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Abstract
A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of
resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing those
sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure,
through a rewriting system acting both on resource and MELL proof-structures.
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1 Introduction

Resource λ-calculus and the Taylor expansion Girard’s linear logic (LL, [15]) is a refine-
ment of intuitionistic and classical logic that isolates the infinitary parts of reasoning in two
(dual) modalities: the exponentials ! and ?. They give a logical status to the operations of
memory management such as copying and erasing: a linear proof corresponds—via Curry–
Howard isomorphism—to a program that uses its argument linearly, i.e. exactly once, while
an exponential proof corresponds to a program that can use its argument at will.

The intuition that linear programs are analogous to linear functions (as studied in linear
algebra) while exponential programs mirror a more general class of analytic functions got a
technical incarnation in Ehrhard’s work [9, 10] on LL-based denotational semantics for the
λ-calculus. This investigation has been then internalized in the syntax, yielding the resource
λ-calculus [5, 11, 14]: there, copying and erasing are forbidden and replaced by the possibility
to apply a function to a bag of resource λ-terms which specifies how many times an argument
can be linearly passed to the function, so as to represent only bounded computations.

The Taylor expansion associates with an ordinary λ-term a (generally infinite) set of
resource λ-terms, recursively approximating the usual application: the Taylor expansion of
the λ-term MN is made of resource λ-terms of the form t[u1, . . . , un], where t is a resource
λ-term in the Taylor expansions of M , and [u1, . . . , un] is a bag of arbitrarily finitely many
(possibly 0) resource λ-terms in the Taylor expansion of N . Roughly, the idea is to decompose
a program into a set of purely “resource-sensitive programs”, all of them containing only
bounded (although possibly non-linear) calls to inputs. The notion of Taylor expansion has
many applications in the theory of the λ-calculus, e.g. in the study of linear head reduction
[12], normalization [23, 26], Böhm trees [4, 18], λ-theories [19], intersection types [21]. More
generally, understanding the relation between a program and its Taylor expansion renews the
logical approach to the quantitative analysis of computation started with the inception of LL.
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23:2 Glueability of resource proof-structures: inverting the Taylor expansion

A natural question is the inverse Taylor expansion problem: how to characterize which
sets of resource λ-terms are contained in the Taylor expansion of a same λ-term? Ehrhard and
Regnier [14] defined a simple coherence relation such that a finite set of resource λ-terms is
included in the Taylor expansion of a λ-term if and only if the elements of this set are pairwise
coherent. Coherence is crucial in many structural properties of the resource λ-calculus, such
as in the proof that in the λ-calculus normalization and Taylor expansion commute [12, 14].

We aim to solve the inverse Taylor expansion problem in the more general context of LL,
more precisely in the multiplicative-exponential fragment MELL of LL, being aware that for
MELL no coherence relation can solve the problem (see below).

Proof-nets, proof-structures and their Taylor expansion: seeing trees behind graphs In
MELL, linearity and the sharp analysis of computations naturally lead to represent proofs
in a more general graph-like syntax instead of a term-like or tree-like one.1 Indeed, linear
negation is involutive and classical duality can be interpreted as the possibility of juggling
between different conclusions, without a distinguished output. Graphs representing proofs in
MELL are called proof-nets: their syntax is richer and more expressive than the λ-calculus.
Contrary to λ-terms, proof-nets are special inhabitants of the wider land of proof-structures:
they can be characterized, among proof-structures, by abstract (geometric) conditions called
correctness criteria [15]. The procedure of cut-elimination can be applied to proof-structures,
and proof-nets can also be seen as the proof-structures with a good behavior with respect to
cut-elimination [1]. Proof-structures can be interpreted in denotational models and proof-
nets can be characterized among them by semantic means [24]. It is then natural to attack
problems in the general framework of proof-structures. In this work, correctness plays no role
at all, hence we will consider proof-structures and not only proof-nets. MELL proof-structures
are a particular kind of graphs, whose edges are labeled by MELL formulæ and vertices by
MELL connectives, and for which special subgraphs are highlighted, the boxes, representing
the parts of the proof-structure that can be copied and discarded (i.e. called an unbounded
number of times). A box is delimited from the rest of a proof-structure by exponential
modalities: its border is made of one !-cell, its principal door, and arbitrarily many ?-cells,
its auxiliary doors. Boxes are nested or disjoint (they cannot partially overlap), so as to add
a tree-like structure to proof-structures aside from their graph-like nature.

As in λ-calculus, one can define [13] box-free resource proof-structures2, where !-cells make
resources available boundedly, and the Taylor expansion of MELL proof-structures into these
resource proof-structures, that recursively copies the content of the boxes an arbitrary number
of times. In fact, as somehow anticipated by Boudes [3], such a Taylor expansion operation can
be carried on any tree-like structure. This primitive, abstract, notion of Taylor expansion can
then be pulled back to the structure of interest, as shown in [17] and put forth again here.

The question of coherence for proof-structures The inverse Taylor expansion problem
has a natural counterpart in the world of MELL proof-structures: given a set of resource
proof-structures, is there a MELL proof-structure the expansion of which contains the set?
Pagani and Tasson [22] give the following answer: it is possible to decide whether a finite set of
resource proof-structures is a subset of the Taylor expansion of a same MELL proof-structure
(and even possible to do it in non-deterministic polynomial time); but unlike the λ-calculus,
the structure of the relation “being part of the Taylor expansion of a same proof-structure”

1 A term-like object is essentially a tree, with one output (its root) and many inputs (its other leaves).
2 Also known as differential proof-structures [6] or differential nets [13, 20, 7] or simple nets [22].
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is much more complicated than a binary (or even n-ary) coherence. Indeed, for any n > 1, it
is possible to find n+ 1 resource proof-structures such that any n of them are in the Taylor
expansion of some MELL proof-structure, but there is no MELL proof-structure whose Taylor
expansion has all the n+1 as elements (see our Example 21 and [25, pp. 244-246]).

In this work, we introduce a new combinatorial criterion, glueability, for deciding whether
a set of resource proof-structures is a subset of the Taylor expansion of some MELL proof
structure, based on a rewriting system on sequences of MELL formulæ. Our criterion is more
general (and, we believe, simpler) than the one of [22], which is limited to the cut-free case with
atomic axioms and characterizes only finite sets: we do not have these limitations. We believe
that our criterion is a useful tool for studying proof-structures. We conjecture that it can be
used to show that, for a suitable geometric restriction, a binary coherence relation does exist
for resource proof-structures. It might also shed light on correctness and sequentialization.

As the proof-structures we consider are typed, an unrelated difficulty arises: a resource
proof-structure might not be in the Taylor expansion of any MELL proof-structure, not
because it does not respect the structure imposed by the Taylor expansion, but because its
type is impossible.3 To solve this issue we enrich the MELL proof-structure syntax with a
“universal” proof-structure: a special z-cell (daimon) that can have any number of outputs
of any types, and we allow it to appear inside a box, representing information plainly missing
(see Section 8 for more details and the way this matter is handled by Pagani and Tasson [22]).

2 Outline and technical issues

The rewritings The essence of our rewriting system is not located on proof-structures but
on lists of MELL formulæ (Definition 9). In a very down-to-earth way, this rewriting system is
generated by elementary steps akin to rules of sequent calculus read from the bottom up: they
act on a list of conclusions, analogous to a monolaterous right-handed sequent. These steps are
actually more sequentialized than sequent calculus rules, as they do not allow for commutation.
For instance, the rule corresponding to the introduction of a ⊗ on the i-th formula, is defined
as ⊗i : (γ1, . . . , γi−1, A⊗B, γi+1, . . . , γn)→ (γ1, . . . , γi−1, A,B, γi+1, . . . , γn).

