⟨ w⃗n ⟩ ∣ c⟨x1, . . . , xm ⟩ [Γ ]] ∣σ ∣γ K = Ju[Γ ] ∣σ′ ∣γ[ei ↦ c]i∈[n] K

where σ′ = σ[xi ↦ σ(xi){c/γ(c)}]i∈[n]
The following Proposition justifies working modulo permutation equivalence.

Proposition 1. For s, t ∈ ΛSa , if s ∼ t then J s K = J t K.

3.2 Rewrite Rules.

Both the spinal atomic λ-calculus and the atomic λ-calculus of [16] follow atomic
reduction steps, i.e. they apply on individual constructors. The biggest differ-
ence is that our calculus is capable of duplicating not only the skeleton but also
the spine. The rewrite rules in our calculus make use of 3 operations, substitu-
tion, book-keeping, and exorcism. The operation substitution t{s/x} propagates
through the term t, and replaces the free occurences of the variable x with the
term s. Moreover, if x occurs in the cover of a phantom-variable e⟨ y⃗ ⋅ x ⟩, then
substitution replaces the x in the cover with (s)fv, resulting in e⟨ y⃗ ⋅ (s)fv ⟩. Al-
though substitution performs some book-keeping on phantom-abstractions, we
define an explicit notion of book-keeping {y⃗/e}b that updates the variables
stored in a free cover i.e. for a term t, e⟨ x⃗ ⟩ ∈ (t)fc then e⟨ y⃗ ⟩ ∈ (t{y⃗/e}b)fc. The
last operation we introduce is called exorcism {c⟨ x⃗ ⟩}e. We perform exorcisms
on phantom-abstractions to convert them to abstractions. Intuitively, this will
be performed on phantom-abstractions with phantom-variables bound to a dis-
tributor when said distributor is eliminated. It converts phantom-abstractions
to abstractions by introducing a sharing of the phantom-variable that captures
the variables in the cover, i.e. (c⟨ x⃗ ⟩.t){c⟨ x⃗ ⟩}e = c⟨ c ⟩.t[x⃗← c].
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Proposition 2. The translation Ju ∣σ ∣γ K commutes with substitutions, book-
keepings1, and exorcisms2 in the following way

Ju{t/x} ∣σ ∣γ K = Ju ∣σ[x↦ J t ∣σ ∣γ K] ∣γ K

Ju{x⃗/c}b ∣σ ∣γ K = Ju ∣σ ∣γ K

Ju{c⟨x1, . . . , xn ⟩}e ∣σ ∣γ K = Ju ∣σ[xi ↦ c]i∈[n] ∣γ K

(1) Given c⟨ y⃗ ⟩ ∈ (u)fc where x⃗ ⊆ y⃗ and for z ∈ y⃗/x⃗, γ(c) /∈ (σ(z))fv
(2) Given c⟨ x⃗ ⟩ ∈ (u)fc or {x⃗} ∩ (u)fv = {}

Proof. See [25], proof of Proposition 18, 19, 20, 21.

Using these operations, we define the rewrite rules that allow for spinal du-
plication. Firstly we have beta reduction (↝β), which strictly requires an ab-
straction (not a phantom).

(x⟨x ⟩.t) s↝β t{s/x}

Γ
λ

A→
Ax ∧ Γ

t

B

∧
∆
s

A

@
B

↝β

∆
s

A

∧ Γ

A ∧ Γ
t

B

(β)

Here β-reduction is a linear operation, since the bound variable x occurs exactly
once in the body t. Any duplication of the term t in the atomic λ-calculus
proceeds via the sharing reductions.

