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Abstract. A cornerstone of the theory of A-calculus is that intersection
types characterise termination properties. They are a flexible tool that
can be adapted to various notions of termination, and that also induces
adequate denotational models.

Since the seminal work of de Carvalho in 2007, it is known that multi
types (i.e. non-idempotent intersection types) refine intersection types
with quantitative information and a strong connection to linear logic.
Typically, type derivations provide bounds for evaluation lengths, and
minimal type derivations provide exact bounds.

De Carvalho studied call-by-name evaluation, and Kesner used his system
to show the termination equivalence of call-by-need and call-by-name. De
Carvalho’s system, however, cannot provide exact bounds on call-by-need
evaluation lengths.

In this paper we develop a new multi type system for call-by-need. Our
system produces exact bounds and induces a denotational model of call-
by-need, providing the first tight quantitative semantics of call-by-need.

1 Introduction

Duplications and erasures have always been considered as key phenomena in
the A-calculus—the AI-calculus, where erasures are forbidden, is an example of
this. The advent of linear logic [35] gave them a new, prominent logical status.
Forbidding erasure and duplication enables single-use resources, i.e. linearity,
but limits expressivity, as every computation terminates in linear time. Their
controlled reintroduction via the non-linear modality ! recovers the full expressive
power of cut-elimination and allows a fine analysis of resource consumption.
Duplication and erasure are therefore the key ingredients for logical expressivity,
and—via Curry-Howard—for the expressivity of the A-calculus. They are also
essential to understand evaluation strategies.

In a A-term there can be many S-redexes, that is, places where S-reduction can
be applied. In this sense, the A-calculus is non-deterministic. Non-determinism
does not affect the result of evaluation, if any, but it affects whether evaluation
terminates, and in how many steps. There are two natural deterministic evaluation
strategies, call-by-name (shortened to CbN) and call-by-value (CbV), which have
dual behaviour with respect to duplication and erasure.
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Call-by-Name = Silly Duplication + Wise Erasure. CbN never evaluates argu-
ments of S-redexes before the redexes themselves. As a consequence, it never
evaluates in subterms that will be erased. This is wise, and makes CbN a nor-
malising strategy, that is, a strategy that reaches a result whenever one exists>.
A second consequence is that if the argument of the redex is duplicated then it
may be evaluated more than once. This is silly, as it repeats work already done.

Call-by-Value = Wise Duplication + Silly Erasure. CbV, on the other hand,
always evaluates arguments of S-redexes before the redexes themselves. Conse-
quently, arguments are not re-evaluated—this is wise with respect to duplication—
but they are also evaluated when they are going to be erased. For instance, on
t == (Ax.Ay.y)$2, where 2 is the famous looping A-term, CbV evaluation diverges
(it keeps evaluating {2) while CbN converges in one f-step (simply erasing f2).
This CbV treatment of erasure is clearly as silly as the duplicated work of CbN.

Call-by-Need = Wise Duplication + Wise Erasure. It is natural to try to combine
the advantages of both CbN and CbV. The strategy that is wise with respect to
both duplications and erasures is usually called call-by-need (CbNeed), it was
introduced by Wadsworth [54], and dates back to the *70s. Despite being at the
core of Haskell, one of the most-used functional programming languages, and—in
its strong variant—being at work in the kernel of Coq as designed by Barras [14],
the theory of CbNeed is much less developed than that of CbN or CbV.

One of the reasons for this is that it cannot be defined inside the A-calculus
without some hacking. Manageable presentations of CbNeed indeed require first-
class sharing and micro-step operational semantics where variable occurrences
are replaced one at a time (when needed), and not all at once as in the A-calculus.
Another reason is the less natural logical interpretation.

Linear Logic, Names, Values, and Needs. CbN and CbV have neat interpretations
in linear logic. They correspond to two different representations of intuitionistic
logic in linear logic, based on two different representations of implication?.