A A⊥

ax

⊗

A⊗A⊥

⊗1
A A⊥

axThese rewrite steps then act on MELL proof-structures, coherently
with their type, by modifying (most of the times, erasing) the cells
directly connected to the conclusion of the proof-structure. Formally,
this means that there is a functor qMELLz from the rewrite steps
into the category Rel of sets and relations, associating with a list of formulæ the set of MELL
proof-structures with these conclusions, and with a rewrite step a relation implementing it
(Definition 12). The rules deconstruct the proof-structure, starting from its conclusions. The
rule ⊗1 acts by removing a ⊗-cell on the first conclusion, replacing it by two conclusions.

These rules can only act on specific proof-structures, and indeed, capture a lot of their
structure: ⊗i can be applied to a MELL proof-structure R if and only if R has a ⊗-cell in
the conclusion i (as opposed to, say, an axiom). So, in particular, every proof-structure is
completely characterized by any sequence rewriting it to the empty proof-structure.

Naturality The same rules act also on sets of resource proof-structures, defining the functor
PqDiLLz0 from the rewrite steps into the category Rel (Definition 17). When carefully
defined, the Taylor expansion induces a natural transformation from PqDiLLz0 to qMELLz

3 Similarly, in the λ-calculus, there is no closed λ-term of type X → Y with X 6= Y atomic, but the
resource λ-term (λf.f)[ ] can be given that type: the empty bag [ ] kills any information on the argument.
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(Theorem 18). By applying this naturality repeatedly, we get our characterization (The-
orem 20): a set of resource proof-structures Π is a subset of the Taylor expansion of a MELL
proof-structure iff there is a sequence rewriting Π to the singleton of the empty proof-structure.

The naturality property is not only a mean to get our characterization, but also an
interesting result in itself: natural transformations can often be used to express fundamental
properties in a mathematical context. In this case, the Taylor expansion is natural with
respect to the possibility to build a proof-structure (both MELL or resource) by adding a cell
to its conclusions or boxing it. Said differently, naturality of the Taylor expansion roughly
means that the rewrite rules that deconstruct a MELL proof-structure R and a set of resource
proof-structures in the Taylor expansion of R mimic each other.

Quasi-proof-structures and mix Our rewrite rules consume proof-structures from their
conclusions. The rule corresponding to boxes in MELL opens a box by deleting its principal
door (a !-cell) and its border, while for a resource proof-structure it deletes a !-cell and
separates the different copies of the content of the box (possibly) represented by such a !-cell.
This operation is problematic in a twofold way. In a resource proof-structure, where the
border of boxes is not marked, it is not clear how to identify such copies. On the other side,
in a MELL proof-structure the content of a box is not to be treated as if it were at the same
level as what is outside of the box: it can be copied many times or erased, while what is
outside boxes cannot, and treating the content in the same way as the outside suppresses
this distinction, which is crucial in LL. So, we need to remember that the content of a box,
even if it is at depth 0 (i.e. not contained in any other box) after erasing the box wrapping
it by means of our rewrite rules, is not to be mixed with the rest of the structure at depth 0.

π

· · ·

In order for our proof-structures to provide this information, we need to
generalize them and consider that a proof-structure can have not just a tree of
boxes, but a forest: this yields the notion of quasi-proof-structure (Definition 1).
In this way, according to our rewrite rules, opening a box by deleting its principal door
amounts to taking a box in the tree and disconnecting it from its root, creating a new tree.
We draw this by surrounding elements having the same root with a dashed line, open from
the bottom, remembering the phantom presence of the border of the box, below, even if it
was erased. This allows one to open the box only when it is “alone” (see Definition 11).

This is not merely a technical remark, as this generalization gives a status to the mix
rule of LL: indeed, mixing two proofs amounts to taking two proofs and considering them
as one, without any other modifications. Here, it amounts to taking two proofs, each with
its box-tree, and considering them as one by merging the roots of their trees (see the mix
step in Definition 11). We embed this design decision up to the level of formulæ, which
are segregated in different zones that have to be mixed before interacting (see the notion of
partition of a finite sequence of formulæin Section 3).

Geometric invariance and emptiness: the filled Taylor expansion The use of forests
instead of trees for the nesting structure of boxes, where the different roots are thought of
as the contents of long-gone boxes, has an interesting consequence in the Taylor expansion:
indeed, an element of the Taylor expansion of a proof-structure contains an arbitrary number
of copies of the contents of the boxes, in particular zero. If we think of the part at depth
0 of a MELL proof-structure as inside an invisible box, its content can be deleted in some
elements of the Taylor expansion just as any other box.4 As erasing completely conclusions

4 The dual case, of copying the contents of a box, poses no problem in our approach.
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A A⊥ A B A B A · · · A A · · · A

X X⊥ 1 ⊥ A1 . . . Ap

ax
cut

1 ⊥
⊗

A⊗B

`
A`B

?

?A

!

!A

zp

Figure 1 Cells, with their labels and their typed inputs and outputs (ordered from left to right).

would cause the Taylor expansion not preserve the conclusions (which would lead to technical
complications), we introduce the filled Taylor expansion (Definition 8), which contains not
only the elements of the usual Taylor expansion, but also elements of the Taylor expansion
where one component has been erased and replaced by a z-cell (daimon), representing a
lack of information, apart from the number and types of the conclusions.

Atomic axioms Our paper first focuses on the case where proof-structures are restricted to
atomic axioms. In Section 7 we sketch how to adapt our method to the non-atomic case.

3 Proof-structures and the Taylor expansion

MELL formulæ and (quasi-)proof-structures Given a countably infinite set of propositional
variables X,Y, Z, . . . , MELL formulæ are defined by the following inductive grammar:

A,B ::= X | X⊥ | 1 | ⊥ | A⊗B | A`B | !A | ?A

Linear negation is defined via De Morgan laws 1⊥ = ⊥, (A ⊗ B)⊥ = A⊥ ` B⊥ and
(!A)⊥ = ?A, so as to be involutive, i.e. A⊥⊥ = A. Given a list Γ = (A1, . . . , Am) of MELL
formulæ, a partition of Γ is a list (Γ1, . . . ,Γn) of lists of MELL formulæsuch that there are
0 = i0 < · · · < in = m with Γj = (Aij−1+1, . . . , Aij ) for all 1 6 j 6 n; such a partition of Γ
is also denoted by (A1, . . . , Ai1 ; · · · ;Ain−1+1, . . . , Am), with lists separated by semi-colons.

We reuse the syntax of proof-structures given in [17] and sketch here its main features. We
suppose known definitions of (directed) graph, rooted tree, and morphism of these structures.
In what follows we will speak of tails in a graph: “hanging” edges with only one vertex. This
can be implemented either by adding special vertices or using [2]’s graphs.

If an edge e is incoming in (resp. outgoing from) a vertex v, we say that e is a input
(resp. output) of v. The reflexive-transitive closure of a tree τ is denoted by τ	: the operator
(·)	 lifts to a functor from the category of trees to the category of directed graphs.

I Definition 1. A module M is a (finite) directed graph with:
vertices v labeled by `(v) ∈ {ax, cut,1,⊥,⊗,`, ?, !} ∪ {zp | p ∈ N}, the type of v;
edges e labeled by a MELL formula c(e), the type of e;
an order <M that is total on the tails of |M | and on the inputs of each vertex of type `,⊗.