The first set of sharing reduction rules move closures towards the outside of
a term. Most of these rewrite rules only change the typing derivations in the way
that subderivations are composed, with the exception of moving a closure out
of scope of a distributor.

s[Γ ] t↝L (s t)[Γ ] (l1)

s t[Γ ]↝L (s t)[Γ ] (l2)

d⟨ x⃗ ⟩.t[Γ ]↝L (d⟨ x⃗ ⟩.t)[Γ ] if {x⃗} ∩ (t)fv = {x⃗} (l3)

u[x⃗← t[Γ ]]↝L u[x⃗← t][Γ ] (l4)

For the case of lifting a closure outside a distributor, we use a notation ∥ [Γ ] ∥
to identify the variables captured by a closure, i.e.∥ [x⃗← t] ∥= {x⃗} and

∥ [e1⟨ x⃗1 ⟩, . . . , en⟨ x⃗x ⟩ ∣ c⟨ c ⟩ [Γ ]] ∥= {x⃗1, . . . , x⃗n}. Then let {z⃗} =∥ [Γ ] ∥ in the
following rewrite rule, where we remove z⃗ from the covers, that can only occur
if {x⃗} ∩ ([Γ ])fv = {}.

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ ][Γ ]]
↝L u{(w⃗i ∖ z⃗)/ei}bi∈[n][e1⟨ w⃗1 ∖ z⃗ ⟩ . . . en⟨ w⃗n ∖ z⃗ ⟩ ∣ c⟨ x⃗ ⟩ [Γ ]][Γ ]

(l5)
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The graphical version of this rule is shown in Figure 4c, where we remove
the edge only if there is no edge between t and the unsharing node. The proof
rewrite rule corresponding with the rewrite rule l5 can be broken down into two
parts. The first part is readjusting how the derivations compose as shown below.

(C → Γ ) ∧∆ ∧Ω
s

C →
Γ ∧∆ ∧

Ω

A ∧ ⋅ ⋅ ⋅ ∧A

Σ1 . . .Σn
d

(C → Σ1) ∧ ⋅ ⋅ ⋅ ∧ (C → Σn)

↝L

(C → Γ ) ∧∆ ∧
Ω

A ∧ ⋅ ⋅ ⋅ ∧A
s

C →
Γ ∧∆ ∧A. . .A

Σ1 . . .Σn
d

(C → Σ1) ∧ ⋅ ⋅ ⋅ ∧ (C → Σn)

The second part of the rewrite rule justifies the need for the book-keeping op-
eration. In the rewrite below, let A be the type of a variable z where z ∈ z⃗.
After lifting, we want to remove the variable from the cover as to ensure cor-
rectness since the variables in the cover denote the variables captured by the
environment. Book-keeping allows us to remove these variables simultaneously.

(C → Γ ) ∧∆ ∧A
s

C →

Γ ∧∆

Σ1 ∧ ⋅ ⋅ ⋅ ∧Σn
∧A

Σ1 ∧ ⋅ ⋅ ⋅ ∧Σi ∧A ∧ ⋅ ⋅ ⋅ ∧Σn
d

⋅ ⋅ ⋅ ∧ (C → Σi ∧A) ∧ . . .

↝

(C → Γ ) ∧∆
s

C →

Γ ∧∆

Σ1 ∧ ⋅ ⋅ ⋅ ∧Σn
Σ1 ∧ ⋅ ⋅ ⋅ ∧Σi ∧ ⋅ ⋅ ⋅ ∧Σn

d
⋅ ⋅ ⋅ ∧ (C → Σi) ∧ . . .

∧A

⋅ ⋅ ⋅ ∧ (C → Σi) ∧A
s

C → Σi ∧A
∧ . . .

The lifting rules (li) are justified by the need to lift closures out of the distrib-
utor, as opposed to duplicating them. The second set of rewrite rules, consecutive
sharings are compounded and unary sharings are applied as substitutions. For
simplicity, in the equivalent proof rewrite step we only show the binary case.

u[w⃗ ← y][y ⋅ y⃗ ← t]↝C u[w⃗ ⋅ y⃗ ← t] (c1)

u[x← t]↝C u{t/x} (c2)

A △

A ∧
A △

A ∧A

↝C A △
A ∧A ∧A

A △
A

↝C A

The atomic steps for duplicating are given in the third and final set of rewrite
rules. The first being the atomic duplication step of an application, which is the
same rule used in [16]. The binary case proof rewrite steps for each rule are also
provided. There are also shown graphically in (respectively) Figure 4b (where
we maintain links between sharings and unsharings), Figure 4a, and Figure 4d
(where the unsharing node is linked to exactly one connecting sharing node).