The logical interpretation of CbNeed—studied by Maraist et al. in [44]—is
less neat than those of CbN and CbV. Within linear logic, CbNeed is usually
understood as corresponding to the CbV representation where erasures are
generalised to all terms, not only those under the scope of a ! modality. So, it is
seen as a sort of affine CbV. Such an interpretation however is unusual, because it
does not match exactly with cut-elimination in linear logic, as for CbN and CbV.

Call-by-Need, Abstractly. The main theorem of the theory of CbNeed is that it is
termination equivalent to CbN, that is, on a fixed term, CbNeed evaluation ter-
minates if and only if CbN evaluation terminates, and, moreover, they essentially

3 If a term ¢ admits both converging and diverging evaluation sequences then the
diverging sequences occur in erasable subterms of ¢, which is why CbN avoids them.

4 The CbN translation maps A = B to (lA°"N) — B“®*N_while the CbV maps it to
TACPY 6 IBCPY or equivalently to 1(A°PY — BCPY).
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produce the same result (up to some technical details that are irrelevant here).
This is due to the fact that both strategies avoid silly divergent sequences such
as that of (Az.\y.y)2. Termination equivalence is an abstract theorem stating
that CbNeed erases as wisely as CbN. Curiously, in the literature there are no
abstract theorems reflecting the dual fact that CbNeed duplicates as wisely as
CbV—we provide one, as a side contribution of this paper.

Call-by-Need and Denotational Semantics. CbNeed is then usually considered as
a CbV optimisation of CbN. In particular, every denotational model of CbN is
also a model of CbNeed, and adequacy—that is the fact that the denotation of ¢
is not degenerated if and only if ¢ terminates—transfers from CbN to CbNeed.
Denotational semantics is invariant by evaluation, and so is insensitive to
evaluation lengths by definition. It then seems that denotational semantics can-
not distinguish between CbN and CbNeed. The aim of this paper is, somewhat
counter-intuitively, to separate CbN and CbNeed semantically. We develop a type
system whose type judgements induce a model—this is typical of intersection
type systems—and whose type derivations provide exact bounds for CbNeed
evaluation—this is usually obtained via non-idempotent intersection types. Un-
surprisingly, the design of the type system requires a delicate mix of erasure and
duplication and builds on the linear logic understanding of CbN and CbV.

Multi Types. Our typing framework is given by multi types, which is an alternative
name for non-idempotent intersection types®. Multi types characterise termination
properties exactly as intersection types, having moreover the advantages that
they are closely related to (the relational semantics of) linear logic, their type
derivations provide quantitative information about evaluation lengths, and the
proof techniques are simpler—no need for the reducibility method.

The seminal work of de Carvalho [20] (appeared in 2007 but unpublished
until 2018) showed how to use multi types to obtain exact bounds on evaluation
lengths in CbN. Ehrhard adapted multi types to CbV [29], and very recently
Accattoli and Guerrieri adapted de Carvalho’s study of exact bounds to Ehrhard’s
system and CbV evaluation [8]. Kesner used de Carvalho’s CbN multi types to
obtain a simple proof that CbNeed is termination equivalent with respect to CbN
[37] (first proved with other techniques by Maraist, Odersky, and Wadler [45]
and Ariola and Felleisen [10] in the nineties), and then Kesner and coauthors
continued exploring the theory of CbNeed via CbN multi types [12,39,13].

Kesner’s use of CbN multi types to study CbNeed is qualitative, as it deals
with termination and not with exact bounds. For a quantitative study of CbNeed,
de Carvalho’s CbN system cannot really be informative: CbN multi types provide
bounds for CbNeed which cannot be exact because they already provide exact
bounds for CbN, which generally takes more steps than CbNeed.

Multi Types by Need. In this paper we provide the first multi type system
characterising CbNeed termination and whose minimal type derivations provide

5 The new terminology is due to the fact that a non-idempotent intersection AAAABAC
can be seen as a multi-set [A, A, B, C].
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ezact bounds for CbNeed evaluation lengths. The design of the type system is
delicate, as we explain in Sect. 6. One of the key points is that, in contrast
to Ehrhard’s system for CbV [29], multi types for CbNeed cannot be directly
extracted by the relational semantics of linear logic, given that CbNeed does not
have a clean representation in it. A by-product of our work is a new denotational
semantics of CbNeed, the first one to precisely reflect its quantitative properties.