Moreover, all the vertices verify the conditions of Figure 1.5
A quasi-proof-structure is a triple R = (|R|,F , box) where:
|R| is a module with no input tails, called the module of R;
F is a forest of rooted trees with no input tails, called the box-forest of R;
box : |R| → F	 is a morphism of directed graphs, the box-function of R, which induces a
partial bijection from the inputs of the vertices of type ! and the edges in F , and such that:

for any vertices v, v′ with an edge from v′ to v, if box(v) 6= box(v′) then `(v) ∈ {!, ?}.6

5 Note that there are no conditions on the types of the outputs of vertices of type z (i.e. of type zp for
some p ∈ N); and the outputs of vertices of type ax must have atomic types.

6 Roughly, it says that the border of a box is made of (inputs of) vertices of type ! or ?.
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23:6 Glueability of resource proof-structures: inverting the Taylor expansion

Moreover, for any output tails e1, e2, e3 in |R| which are outputs of the vertices v1, v2, v3,
respectively, if e1 <|R| e2 <|R| e3 then it is impossible that box(v1) = box(v3) 6= box(v2).7

A quasi-proof-structure R = (|R|,F , box) is:
1. MELLz if all vertices in |R| of type ! have exactly one input, and the partial bijection

induced by box from the inputs of the vertices of type ! in |R| and the edges in F is total.
2. MELL if it is MELLz and, for every vertex v in |R| of type z, one has box−1(box(v)) = {v}

and box(v) is not a root of the box-forest F of R.
3. DiLLz0 if the box-forest F of R is just a juxtaposition of roots.
4. DiLL0 (or resource) if it is DiLLz0 and there is no vertex in |R| of type z.
For the previous systems, a proof-structure is a quasi-proof-structure whose box-forest is a tree.

Our MELL proof-structure (i.e. a MELL quasi-proof-structure that is also a proof-structure)
corresponds to the usual notion of MELL proof-structure (as in [8]) except that we also allow
the presence of a box filled only by a daimon (i.e. a vertex of type z). The empty (DiLL0 and
MELL) proof-structure—whose module and box-forest are empty graphs—is denoted by ε.

Given a quasi-proof-structure R = (|R|,F , box), the output tails of |R| are the conclusions
of R. So, the pre-images of the roots of F via box partition the conclusions of R in a list of
lists of such conclusions. The type of R is the list of lists of the types of these conclusions.
We often identify the conclusions of R with a finite initial segment of N.

By definition of graph morphism, two conclusions in two distinct lists in the type of a
quasi-proof-structure R are in two distinct connected components of |R|; so, if R is not a
proof-structure then |R| contains several connected components. Thus, R can be seen as a
list of proof-structures, its components, one for each root in its box-forest.

A non-root vertex v in the box-forest F induces a subgraph of F	 of all vertices above it
and edges connecting them. The pre-image of this subgraph through box is the box of v and
the conditions on box in Definition 1 translate the usual nesting condition for LL boxes.

In quasi-proof-structures, we speak of cells instead of vertices, and, for a cell of type `, of
a `-cell. A z-cell is a zp-cell for some p ∈ N. An hypothesis cell is a cell without inputs.

I Example 2. The graph in Figure 2 is a MELL quasi-proof-structure. The colored areas
represent the pre-images of boxes, and the dashed boxes represent the pre-images of roots.

⊥ 1 Y Y ⊥

⊥ 1

X 1

X⊥

ax

ax

ax

!

!1

!
⊥ 1

!

!1

!
?

?⊥
?

?!1

⊗

X ⊗ ?⊥

?

?Y
`

?Y ` Y ⊥

!

!(?Y ` Y ⊥)

!

1

!

!1

! •

•

•

•

• •

Figure 2 A MELL quasi-proof-structure R, its box-forest FR (without dotted lines) and the
reflexive-transitive closure F	R of FR (with also dotted lines).

7 This is a technical condition that simplifies the definition of the rewrite rules in Section 4. Note that
box(v1), box(v2), box(v3) are necessarily roots in F , since box is a morphism of directed graphs.
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The Taylor expansion Proof-structures have a tree structure made explicit by their box-
function. Following [17], the definition of the Taylor expansion uses this tree structure: first,
we define how to “expand” a tree—and more generally a forest—via a generalization of the
notion of thick subtree [3] (Definition 3; roughly, a thick subforest of a box-forest says the
number of copies of each box to be taken, iteratively), we then take all the expansions of the
tree structure of a proof-structure and we pull the approximations back to the underlying
graphs (Definition 5), finally we forget the tree structures associated with them (Definition 6).

I Definition 3 (thick subforest). Let τ be a forest of rooted trees. A thick subforest of τ is a
pair (σ, h) of a forest σ of rooted trees and a graph morphism h : σ → τ whose restriction to
the roots of σ is bijective.

I Example 4. The following is a graphical presentation of a thick subforest (τ, h) of the
box-forest F of the quasi-proof-structure in Figure 2, where the graph morphism h : τ → F
is depicted chromatically (same color means same image via h).

τ =

•

•

•

• •

• •

•

• • • • •
h−→

•

•

•

•

• •
= F

Intuitively, it means that τ is obtained from F by taking 3 copies of the blue box, 1 copy of
the red box and 4 copies of the orange box; in the first (resp. second; third) copy of the blue
box, 1 copy (resp. 0 copies; 2 copies) of the purple box has been taken.

I Definition 5 (proto-Taylor expansion). Let R = (|R|,FR, boxR) be a quasi-proof-structure.
The proto-Taylor expansion of R is the set T proto(R) of thick subforests of FR.

Let t = (τt, ht) ∈ T proto(R). The t-expansion of R is the pullback (Rt, pt, pR) below,
computed in the category of directed graphs and graph morphisms.

Rt τ	t

|R| F	R

pt

pR h	t

boxR

Given a quasi-proof-structure R and t = (τt, ht) ∈ T proto(R), the directed graph Rt
inherits labels on vertices and edges by composition with the graph morphism pR : Rt → |R|.

Let [τt] be the forest made up of the roots of τt and ι : τt → [τt] be the graph morphism
sending each vertex of τt to the root below it; ι	 induces by post-composition a morphism
ht = ι	 ◦ pt : Rt → [τt]	. The triple (Rt, [τt], ht) is a DiLL0 quasi-proof-structure, and it is a
DiLL0 proof-structure if R is a proof-structure. We can then define the Taylor expansion T (R)
of a quasi-proof-structure R (an example of an element of a Taylor expansion is in Figure 3).

I Definition 6 (Taylor expansion). Let R be a quasi-proof-structure. The Taylor expansion of
R is the set of DiLL0 quasi-proof-structures T (R) = {(Rt, [τt], ht) | t = (τt, ht) ∈ T proto(R)}.

An element (Rt, [τt], ht) of the Taylor expansion of a quasi-proof-structure R has much
less structure than the pullback (Rt, pt, pR): the latter indeed is a DiLL0 quasi-proof-structure
Rt coming with its projections |R| pR←− Rt

pt−→ τ	t , which establish a precise correspondence
between cells and edges of Rt and cells and edges of R: a cell in Rt is labeled (via the
projections) by both the cell of |R| and the branch of the box-forest of R it arose from. But
(Rt, [τt], ht) where Rt is without its projections pt and pR loses the correspondence with R.

CVIT 2016
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⊥ 1 ⊥ 1 ⊥ 1 Y Y ⊥

⊥ 1 1 1

X 1 1 1 1

X⊥ !1

ax

ax

ax ax ax

!

!1

!

!1

!

⊥ 1 1 1

!

!1?

?⊥

?

?!1

⊗

X ⊗ ?⊥

?

?Y
`

?Y ` Y ⊥

!

!(?Y ` Y ⊥)

1 1 1 1

!