u[x1 . . . xn ← s t]↝D u{z1 y1/x1} . . .{zn yn/xn}[z1 . . . zn ← s][y1 . . . yn ← t]
(d1)

Spinal Atomic Lambda-Calculus 593



(A→ B) ∧A
@

B △
B ∧B

↝D

(A→ B)
△

(A→ B) ∧ (A→ B)

∧
B △

B ∧B

(A→ B) ∧A
@

B
∧
(A→ B) ∧A

@
B

u[x1, . . . , xn ← c⟨ y⃗ ⟩.t]↝D
u{ei⟨wi ⟩.wi/xi}i∈[n][e1⟨w1 ⟩ . . . en⟨wn ⟩ ∣ c⟨ y⃗ ⟩ [w1, . . . ,wn ← t]]

(d2)

(A→ B) ∧ Γ
s

A→

B ∧ Γ

C
△

(A→ C) ∧ (A→ C)

↝D

(A→ B) ∧ Γ
s

A→

B ∧ Γ

C △
C ∧C

d

(A→ C) ∧ (A→ C)

u[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [w⃗1, . . . , w⃗n ← c]]↝D u{e1⟨ w⃗1 ⟩}e . . .{en⟨ w⃗n ⟩}e
(d3)

a

A→
A △

A ∧A
d

(A→ A) ∧ (A→ A)

↝D a
A→ A ∧

a
A→ A

Example 2. The following example, illustrated in Figure 4e, is a reduction in the
term calculus where we duplicate the spine of the term [a1, a2←λx.λy.((λz.z)y)x].

↝D {x1⟨b1⟩.b1/a1}{x2⟨b2⟩.b2/a2}[x1⟨b1⟩, x2⟨b2⟩ ∣ x⟨x⟩[b1, b2←λy.((λz.z)y)x]]

↝D {x1⟨c1⟩.y1⟨c1⟩c1/a1}{x2⟨c2⟩.y2⟨c2⟩.c2/a2}
[x1⟨c1⟩, x2⟨c2⟩ ∣ x⟨x⟩[y1⟨c1⟩, y2⟨c2⟩ ∣ y⟨y⟩[c1, c2←((λz.z)y)x]]]

↝D {x1⟨d1, e1⟩.y1⟨d1, e1⟩d1e1/a1}{x2⟨d2, e2⟩.y2⟨d2, e2⟩.d2e2/a2}
[x1⟨d1, e1⟩, x2⟨d2, e2⟩ ∣ x⟨x⟩[y1⟨d1, e1⟩, y2⟨d2, e2⟩ ∣ y⟨y⟩[d1, d2←(λz.z)y][e1, e2←x]]]

↝L {x1⟨d1, e1⟩.y1⟨d1⟩d1e1/a1}{x2⟨d2, e2⟩.y2⟨d2⟩.d2e2/a2}
[x1⟨d1, e1⟩, x2⟨d2, e2⟩ ∣ x⟨x⟩[y1⟨d1⟩, y2⟨d1⟩ ∣ y⟨y⟩[d1, d2←(λz.z)y]] [e1, e2←x]]

↝L {x1⟨e1⟩.y1⟨d1⟩d1e1/a1}{x2⟨e2⟩.y2⟨d2⟩.d2e2/a2}
[x1⟨e1⟩, x2⟨e2⟩ ∣ x⟨x⟩[e1, e2←x]] [y1⟨d1⟩, y2⟨d2⟩ ∣ y⟨y⟩[d1, d2(λz.z)y]]

↝D {λx1.y1⟨d1⟩d1x1/a1}{λx2.y2⟨d2⟩.d2x2/a2} [y1⟨d1⟩, y2⟨d2⟩ ∣ y⟨y⟩[d1, d2←(λz.z)y]]

Reduction (↝(L,C,D,β)) preserves the conclusion of the derivation, and thus the
following proposition is easy to observe.