Beyond the result itself, the paper tries to stress how the key ingredients of
our type system are taken from those for CbN and CbV and combined together.
To this aim, we first present multi types for CbN and CbV, and only then we
proceed to build the CbNeed system and prove its properties.

Along the way, we also prove the missing fundamental property of CbNeed,
that is, that it duplicates as efficiently as CbV. The result is obtained by dualising
Kesner’s approach [37], showing that the CbV multi type system is correct also
with respect to CbNeed evaluation, that is, its bounds are also valid with respect
to CbNeed evaluation lengths. Careful: the CbV system is correct but of course
not complete with respect to CbNeed, because CbNeed may normalise when CbV
diverges. The proof of the result is straightforward, because of our presentations
of (CbN,) CbV and CbNeed. We adopt a liberal, non-deterministic formulation
of CbV, and assuming that garbage collection is always postponed. These two
ingredients turn CbNeed into a fragment of CbV, obtaining the new fundamental
result as a corollary of correctness of CbV multi types for CbV evaluation.

Technical Development. The paper is extremely uniform, technically speaking.
The three evaluations are presented as strategies of Accattoli and Kesner’s Linear
Substitution Calculus (shortened to LSC) [1,6], a calculus with a simple but
expressive form of explicit sharing. The LSC is strongly related to linear logic
[2], and provides a neat and manageable presentation of CbNeed, introduced by
Accattoli, Barenbaum, and Mazza in [3], and further developed by various authors
in [9,37,12,4,5,39,13]. Our type systems count evaluation steps by annotating
typing rules in the ezact same way, and the proofs of correctness and completeness
all follow the ezact same structure. While the results for CbN are very minor
variations with respect to those in the literature [20,7], those for CbV are the
first ones with respect to a presentation of CbV with sharing.

As it is standard for CbNeed, we restrict our study to closed terms and weak
evaluation (that is, out of abstractions). The main consequence of this fact is that
normal forms are particularly simple (sometimes called answers in the literature).
Compared with other recent works dealing with exact bounds such as Accattoli,
Graham-Lengrand, and Kesner’s [7] and Accattoli and Guerrieri’s [8] the main
difference is that the size of normal forms is not taken into account by type
derivations. This is because of the simple notions of normal forms in the closed
and weak case, and not because the type systems are not accurate.

Related work about CbNeed. Call-by-need was introduced by Wadsworth [54]
in the '70s. In the ’90s, it was first reformulated as operational semantics by
Launchbury [43], Maraist, Odersky, and Wadler [45], and Ariola and Felleisen
[10], and then implemented by Sestoft [52] and further studied by Kutzner and
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Schmidt-Schauf} [42]. More recent papers are Garcia, Lumsdaine, and Sabry’s [31],
Ariola, Herbelin, and Saurin’s [11], Chang and Felleisen’s [23], Danvy and Zerny’s
[26], Downen et al.’s [28], Pédrot and Saurin’s [50], and Balabonski et al.’s [12].

Related work about Multi Types. Intersection types are a standard tool to study
A-calculi—see Coppo and Dezani [24,25], Pottinger [51], and Krivine [41]. Non-
idempotent intersection types, i.e. multi types, were first considered by Gardner
[32], and then by Kfoury [40], Neergaard and Mairson [47], and de Carvalho
[20]—a survey is Bucciarelli, Kesner, and Ventura’s [18].