!1

• •

Figure 3 The element of the Taylor expansion of the MELL quasi-proof-structure R in Figure 2,
obtained from the element of T proto(R) depicted in Example 4.

I Remark 7. By definition, the Taylor expansion preserves conclusions: there is a bijection
ϕ from the conclusions of a quasi-proof-structure R to the ones in each element ρ of T (R)
such that i and ϕ(i) have the same type and the same root (i.e. boxR(i) = boxρ(ϕ(i)) up to
isomorphism). Therefore, the types of R and ρ are the same (as a list of lists).

The filled Taylor expansion As discussed in Section 2 (p. 4), our method needs to “represent”
the emptiness introduced by the Taylor expansion (taking 0 copies of a box) so as to preserve
the conclusions. So, an element of the filled Taylor expansion T z(R) of a quasi-proof-structure
R (an example is in Figure 4) is obtained from an element of T (R) where a whole component
can be erased and replaced by a z-cell with the same conclusions (hence T (R) ⊆ T z(R)).

I Definition 8 (filled Taylor expansion). An emptying of a DiLL0 quasi-proof-structure ρ =
(|ρ|,F , box) is the DiLL0 quasi-proof-structure with the same conclusions as ρ, obtained from ρ

by replacing each of the components of some roots of F with a z-cell whose outputs are tails.
The filled Taylor expansion T z(R) of a quasi-proof-structure R is the set of all the

emptyings of every element of its Taylor expansion T (R).

1 1

X⊥ X ⊗ ?⊥ ?!1 !(?Y ` Y ⊥)

z !

1 1

!

!1

• •

Figure 4 An element of the filled Taylor expansion of the MELL quasi-proof-structure in Figure 2.

4 Means of destruction: unwinding MELL quasi-proof-structures

Our aim is to deconstruct proof-structures (be they MELLz or DiLL0) from their conclusions.
To do that, we introduce a category of rules of deconstruction. The morphisms of this category
are sequences of deconstructing rules, acting on lists of lists of formulæ. These morphisms
act through functors on quasi-proof-structures, exhibiting their sequential structure.

I Definition 9 (the category Path). Let Path be the category whose
objects are lists Γ = (Γ1; . . . ; Γn) of lists of MELL formulæ;
arrows are freely generated by the elementary paths in Figure 5.

We call a path any arrow ξ : Γ→ Γ′. We write the composition of paths without symbols and
in the diagrammatic order, so, if ξ : Γ→ Γ′ and ξ′ : Γ′ → Γ′′, ξξ′ : Γ→ Γ′′.
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(Γ1; · · · ; Γk, c(i), c(i+1),Γ′k; · · · ; Γn) exci−−→ (Γ1; · · · ; Γk, c(i+1), c(i),Γ′k; · · · ; Γn)
(Γ1; · · · ; Γk, c(i), c(i+1),Γ′k; · · · ; Γn) mixi−−→ (Γ1; · · · ; Γk, c(i); c(i+1),Γ′k; · · · ; Γn)

(Γ1; · · · ; Γk; c(i), c(i+1); Γk+2; · · · ; Γn) axi−−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = A = c(i+1)⊥

(Γ1; · · · ; Γk; · · · ; Γn) cuti

−−→ (Γ1; · · · ; Γk, c(i), c(i+1); · · · ; Γn) with c(i) = A = c(i+1)⊥

(Γ1; · · · ; Γk; Γk+1, c(i); Γk+2; · · · ; Γn) zi−−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn)
(Γ1; · · · ; Γk; c(i); Γk+2; · · · ; Γn) 1i−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = 1
(Γ1; · · · ; Γk; c(i); Γk+2; · · · ; Γn) ⊥i−−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = ⊥

(Γ1; · · · ; Γk, c(i); · · · ; Γn) ⊗i−−→ (Γ1; · · · ; Γk, A,B; · · · ; Γn) with c(i) = A⊗B
(Γ1; · · · ; Γk, c(i); · · · ; Γn) `i−−→ (Γ1; · · · ; Γk, A,B; · · · ; Γn) with c(i) = A`B

(Γ1; · · · ; Γk, c(i); · · · ; Γn) ?ci−→ (Γ1; · · · ; Γk, ?A, ?A; · · · ,Γn) with c(i) = ?A
(Γ1; · · · ; Γk, c(i); · · · ; Γn) ?di−→ (Γ1; · · · ; Γk, A; · · · ; Γn) with c(i) = ?A

(Γ1; · · · ; Γk; c(i); Γk+2; · · · ; Γn) ?wi−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = ?A
(Γ1; · · · ; ?Γk, c(i); · · · ; Γn) Boxi−−−→ (Γ1; · · · ; ?Γk, A; · · · ; Γn) with c(i) = !A

Figure 5 The generators of Path. In the source Γ = (A1, . . . , Ai1 ; · · · ;Aim−1+1, . . . , Ain ) of each
arrow, c(i) denotes the ith formula in the flattening (A1, . . . , Ai1 , . . . , Aim−1+1, . . . , Ain ) of Γ.

I Example 10. `1 `2 `3 ⊗1 ⊗3 exc1 exc2 mix2 ax1 exc2 mix2 ax1 ax1 is a path of type(
(X ⊗ Y ⊥) ` ((Y ⊗ Z⊥) ` (X⊥ ` Z))

)
−→ ε, where ε is the empty list of lists of formulæ.

We will tend to forget about exchanges and perform them silently (as it is customary, for
instance, in most presentations of sequent calculi).

The category Path acts on MELLz quasi-proof-structures, exhibiting a sequential struc-
ture in their construction. For Γ a list of list of MELL formulæ, qMELLz(Γ) is the set of
MELLz quasi-proof-structures of type Γ. To ease the reading of the rewrite rules acting on a
MELLz quasi-proof-structures R, we will only draw the parts of R belonging to the relevant
component; e.g., if we are interested in an ax-cell whose outputs are the conclusions i and

i+1, and it is the only cell in a component, we will write i i+1

ax

ignoring the rest.

I Definition 11 (action of paths on MELL quasi-proof-structures). An elementary path a : Γ→
Γ′ defines a relation a ⊆ qMELLz(Γ)× qMELLz(Γ′) (the action of a) as the smallest
relation containing all the cases in Figure 6, with the following remarks:
mix read in reverse, a quasi-proof-structure with two components is in relation with a proof-

structure with the same module but the two roots of such components merged.
hypothesis if a ∈ {axi,zi,1i,⊥i, ?wi}, the rules have all in common to act by deleting a cell

without inputs that is the only cell in its component. We have drawn the axiom case in
Figure 6c, the others vary only by their number of conclusions.

cut read in reverse, a quasi-proof-structure with two conclusions i and i+ 1 is in relation
with the quasi-proof-structure where these two conclusions are cut. This rule, from left to
right, is non-deterministic (as there are many possible cuts).

binary multiplicatives these rules delete a binary connective. We have only drawn the ⊗
case in Figure 6e, the ` case is similar.

contraction splits a ?-cell with h+k+2 inputs into two ?-cells with h+1 and k+1 inputs,
respectively.

dereliction only applies if the ?-cell (with 1 input) does not shift a level in the box-forest.
box only applies if a box (and its frontier) is alone in its component.

This definition of the rewrite system is extended to define a relation ξ ⊆ qMELLz(Γ)×
qMELLz(Γ′) (the action of any path ξ : Γ→ Γ′) by composition of relations.