Proposition 3. If s↝(L,C,D,β) t and s ∶ A, then t ∶ A.

Definition 10. For a term t ∈ ΛSa , if there does not exists a term s ∈ ΛSa such
that t↝(L,C,D) s then it is said that t is in sharing normal form.

The following Lemma not only proves we have good translations in Section 3.1,
and shows duplication preserves denotation.
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Lemma 1. For a t ∈ ΛSa in sharing normal form and a N ∈ Λ.

J LN M K = N L J t K M = t ∃M∈Λ.t = LM M

Otherwise if s↝(L,D,C) t then J s ∣σ ∣γ K = J t ∣σ ∣γ K.

Proof. See [25, Lemma 24, Lemma 25].

Lemma 2. Given a term t ∈ ΛSa , then L J t K M is t in sharing normal form.

Proof. We can prove this by induction on the longest sharing reduction path
from t. Our base case is already covered by Lemma 1. We are then interested in
the inductive case, where t is not in sharing normal form. By Lemma 1, J t K = J t′ K
where t ↝(D,L,C) t

′. By induction hypothesis, L J t′ K M is in sharing normal form.
Hence L J t K M is in sharing normal form. ◻

4 Strong Normalisation of Sharing Reductions

In order to show our calculus is strongly normalising, we first show that the
sharing reduction rules are strongly normalising. We indite a measure on terms
and show that this measure strictly decreases as sharing reduction progresses.
Similar ideas and results can be found elsewhere: with memory in [20], the λ-
I calculus in [6], the λ-void calculus [2], and the weakening λµ-calculus [17].
Our measure will consist of three components. First, the height of a term is a
multiset of integers, that measures the number of constructors from each sharing
node to the root of the term in its graphical notation. The height is defined on
terms as Hi(−), where i is an integer. We say H(t) for H1(t). We use ⊍ to
denote the disjoint union of two multisets. We denote Hi([Γ1]) ⊍ ⋅ ⋅ ⋅ ⊍Hi([Γn])
as Hi([Γ ]) for the environment [Γ ] = [Γ1], . . . , [Γn].

Definition 11 (Sharing Height). The sharing height Hi(t) of a term t is

given below, where n is the number of closures in [Γ ]:

Hi(x) = {} Hi(s t) =Hi+1(s) ⊍Hi+1(t)
Hi(c⟨ x⃗ ⟩.t) =Hi+1(t) Hi(t[Γ ]) =Hi(t) ⊍Hi([Γ ]) ⊍ {i1}

Hi([x1, . . . , xn ← t]) =Hi+1(t) Hi([ ⃗⃗w ∣ c⟨ x⃗ ⟩ [Γ ]]) =Hi+1([Γ ]) ⊍ {(i + 1)n}

This measure then strictly decreases for the rewrite rules l1, l2, l3, l4 and l5, i.e.
if t↝L u then Hi(t) >Hi(u). The second measure we consider is the weight of a
term. Intuitively this quantifies the remaining duplications, which are performed
with ↝D reductions. If a term would be deleted, we assign it with a weight ‘1’
to express that it is not duplicated. Calculating the weight requires an auxiliary
function that assigns integer weights to the variables of a term. This function is
defined on terms Vi(−), where i is an integer. To measure variables independently
of binders is vital. It allows to measure distributors, which duplicate λ’s but not
the bound variable. Also, only bound variables for abstractions are measured
since variables bound by sharings are substituted in the interpretation.
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Definition 12 (Variable Weights). The function Vi(t) returns a function
that assigns integer weights to the free variables of t. It is defined by the below,
where f = Vi(t) and g = f(x1) + ⋅ ⋅ ⋅ + f(xn) for each xi ∈ x⃗.