Many recent works rely on multi types or relational semantics to study
properties of programs and proofs. Beyond the cited ones, Diaz-Caro, Manzonetto,
and Pagani’s [27], Carraro and Guerrieri’s [19], Ehrhard and Guerrieri’s [30], and
Guerrieri’s [36] deal with CbV, while Bernadet and Lengrand’s [15], de Carvalho,
Pagani, and Tortora de Falco’s [22] provide exact bounds. Further related work is
by Bucciarelli, Ehrhard, and Manzonetto [16], de Carvalho and Tortora de Falco
[21], Tsukada and Ong [53], Kesner and Vial [38], Piccolo, Paolini and Ronchi
Della Rocca [49], Ong [48], Mazza, Pellissier, and Vial [46], Bucciarelli, Kesner
and Ronchi Della Rocca [17]—this list is not exhaustive.

This is the long version (with all proofs) of a paper accepted to ESOP 2019.

2 Closed A-Calculi

In this section we define the CbN, CbV, and CbNeed evaluation strategies. We
present them in the context of the Accattoli and Kesner’s linear substitution
calculus (LSC) [1,6]. We mainly follow the uniform presentation of these strategies
given by Accattoli, Barenbaum, and Mazza [3]. The only difference is that we
adopt a non-deterministic presentation of CbV, subsuming both the left-to-right
and the right-to-left strategies in [3], that makes our results slightly more general.
Such a non-determinism is harmless: not only CbV evaluation is confluent, it
even has the diamond property, so that all evaluations have the same length.

Terms and Contexts. The set of terms A;5. of the LSC is given by the following
grammar, where t[z<—s] is called an explicit substitution (shortened to ES), that
is a more compact notation for let x = s in t:

LSC TERMS ¢,s:=xa | v |ts | t[z<s] LSC VALUES v = Az.t

The set £v(t) of free variables of a term ¢t is defined as expected, in particular,
fv(tlz<s]) == (fv(t)\{z})ULv(s). A term ¢ is closed if £v(t) = 0, open otherwise.
As usual, terms are identified up to a-equivalence.

Contexts are terms with exactly one occurrence of the hole (-), an additional
constant. We shall use many different contexts. The most general ones are weak
contexts W (i.e. not under abstractions). The (evaluation) contexts C', V and
E—used to define CbN, CbV and CbNeed evaluation strategies, respectively—are
special cases of weak contexts (in fact, CbV contexts coincide with weak contexts,
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the consequences of that are discussed on p. 8). To define evaluation strategies,
substitution contexts (i.e. lists of explicit substitutions) also play a role.

WEAK CONTEXTS (Y| Wt | Wzt] | tW | tla+W]
() | Sz

() | Ct | Clat)]

%%

() | Bt | Ela«t] | E()[z<E']

SUBSTITUTION CONTEXTS

CBV CONTEXTS
CBNEED CONTEXTS

W
S
CBN CONTEXTS C:
Vo
FE

We write W (t) for the term obtained by replacing the hole (-) in context
W by the term t. This plugging operation, as usual with contexts, can capture
variables—for instance ((-)t)[z<s]){(z) = (zt)[z<s]. We write W {(t)) when we
want to stress that the context W does not capture the free variables of ¢.

Micro-step semantics. The rewriting rules decompose the usual small-step seman-
tics for A-calculi, by substituting one variable occurrence at the time, and only
when such an occurrence is in evaluation position. We emphasise this fact saying
that we adopt a micro-step semantics. We now give the definitions, examples of
evaluation sequences follow right next.

Formally, a micro-step semantics is defined by first giving its root-steps and
then taking the closure of root-steps under suitable contexts.

MULTIPLICATIVE ROOT-STEP S(Ax.t)s oy S{t[rs])
EXPONENTIAL CBN ROOT-STEP Cx)[z4t] —ey,, CUE)[x+1]
EXPONENTIAL CBV ROOT-STEP V {(x)[x+S{v)] e, SV {v)[x+0])

EXPONENTIAL CBNEED ROOT-STEP  E () [x4S (V)] e, ..y S{E{v)[x0])

where, in the root-step —n (resp. e, i Mencea)s i S = [Y14=51] ... [Yné5n]
for some n € N, then fv(s) (resp. £v(V{z); fv(E{x)))) and {y1,...,yn} are
disjoint. This condition can always be fulfilled by a-equivalence.