CVIT 2016
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Γk i i+1 Γ′
k

exci

Γk i+1 i Γ′
k

(a) Exchange

Γk i i+1 Γ′
k

mixi

Γk i i+1 Γ′
k

(b) Mix
· · · i i+1 · · ·

ax
axi

· · · · · ·

(c) Hypothesis (ax,z,1,⊥, ?w)

Γk

cut

cuti

i+1iΓk

(d) Cut

Γk

⊗

i

⊗i

Γk i i+1

(e) Binary multiplicative (⊗,`)

Γk · · · · · ·

?

i

?ci

Γk · · ·

?

i

· · ·

?

i+1

(f) Contraction

Γk

?

i

?di

Γk i

(g) Dereliction

!

i

?

?Γk

Boxi

i

?

?Γk

(h) Box

Figure 6 Actions of elementary paths on MELLz quasi-proof-structures.

Given two MELLz quasi-proof-structures R and R′, we say that a rule a applies to R if
there is a finite sequence of exchanges exci1 · · · excin such that R exci1 ···excina R′.

I Definition 12 (the functor qMELLz). We define a functor qMELLz : Path→ Rel by:
on objects: qMELLz(Γ) is the set of MELLz quasi-proof-structures of type Γ;
on morphisms: for ξ : Γ→ Γ′, qMELLz(ξ) = ξ (see Definition 11).

Our rewrite rules enjoy two useful properties, expressed by Propositions 13 and 15.

I Proposition 13 (co-functionality). Let ξ : Γ→ Γ′ be a path. The relation ξ is a co-function
on the sets of underlying graphs, that is, a function ξ

op
: qMELLz(Γ′)→ qMELLz(Γ).

I Lemma 14 (applicability of rules). Let R be a non-empty MELLz quasi-proof-structure.
There exists a conclusion i such that:

either a rule in {axi,1i,⊥i,⊗i,`i, ?c i, ?d i, ?wi, cuti,zi,Boxi} applies to R;
or R mixi R′ (where the conclusions affected by mixi are i−k, . . . , i, i+1, . . . , i+`) and
i−k, . . . , i are all the conclusions of either a box or an hypothesis cell, and one of the
components of R′ coincides with this cell or box (and its border).

Proposition 13 and Lemma 14 are proven by simple inspection of the rewrite rules of Figure 6.

I Proposition 15 (termination). Let R be a MELLz quasi-proof-structure of type Γ. There
exists a path ξ : Γ→ ε such that R ξ ε.

To prove Proposition 15, it is enough to apply Lemma 14 and show that the size of MELLz

quasi-proof-structures decreases for each application of the rules in Figure 6, according to
the following definition of size. The size of a proof-structure R is the couple (p, q) where

p is the (finite) multiset of the number of inputs of each ?-cell in R;
q is the number of cells not labeled by z in R.

The size of a quasi-proof-structure R is the (finite) multiset of the sizes of its components.
Multisets are ordered as usual, couples are ordered lexicographically.
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Γk i i+1 Γ′
k

z
mixi

{
Γk i i+1 Γ′

k

z z
}

(a) Mix

. . . i i+1 . . .

z
axi

{
. . . . . .

}
(b) Hypothesis (ax,z,1,⊥, ?w)

Γk

z
cuti

{
Γk i i+1

z
}

(c) Cut

Γk i

z ?ci

{
Γk i i+1

z
}

(d) Binary rule (⊗,`, ?c )
Γk i

z ?di

{
Γk i

z
}

(e) Dereliction

?Γk i

z
Boxi

{
?Γk i

z
}

(f) Daimoned box

?Γk i

? !
Boxi

{
?Γk i

z
}

(g) Empty box

. . .

ρn

ρ1

!

i

?

?Γk

Boxi
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. . .ρj

i?

?Γk


16j6n

(h) Non-empty box (n > 0)

Figure 7 Actions of elementary paths on z-cells and on a box in qDiLLz0 .

5 Naturality of unwinding DiLLz
0 quasi-proof-structures

For Γ a list of lists of MELL formulæ, qDiLLz0 (Γ) is the set of DiLLz0 quasi-proof-structures
of type Γ. For any set X, its powerset is denoted by P(X).

I Definition 16 (action of paths on DiLLz0 quasi-proof-structures). An elementary path
a : Γ → Γ′ defines a relation a ⊆ qDiLLz0 (Γ) ×P(qDiLLz0 (Γ′)) (the action of a) by the
rules in Figure 6 (except Figure 6h, and with all the already remarked notes) and in Figure 7.

We extend this relation on P(qDiLLz0 (Γ))×P(qDiLLz0 (Γ′)) by the monad multiplication
of X 7→ P(X) and define ξ (the action of any path ξ : Γ→ Γ′) by composition of relations.

Roughly, all the rewrite rules in Figure 7—except Figure 7h—mimic the behavior of the
corresponding rule in Figure 6 using a z-cell. Note that in Figure 7g a z-cell is created.

The non-empty box rule in Figure 7h requires that, on the left of Boxi , ρj is not connected
to ρj′ for j 6= j′, except for the !-cell and the ?-cells in the conclusions. Read in reverse, the
rule associates with a non-empty finite set of DiLL0 quasi-proof-structures {ρ1, . . . , ρn} the
merging of ρ1, . . . , ρn, that is the DiLL0 quasi-proof-structure depicted on the left of Boxi .

I Definition 17 (the functor PqDiLLz0 ). We define a functor PqDiLLz0 : Path→ Rel by:
on objects: for Γ a list of lists of MELL formulæ, PqDiLLz0 (Γ) = P(qDiLLz0 (Γ)), the
set of sets of DiLLz0 proof-structures of type Γ;
on morphisms: for ξ : Γ→ Γ′, PqDiLLz0 (ξ) = ξ (see Definition 16).

I Theorem 18 (naturality). The filled Taylor expansion defines a natural transformation Proof in
Appendix A, p. 18

Tz : PqDiLLz0 ⇒qMELLz : Path→Rel by: (Π, R)∈TzΓ iff Π⊆T z(R) and the type of
R is Γ. Moreover, if Π is a set of DiLL0 proof-structures with Π ξ Π′ and Π′ ⊆ T (R′), then
R is a MELL proof-structure and Π ⊆ T (R), where R is such that R ξ R′.8

8 The part of the statement after “moreover” is our way to control the presence of z-cells.
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In other words, the following diagram commutes for every path ξ : Γ→ Γ′.

PqDiLLz0 (Γ) PqDiLLz0 (Γ′)

qMELLz(Γ) qMELLz(Γ′)

PqDiLLz0 (ξ)

TzΓ

qMELLz(ξ)
TzΓ′

It means that given Π ξ Π′, where Π′ ⊆ T z(R′), we can simulate backwards the rewriting
to R (this is where the co-functionality of the rewriting steps expressed by Proposition 13
comes handy) so that R ξ R′ and Π ⊆ T z(R); and conversely, given R ξ R′, we can
simulate the rewriting for any Π ⊆ T z(R), so that Π ξ Π′ for some Π′ ⊆ T z(R′).

6 Glueability of DiLL0 quasi-proof-structures

Naturality (Theorem 18) allows us to characterize the sets of DiLL0 proof-structures that are
in the Taylor expansion of some MELL proof-structure (Theorem 20 below).

I Definition 19 (glueability). We say that a set Π of DiLLz0 quasi-proof-structures is glueable,
if there exists a path ξ such that Π ξ {ε}.

I Theorem 20 (glueability criterion). Let Π be a set of DiLL0 proof-structures: Π is glueable
if and only if Π ⊆ T (R) for some MELL proof-structure R.

Proof. If Π ⊆ T (R) for some MELL proof-structure R, then by termination (Proposition 15)
R ξ ε for some path ξ, and so Π ξ {ε} by naturality (Theorem 18, as T z(ε) = {ε}).