Vi(x) = {x↦ i} Vi(s t) = Vi(s) ⊍ Vi(t)
Vi(c⟨ c ⟩.t) = Vi(t)/{c} Vi(c⟨ x⃗ ⟩.t) = Vi(t) ⊍ {c↦ i}
Vi(t[x⃗← s]) = Vi(t)/{x⃗} ⊍ Vg(s) Vi(t[← s]) = Vi(t) ⊍ V1(s)

Vi(t[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ ]]) = Vi(t[Γ ])/{c, e1, . . . , en}

Vi(t[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ ]]) = Vi(t[Γ ])/{e1, . . . , en} ⊍ {c↦ i}

The weight of a term can then be defined via the use of this auxiliary function.
The auxiliary function is used when calculating the weight of a sharing, where
the sharing weight of the variables bound by the sharing play a significant role
in calculating the weight of the shared term. In the case of a weakening [← t],
we assign an initial weight of 1. Again we say W(t) =W1(t).

Definition 13 (Sharing Weight). The sharing weight Wi(t) of a term t is a
multiset of integers computed by the function defined below, where f = Vi(t) and
g = f(x1) + ⋅ ⋅ ⋅ + f(xn) for each xi ∈ x⃗.

Wi(x) = {} Wi(s t) =Wi(s) ⊍Wi(t) ⊍ {i}
Wi(c⟨ c ⟩.t) =Wi(t) ⊍ {i} ⊍ {Vi(t)(c)} Wi(c⟨ x⃗ ⟩.t) =Wi(t) ⊍ {i}
Wi(t[x⃗← s]) =Wi(t) ⊍Wg(s) Wi(t[← s]) =Wi(t) ⊍W1(s)

Wi(t[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ c ⟩ [Γ ]]) =Wi(t[Γ ]) ⊍ {Vi(t[Γ ])(c)}

Wi(t[e1⟨ w⃗1 ⟩ . . . en⟨ w⃗n ⟩ ∣ c⟨ x⃗ ⟩ [Γ ]]) =Wi(t[Γ ])

This measure then strictly decreases on the rewrite rules d1, d2, d3 and is unaf-
fected by all the other sharing reduction rules, i.e. if t↝D u thenWi(t) >Wi(u).
If t ↝(L,C) u then Wi(t) = Wi(u). The third and last measure we consider is
the number of closures in the term, where it can be easily observed that the
rewrite rules c1 and c2 strictly decrease this measure, and that the ↝L rules do
not alter the number of closures. We then use this along with height and weight
to define a sharing measure on terms.

Definition 14. The sharing measure of a ΛSa -term t is a triple (W(t), C,
H(t)), where C is the number of closures in the term t. We compare sharing
measures by using the lexicographical preferences according to W > C > H.

Theorem 1. Sharing reduction ↝(D,L,C) is strongly normalising.

Now that we have proven the sharing reductions are strongly normalising, we
can prove that they are confluent for closed terms.

Theorem 2. The sharing reduction relation ↝(D,L,C) is confluent.
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Proof. Lemma 1 tells us that the preservation is preserved under reduction i.e. for
s ↝(D,L,C) t, J s K = J t K. Therefore given t ↝∗

(D,L,C)
s1 and t ↝∗

(D,L,C)
s2, J t K =

J s1 K = J s2 K. Since we know that sharing reductions are strongly normalising, we
know there exists terms u1 and u2 in sharing normal form such that s1 ↝∗

(D,L,C)

u1 and s2 ↝∗

(D,L,C)
u2. Lemma 1 tells us that terms in sharing normal form are in

correspondence with their denotations i.e. L J t K M = t. Since by Lemma 1 we know
Ju1 K = J s1 K = J s2 K = Ju2 K, and by Lemma 1 L Ju1 K M = u1 and L Ju2 K M = u2, we
can conclude u1 = u2. Hence, we prove confluence. ◻

5 Preservation of Strong Normalisation and Confluence

A β-step in our calculus may occur within a weakening, and therefore is simulated
by zero β-steps in the λ-calculus. Therefore if there is an infinite reduction path
located inside a weakening in ΛSa , then the reduction path is not preserved in the
corresponding λ-term as there are no weakenings. To deal with this, just as done
in [2, 16, 17], we make use of the weakening calculus. A β-step is non-deleting
precisely because of the weakening construct. If a β-step would be deleting, then
the weakening calculus would instead keep the deleted term around as ‘garbage’,
which can continue to reduce unless explicitly ‘garbage-collected’ by extra (non-
β) reduction steps. PSN has already be shown for the weakening calculus through
the use of a perpetual strategy in [16]. A part of proving PSN is then using the
weakening calculus to prove that if t ∈ ΛSa has a infinite reduction path, then its
translation into the weakening calculus also has an infinite reduction path.