Conversely, if Π ξ {ε} for some path ξ, then by naturality (Theorem 18, as T (ε) = {ε}
and Π is a set of DiLL0 proof-structures) Π ⊆ T (R) for some MELL proof-structure R. J

I Example 21. The three DiLL0 proof-structures ρ1, ρ2, ρ3 below are not glueable as a
whole, but are glueable two by two. In fact, there is no MELL proof-structure whose Taylor
expansion contains ρ1, ρ2, ρ3, but any pair of them is in the Taylor expansion of some MELL
proof-structure. This is a slight variant of the example in [25, pp. 244-246].

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

!

!1

!

!1

!

!1

?

?⊥

?

?⊥

?

?⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

!

!1

!

!1

!

!1

?

?⊥

?

?⊥

?

?⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

!

!1

!

!1

!

!1

?

?⊥

?

?⊥

?

?⊥

An example of the action of a path starting from a DiLL0 proof-structure ρ and ending in
{ε} can be found in Figures 8 and 9. Note that it is by no means the shortest possible path.
When replayed backwards, it induces a MELL proof-structure R such that ρ ∈ T (R).

7 Non-atomic axioms

From now on, we relax the definition of quasi-proof-structure (Definition 1 and Figure 1) so
that the outputs of any ax-cell are labeled by dual MELL formulæ, not necessarily atomic. We
can extend our results to this more general setting, with some technical complications. Indeed,
the rewrite rule for contraction has to be modified. Consider a set of DiLL0 proof-structures
consisting of just a singleton which is a z-cell. The contraction rule rewrites it as:

!A⊥ !A⊥ ?A

z ?c3
{

!A⊥ !A⊥ ?A ?A

z }
which is then in the Taylor expansion of !A⊥ !A⊥ ?A ?A

ax
ax
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ρ =
{

??⊥ !!(A⊥`A)

? ! }
Box2

{
??⊥ !(A⊥`A)

z
}

?d1

{
?⊥ !(A⊥`A)

z
}

R = A⊥ A

⊥ ⊥
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`
A⊥`A

!
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⊥ ⊥

?

?⊥

?

??⊥

!
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!

Box2
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⊥ ⊥
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⊥ ⊥

?

?⊥

!

!(A⊥`A)

!

?

??⊥

?d1
A⊥ A

⊥ ⊥

ax

`
A⊥`A

⊥ ⊥

?

?⊥

!

!(A⊥`A)

!

Box2

{
?⊥ A⊥`A

z
}

`2

{
?⊥ A⊥ A

z
}

mix1

{
?⊥ A⊥ A

z z
}

Box2
⊥ ⊥ A⊥ A

ax

`
A⊥`A

⊥ ⊥

?

?⊥

`2
⊥ ⊥ A⊥ A

ax⊥ ⊥

?

?⊥

mix1
⊥ ⊥ A⊥ A

ax⊥ ⊥

?

?⊥

Figure 8 The path Box2 ?d1 Box2 `2 mix1 ax2,3 ?c 1 ?d2 mix1 ⊥2 ?d1⊥1 witnessing that ρ ∈ T (R) (to
be continued on Figure 9).

on which no contraction rewrite rule ?c can be applied backwards, breaking the naturality.
The failure of the naturality is actually due to the failure of Proposition 13 in the case of the
rewrite rule ?c : ?c

op
(i.e. ?c read from the right to the left) is functional but not total.

The solution to this conundrum lies in changing the contraction rule for DiLLz0 quasi-
proof-structures, by explicitly adding ?-cells. Hence, the application of a contraction step ?c
in the DiLLz0 quasi-proof-structures precludes the possibility of anything else but a ?-cell on
the MELLz side, which allows the contraction step ?c to be applied backwards.

In turn, this forces us to change the definition of the filled Taylor expansion into a η-filled
Taylor expansion, which has to include elements where a z-cell (representing an empty
component) has some of its outputs connected to ?-cells.

I Definition 22 (η-filled Taylor expansion). An η-emptying of a DiLL0 quasi-proof-structure
ρ = (|ρ|,F , box) is a DiLL0 quasi-proof-structure with the same conclusions as ρ, obtained
from ρ by replacing each of the components of some roots of F with a z-cell whose outputs
are either tails or inputs of a ?-cell whose output i is a tail, provided that i is the output tail
of a ?-cell in ρ.

The η-filled Taylor expansion T zη (R) of a quasi-proof-structure R is the set of all the
η-emptyings of every element of its Taylor expansion T (R).

Note that the η-filled Taylor expansion contains all the elements of the filled Taylor
expansion and some more, such as the one in Figure 10.
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ax2,3

{
?⊥

z
}

?c1

{
?⊥ ?⊥

z
}
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{
?⊥ ⊥

z
}
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{
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z z
}
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?

?⊥

?

?⊥
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⊥ ⊥

⊥ ⊥

?

?⊥
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⊥ ⊥

?

?⊥

⊥2

{
?⊥

z
}
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{
⊥

z
}

⊥1 { ε }

⊥2
⊥

⊥

?

?⊥

?d1
⊥

⊥
⊥1 { ε }

Figure 9 The path Box2 ?d1 Box2 `2 mix1 ax2,3 ?c 1 ?d2 mix1 ⊥2 ?d1⊥1 witnessing that ρ ∈ T (R)
(continued from Figure 8).

X⊥ X ⊗ ?⊥ !1 !(?Y ` Y ⊥) 1 1

z

?

?!1

! 1 1

!

!1

• •

Figure 10 An element of the η-filled Taylor expansion of the MELL quasi-proof-structure in Fig. 2.

Functors qMELLz and PqDiLLz0 are defined as before (Def. 12 and 17, respectively),9
except that the image of PqDiLLz0 on the generator ?c i (Figure 7d) is changed to

?[Γk] i

z ?ci

{
?[Γk]

z

?

i

?

i+1

}

where ?[Γk] signifies that some of the conclusions of Γk might be connected to the z-cell
through a ?-cell (see Appendix B for details). We can prove similarly our main results.

I Theorem 23 (naturality with η). The η-filled Taylor expansion defines a natural transform-
ation Tzη : PqDiLLz0 ⇒ qMELLz : Path→Rel by: (Π, R)∈Tzη Γ iff Π⊆T zη (R) and the
type of R is Γ. Moreover, if Π is a set of DiLL0 proof-structures with Π ξ Π′ and Π′ ⊆ T (R′),
then R is a MELL proof-structure and Π ⊆ T (R), where R is such that R ξ R′.

I Theorem 24 (glueability criterion with η). Let Π be a set of DiLL0 proof-structures, not
necessarily with atomic axioms: Π is glueable iff Π ⊆ T (R) for some MELL proof-structure R.

9 Remember that now, for Γ a list of list of MELL formulæ, qMELLz(Γ) (resp. qDiLLz
0 (Γ)) is the set

of MELLz (resp. DiLLz
0 ) quasi-proof-structures of type Γ, possibly with non-atomic axioms.
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8 Conclusions and perspectives

z-cells inside boxes Our glueability criterion (Theorem 20) solves the inverse Taylor
expansion problem in a “asymmetric” way: we characterize the sets of DiLL0 proof-structures
that are included in the Taylor expansion of some MELL proof-structure, but DiLL0 proof-
structures have no occurrences of z-cells, while a MELL proof-structure possibly contains
z-cells inside boxes (see Definition 1). Not only this asymmetry is technically inevitable, but
it reflects on the fact that some glueable set of DiLL0 proof-structure might not contain any
information on the content of some box (which is reified in MELL by a z-cell), or worse that,
given the types, no content can fill that box. Think of the DiLL0 proof-structure ρ made only
of a !-cell with no inputs and one output of type !X, where X is atomic: {ρ} is glueable but
the only MELL proof-structure R such that {ρ} ⊆ T (R) is made of a box containing a z-cell.

This asymmetry is also present in Pagani and Tasson’s characterization [22], even if
not particularly emphasized: their Theorem 2 (analogous to the left-to-right part of our
Theorem 20) assumes not only that the rewriting starting from a finite set of DiLL0 proof-
structures terminates but also that it ends on a MELL proof-structure (without z-cells, which
ensures that there exists a MELL proof-structure without z-cells filling all the empty boxes).

The λ-calculus, connectedness and coherence Our rewriting system and glueability cri-
terion should help to prove the existence of a binary coherence for elements of the Taylor
expansion of a fragment of MELL proof-structures (despite the impossibility for full MELL
proved in [25]), extending the one that exists for resource λ-terms. We can remark that our
glueability criterion is actually an extension of the criterion for resource λ-terms. Indeed,
in the case of the λ-calculus, there are three rewrite steps, corresponding to abstraction,
application and variable (which can be encoded in our rewrite steps), and coherence is defined
inductively: if a set of resource λ-terms is coherent, then any set of resource λ-term that
rewrites to it is also coherent.

Presented in this way, the main difference between the λ-calculus and MELL (concerning
the inverse Taylor expansion problem) would not be because of the rewriting system but
because the structure of any resource λ-term univocally determines the rewriting path, while,
for DiLL0 proof-structures, we have to quantify existentially over all possible paths. This is
an unavoidable consequence of the fact that proof-structures do not have a tree-structure,
contrary to λ-terms and resource λ-terms.

Moreover, it is possible to match and mix different sequences of rewriting. Indeed,
consider three DiLL0 proof-structures pairwise glueable. Proving that they are glueable as a
whole amounts to computing a rewriting path from the rewriting paths witnessing the three
glueabilities. Our paths were designed with that mixing-and-matching operation in mind, in
the particular case where the boxes are connected. This is reminiscent of [16], where we also
showed that a certain property enjoyed by the λ-calculus can be extended to proof-structures,
provided they are connected inside boxes. We leave that work to a subsequent paper.

Functoriality and naturality Our functorial point of view on proof-structures might unify
many results. Let us cite two of them:

a sequent calculus proof of ` Γ can be translated into a path from the empty sequence
into Γ. This could be the starting point for the formulation of a new correctness criterion;
the category Path can be extended with higher structure, allowing to represent cut-
elimination. The functors qMELLz and PqDiLLz0 can also be extended to such higher
functors, proving via naturality that cut-elimination and the Taylor expansion commute.
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Technical Appendix
A Proof of naturality (Theorem 18, p. 11)

Tz is a family of morphisms of Rel indexed by the objects in Path. In the first part of the
statement (before “Moreover”), the only thing to show is that the naturality squares

PqDiLLz0 (Γ) PqDiLLz0 (Γ′)

qMELLz(Γ) qMELLz(Γ′)

PqDiLLz0 (ξ)

TzΓ

qMELLz(ξ)

TzΓ′

commute for every path ξ : Γ → Γ′, and actually, it is enough to show that such squares
commute for all elementary paths. Let a : Γ→ Γ′ be an elementary path.

1. qMELLz(a) ◦ TzΓ ⊆ TzΓ′ ◦PqDiLLz0 (a).
Let (Π, R′) ∈ qMELLz(a) ◦ TzΓ . Let R ∈ qMELLz(Γ) be a witness of composition,
that is an element such that (Π, R) ∈ TzΓ and R a R′.
Let p : t → F be a thick subforest of F , let r1, . . . , rn be some roots of F , and let
ρr1...rn

∈ Π be the element of the filled Taylor expansion of R associated with p and
r1, . . . , rn.

If a = mixi, then, in R, the conclusions 1, . . . , i, i+ 1, . . . k are exactly the conclusions
of a root in the box-forest of R, and the connected components in R of i and i + 1
are disjoint. By Definitions 6 and 8, since ρr1...rn ∈ Π ⊆ T z(R), we have that the
conclusions 1, . . . , i, i+ 1, . . . k are exactly the conclusions of a root r in the box-forest
of ρr1...rn , and we have two possibilities:

the connected components of i and i+ 1 are disjoint in ρr1...rn
;

i and i+ 1 belong to the same connected component, in which case r ∈ {r1, . . . , rn}
and ρr1...rn

is a z-cell with conclusion 1, . . . , i, i+ 1, . . . k.
In both cases the rule mixi is also applicable in ρr1...rn

, yielding a DiLL0 proof-structure
ρ′. The box-forest F ′ of R′ is obtained from the box-forest F of R by replacing a
root b by two roots b1, b2. Let p′ : t′ → F ′ be such that all the boxes d 6= b1, b2 have
the same inverse image than by p: p′−1(d) = p−1(d), and, p′−1(b1) = p−1(b) × {1},
p−1(b2) = p−1(b)× {2}. We verify that ρ′ is the filled Taylor expansion of R′ through
p′.
If a ∈ {axi,zi,1i,⊥i, ?wi}, let k be such that the rule a acts on the conclusions
i, . . . , i+ k in R, and let ` be the type of the cell in R connected to the conclusions
i, . . . , i+ k. In ρr1...rn there is a cell of type ` or z connected to the same conclusions.
Clearly a is applicable to ρr1...rn

, which yields a DiLL0 proof-structure ρ′.
The box-forest F ′ of R′ is obtained from the box-forest F of R by erasing a root b.
Let p′ : t′ → F ′ be such that all the boxes d 6= b have the same inverse image than by
p: p′−1(d) = p−1(d). We verify that ρ′ is the filled Taylor expansion of R′ through p′.
If a ∈ {⊗i,`i, ?d i, ?c i}, let k be such that the rule a acts on the conclusions i, . . . , i+ k

in R, and let ` be the type of the cell in R connected to the conclusions i, . . . , i+ k.
In ρr1...rn there is a cell of type ` or z connected to the same conclusions. Clearly a is
applicable to ρr1...rn

, which yields a DiLL0 proof-structure ρ′.
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R′ has the same box-forest F as R. We verify that ρ′ is the expansion of R′ through p.
If a = cuti, let c be the cut-cell in R to which the rule is applied. The cut-cell c
has either one image in ρr1...rn

or is represented by a z cell. In both cases, cuti is
applicable to ρr1...rn

, yielding ρ′.
R′ has the same box-forest F as R. We verify that ρ′ is the expansion of R′ through p.
If a = Boxi, let k be such that the rule a acts on the conclusions i, . . . , i+ k in R. In
ρr1...rn

we have one of the following possibilities:
ρr1...rn consists of a unique z-cell with the same conclusions i, . . . , i+ k;
ρr1...rn

consists of a !-cell in i with no premises and k ?-cells with no premises above
the other k conclusions;
there is a !-cell above the conclusion i and a ?-cell above each of the other k
conclusions; and the other cells of this root can be identified by their image 1, . . . , `
in t: we have ` pairwise disconnected sub-proof-structures π1, . . . , π`.

In any case, the rule Boxi can be applied, yielding either a family ρ′1, . . . , ρ′` of DiLLz0
proof-structures or a DiLLz0 proof-structure ρ′1. More precisely, in the first (resp.
second, third) case, we apply the Daimonded (resp. Empty, Non-empty) box rule (see
Figure 7(g), 7(h), 7(i)).
The box-forest F ′ of R′ is obtained from the box-forest F of R by erasing the root
of the conclusions i, . . . , i+ k: the new root b′ of this tree of F ′ is the unique vertex
connected to the root of F (its unique son). We have p−1(b′) = {b′1, . . . , b′`}, and `
trees t′1, . . . , t′`, where b′i is the root of t′i. The morphisms p′i : t′i → F ′ are defined
accordingly, and ρ′i is the filled Taylor expansion of R through p′i.