Definition 15. The W-terms of the weakening calculus (ΛW) are

T,U,V ∶∶= x ∣ λx.T ∗ ∣ U V ∣ T [← U] ∣ ● (*) where x ∈ (T )fv

The terms are variable, abstraction, application, weakening, and a bullet.
In the weakening T [← U], the subterm U is weakened. The interpretation of
atomic terms to weakening terms J− ∣ − ∣− KW can be seen as an extension of the
translation into the λ-calculus (Definition 9).

Definition 16. The interpretation J− ∣− ∣− KW ∶ ΛSa×(V → ΛW)×(V → V )→ ΛW
with maps σ ∶ V → ΛW and γ ∶ V → V is defined as an extension of the translation
in (Definition 9) with the following additional special cases.

Ju[← t] ∣σ ∣γ KW = Ju ∣σ ∣γ KW[← J t ∣σ ∣γ KW]
Ju[ ∣ c⟨ c ⟩ [Γ ]] ∣σ ∣γ KW = Ju[Γ ] ∣σ[c↦ ●] ∣γ KW

Ju[ ∣ c⟨x1, . . . , xn ⟩ [Γ ]] ∣σ ∣γ KW = Ju[Γ ] ∣σ′ ∣γ KW

where σ′(z) ∶= if z ∈ {x1, . . . , xn} then σ(z){●/γ(c)} else σ(z)

We say J t KW = J t ∣ I ∣ I KW where I is the identity function. We also have trans-
lations of the weakening calculus to and from the λ-calculus. Both of these
translations were provided in [16]. The interpretation ⌊− ⌋ from weakening terms
to λ-terms discards all weakenings.
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Definition 17. The interpretation M ∈ Λ, L− MW ∶ Λ→ ΛW is defined below.

Lx MW = x LMN MW = LM MW LN MW Lλx.N MW =
⎧⎪⎪⎨⎪⎪⎩

λx.LN MW if x ∈ (N)fv
λx.LN MW[← x] otherwise

The following equalities can be observed, where σΛ(z) = ⌊σW(z) ⌋.

Proposition 4. For N ∈ Λ and t ∈ ΛSa the following properties hold

⌊ J t ∣σW ∣γ KW ⌋ = J t ∣σΛ ∣γ K J LN M KW = LN MW ⌊ LN MW ⌋ = N

where for each {x↦M} ∈ σW , {x↦ ⌊M ⌋} ∈ σΛ.

Definition 18. In the weakening calculus, β-reduction is defined as follows,
where [Γ ] are weakening constructs. ((λx.T )[Γ ])U →β T{U/x}[Γ ]

Proposition 5. If N ∈ Λ is strongly normalising, then so is LN MW .

When translating from ΛSa to ΛW , weakenings are maintained whilst shar-
ings are interpreted via substitution. Thus the reduction rules in the weakening
calculus cover the spinal reductions for nullary distributors and weakenings.

Definition 19. Weakening reduction (→W) proceeds as follows.

U[← T ]V →W (U V )[← T ] U V [← T ]→W (U V )[← T ]
T [← U[← V ]]→W T [← U][← V ] T [← λx.U]→W T [← U{●/x}]

T [← U V ]→W T [← U][← V ] T [← ●]→W T

T [← U]→W T (1) λx.T [← U]→W (λx.T )[← U](2)

(1) if U is a subterm of T and (2) if x /∈ (U)fv

It is easy to see that these rules correspond to special cases of the sharing
reduction rules for ΛSa . This resemblance is confirmed by the following Lemma,
proven in [25, pp. 82-86]. We use this to show how ΛSa enjoys PSN.