2. TzΓ′ ◦PqDiLLz0 (a) ⊆ qMELLz(a) ◦ TzΓ .
Let (Π, R′) ∈ TzΓ′ ◦PqDiLLz0 (a). Let Π′ be a witness of composition, that is a set of
PqDiLLz0 (Γ′) such that (Π,Π′) ∈ PqDiLLz0 (a) and (Π′, R′) ∈ TzΓ′ .
We want to exhibit a MELLz quasi-proof-structure R such that R a R′ and Π is a part
of the filled Taylor expansion of R. By co-functionality of qMELLz(a) (Proposition 13),
we have a candidate for such an R: the pre-image of R′ by this co-functional relation. We
only have to check that R′ is in the image of the co-functional relation and that Π is a
part of the filled Taylor expansion of the pre-image R of R′ by the co-functional relation.
In other terms: if a : Γ→ Γ′ and R′ ∈ qMELLz(Γ′), then there exists R ∈ qMELLz(Γ)
such that R a R′ and Π ⊆ T z(R).

If a 6= ?c i, there exists (a unique) R ∈ qMELLz(Γ) such that R a R′. The case
a = ?c i is a bit more delicate: in this case too there exists (a unique) R ∈ qMELLz(Γ)
such that R a R′, but here we use the fact that the types of the axiom conclusions
are atomic. Indeed, thanks to this choice every conclusion of R′ of type ?A is the
conclusion of a ?-cell (or of a z-cell).
Let R be the unique pre-image of R′ through qMELLz(a) (R = a op(R′)). We
need to show that Π is a part of the filled Taylor expansion of R. Let ρ ∈ Π and
{ρ′1, . . . , ρ′n} ⊆ Π′ such that ρ a {ρ′1, . . . , ρ′n}. In all cases except Box, this set is a
singleton {ρ′1}. In that cases, let p′ : t′ → F ′ and r′1, . . . , r′k be the conclusions of R′
such that ρ′1 = ρr′1...r′k is the element of the filled Taylor expansion of R′ associated
with p′ and r′1, . . . , r′k.
If a ∈ {axi,zi,1i,⊥i, ?wi}, let r be the root of the conclusion i in R and let s be the
root of the conclusion i in ρ. F is the disjoint union of F ′ and the root r. Let t be the
disjoint union of t′ and the root s, and p : t→ F be defined as p′ over t′ and p(s) = r.
If the cell rooted in i in ρ is a z, then we check that ρ is the element of the filled
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Taylor expansion of R associated with p and r, r′1, . . . , r′k, else associated with p and
r′1, . . . , r

′
k.

If a ∈ {cuti,⊗i,`i, ?d i, ?c i}, then F = F ′, p = p′ and we check that ρ is the element of
the filled Taylor expansion of R associated with p and r′1, . . . , r′k.
If a = mixi, let r′1 and r′2 be the respective roots of the conclusion i and i+ k in R′,
and let r be the root of the conclusion i in R. Consider the roots s′1 and s′2 in t′ such
that i is produced from s′1 and i+ k from s′2, let t be equal to t′ except that the two
roots s′1 and s′2 are merged and change p′ into p accordingly. We check that ρ is the
element of the filled Taylor expansion of R associated with p and r′1, . . . , r′k.
If a = Boxi, we describe the case of the Non-empty box rule (Figure 7(i)), leaving
the two easier cases of the Daimonded (resp. Empty) box rule of Figure 7(g) (resp.
Figure 7(h)) to the reader.
Let p′1 : t′1 → F ′, . . . , p′n : t′n → F ′ be such that ρ′1, . . . , ρ′n are the expansions of R′
associated with, respectively, p′1, . . . , p′n. The forests t′1, . . . , t′n differ by only one tree.
Consider the forest t which has all the trees on which the n forests do not differ and
the union of the trees on which the forests differ, all connected with a root, and define
p accordingly. We check that ρ is the element of the filled Taylor expansion of R
associated with p and r′1, . . . , r′k.

Concerning the second part of the statement of Theorem 18 (after “Moreover”), we prove
the following stronger statement: given two sets Π and Π′ of DiLLz0 quasi-proof-structures
and a MELLz quasi-proof-structure R′,
1. if Π a Π′ and Π′ ⊆ T (R′), then Π ⊆ T (R) where R is such that R a R′;
2. if moreover Π is a set of DiLL0 proof-structures, then R is a MELL proof-structure.
Both points are proven by straightforward inspection of the rewrite rules defined in Figures
6 and 7. The idea is that none of them, read from right to left, introduces a new z-cell,
thus from Π′ ⊆ T (R′) it follows that Π ⊆ T (R); whereas the only rewrite rule, read
from left to right, that introduces a new z-cell is the “empty box” one (Figure 7g), so if
Π Boxi Π′ according to that and Π is a set of DiLL0 proof-structures (in particular, no z-cell
occurs in any element of Π), then in R the only occurrence of a z-cell is necessarily the
whole content of a box, hence R is a MELL quasi-proof-structure. Finally, R is a MELL
proof-structure (without “quasi”) because Π ⊆ T (R) and the Taylor expansion preserves
conclusions (Remark 7). J

B The general case: non-atomic axioms (Section 7)

We present here (Figure 11) the rewrite rules for the general case of DiLLz0 quasi-proof-
structures with possibly non-atomic axioms. They replace the rewrite rules in Figure 7
(which are valid only for DiLLz0 quasi-proof-structures with atomic axioms). The rewrite
rules in Figure 11 are essentially the same as in Figure 7,10 except for the rewrite rule ?c i
(Figure 7d), which is changed to Figure 11g.

When representing a DiLLz0 quasi-proof-structure ρ, we write ?[i1] . . . ?[ik] i

z

for a z-cell
whose outputs i1, . . . , ik are either conclusions (as i) of ρ, or inputs of ?-cells whose outputs
are conclusions of ρ.

10Up to the fact that here an output of a z-cell is either a conclusion of the DiLLz
0 quasi-proof-structure

ρ or the input of a ?-cell whose output is a conclusion of ρ, see below.
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?[Γk] ?[i] ?[i+1] ?[Γ′
k]

z
mixi

{
?[Γk] ?[i] ?[i+1] ?[Γ′

k]

z z
}

(a) Mix

. . . i i+1 . . .

z
axi

{
. . . . . .

}
(b) Hypothesis (ax,z,1,⊥, ?w)

?[Γk]

z
cuti

{
?[Γk] i i+1

z
}

(c) Cut

?[Γk] i

z
⊗i

{
?[Γk] i i+1

z
}

(d) Binary rule (⊗,`)

?[Γk] i

z ?di

{
?[Γk] i

z
}

(e) Dereliction

?[Γ] i

z
Boxi

{
?[Γ] i

z
}

(f) Daimoned box

?[Γk] i

z ?ci

{
?[Γk]

z

?

i

?

i+1

}

(g) Contraction

?Γ i

? !
Boxi

{
?Γ i

z
}

(h) Empty box

. . .

ρn

ρ1

!

i

?

?Γk

Boxi


. . .ρj

i?

?Γk


16j6n

(i) Non-empty box (n > 0)

Figure 11 Actions of elementary paths on z-cells and on a box in qDiLLz0 .
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