Lemma 3. If t ↝β u then J t KW →+

β Ju KW . If t ↝(C,D,L) u and for any x ∈
(t)bv ∪ (t)fp such that for all z, x /∈ (σ(z))fv.

J t ∣σ ∣γ KW →∗

W Ju ∣σ ∣γ KW

Lemma 4. For t ∈ ΛSa has an infinite reduction path, then J t KW also has an
infinite reduction path.

Proof. Due to Theorem 2, we know that the infinite reduction path contains
infinite β-steps. This means in the reduction sequence, between each β-step,
there are finite many ↝(D,L,C) reduction steps. Lemma 3 says each ↝(D,L,C)

step in ΛSa corresponds to zero or more weakening reductions (↝∗

W). Lemma
3 says that each beta step in ΛSa corresponds to one or more β-steps in ΛW .
Therefore, it must be that J t KW also has an infinite reduction path. ◻
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Theorem 3. If N ∈ Λ is strongly normalising, then so is LN M.

Proof. For a given N ∈ Λ that is strongly normalising, we know by Lemma 5
that LN MW is strongly normalising. Then J LN M KW is strongly normalising, since
Proposition 4 states that LN MW = J LN M KW . Then by Lemma 4, which states that
if J t KW is strongly normalising, then t is strongly normalising, proves that LN M
is strongly normalising. ◻

We also prove confluence, which is already known for the λ-calculus [11]. We
first observe that a β-step in the λ-calculus is simulated in ΛSa by one β-step
followed by zero or more sharing reductions.

Lemma 5. Given N,M ∈ Λ. If N ↝β M , then LN M↝β ↝∗

(D,L,C)
LM M.

Proof. This is proven by Sherratt in [25, Lemma 67].

Theorem 4. Given t, s1, s2 ∈ ΛSa . If t ↝∗

(β,D,L,C)
s1 and t ↝∗

(β,D,L,C)
s2, there

exists a u ∈ ΛSa such that s1 ↝∗

(β,D,L,C)
u and s2 ↝∗

(β,D,L,C)
u.

Proof. Suppose t ↝∗

(β,D,L,C)
s1 and t ↝∗

(β,D,L,C)
s2. Then we have J t K ↝∗

β J s1 K
and J t K↝∗

β J s2 K. By the Church-Rosser theorem, there exists a M ∈ Λ such that
J s1 K ↝∗

β M and J s2 K ↝∗

β M . Due to Lemma 2, L J s1 K M = s′1 and L J s2 K M = s′2
where s′1, s

′

2 ∈ ΛSa in sharing normal form. Then thanks to Lemma 5 we know
s′1 ↝∗

(β,D,L,C)
LM M and s′2 ↝∗

(β,D,L,C)
LM M. Combined, we get confluence. ◻

6 Conclusion, related work, and future directions

We have studied the interaction between the switch and the medial rule, the
two characteristic inference rules of deep inference. We built a Curry–Howard
interpretation based on this interaction, whose resulting calculus not only has
the ability to duplicate terms atomically but can also duplicate solely the spine
of an abstraction such that beta reduction can proceed on the duplicates. We
show that this calculus has natural properties with respect to the λ-calculus.

This work, which started as an investigation into the Curry-Howard corre-
spondence of the switch rule [25], fits into a broader effort to give a computational
interpretation to intuitionistic deep-inference proof theory. Brünnler and McKin-
ley [9] give a natural reduction mechanism without medial (or switch), and ob-
serve that preservation of strong normalization fails. Guenot and Straßburger [14]
investigate a different switch rule, corresponding to the implication-left rule of
sequent calculus. He [17] extends the atomic λ-calculus to the λµ-calculus.

Our future goal is to develop the intuitionistic open deduction formalism to-
wards optimal reduction [23, 21, 3], via the remaining medial and switch rules [26].
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8. Blanc, T., Lévy, J.J., Maranget, L.: Sharing in the weak lambda-calculus. Pro-
cesses, Terms and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan
Willem Klop on the Occasion of His 60th Birthday 3838, 70 (2005)
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