The evaluation strategies —, for CbN, — . for CbV, and — 4 for
CbNeed, are defined as the closure of root-steps under CbN, CbV and CbNeed
evaluation contexts, respectively (so, all evaluation strategies do not reduce under
abstractions, since all such contexts are weak):

CbN CbV CbNeed
—pep, = C{n) o, = V() ey = E{—m)
ey Clecpn) eepy T Vo) enced E{—epeea)
—ebn = C{=nU =eqn) | “eby = V{—nU =eie)| —need ™= E(—nlU Hrepa)

where the notation — := W {—) means that, given a root-step +—, the evaluation
— is defined as follows: ¢ — s if and only if there are terms ¢’ and s’ and a context
W such that t = W (') and s = W{s') and t' — 5.

Note that evaluations — ., —.,, and — .4 can equivalently be defined
as —, U — e, U e, and — U — respectively.

Mchn €cbn’ Mchn Mneed €need’
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Given an evaluation sequence d: t —% s we note with |d| the length of d,
and with |d|, and |d|s the number of multiplicative and exponential steps in d,
respectively—and similarly for — . and — 4.
Erasing Steps. The reader may be surprised by our evaluation strategies, as none
of them includes erasing steps, despite the absolute relevance of erasures pointed
out in the introduction. There are no contradictions: in the LSC—in contrast
to the A-calculus—erasing steps can always be postponed, and so they are often
simply omitted. This is actually close to programming language practice, as the
garbage collector acts asynchronously with respect to the evaluation flow. For
the sake of clarity let us spell out the erasing rules—they shall nonetheless be
ignored in the rest of the paper. In CbN and CbNeed every term is erasable, so
the root erasing step takes the following form

tx—s] g t if ¢ ¢ fv(t)

and it is then closed by weak evaluation contexts.
In CbV only values are erasable; so, the root erasing step in CbV is:

t{x<=S(v)] rge S(t) if ¢ ¢ fv(t)
and it is then closed by weak evaluation contexts.

Ezxample 1. A good example to observe the differences between CbN, CbV, and
CbNeed is given by the term ¢ := ((Az.Ay.xz)(I1))(II) where I := Az.z is the
identity combinator. In CbN, it evaluates with 5 multiplicative steps and 5
exponential steps, as follows:

t =, (Ay.zx)[z<IT)(11) —ngpy (22) [y I[x1T]
ooy ([I)x) [y IT][x11] gy, (2l2T]x) [y I][x<—11]
—eppn L2 ]) [y 11][x<11] g, Ww—z] [z 1] [y T I][x<11]
—eppn Elwz] [z 1] [y 1T ][z<11] —eonn LD [w—z] [z 1] [y<1I][x<11I]
o @ 18 w21 [y« ][z 11] =, 2" 1][wa][z1] [y« 1] [z<1]]

In CbV, t evaluates with 5 multiplicative steps and 5 exponential steps, for
instance from right to left, as follows:

t =g, (A Ay.zx) (1) (2[21]) ey Az Ay.xx) (1) (I[24-1])
—ngy, (A Ay.2z) (wlwI])(I[z+1]) ey Az Ay.zx)(T[weTI])(I[241])
—ngy, (Ayz) [T [wI]](I[z1]) —ngy, (@) [y I [z 1] [xT[w1]]
—eupe () [y I [z I]|[x1][w1] —eon, D)y I[z<I]][x<I][w<—1]

= & [T [y T [z )] [p T [weT] =, T2« I]|[yI[z¢1]]|[xT][we1)

Mebv €cbv

Note that the fact that CbN and CbV take the same number of steps is by
chance, as they reduce different redexes: CbN never reduce the unneeded redex
11 associated to y, but it reduces twice the needed II redex associated to z,
while CbV reduces both, but each one only once.

In CbNeed, t evaluates in 4 multiplicative steps and 4 exponential steps.
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t =,y (Ay.xx) [z IT)(IT) e (22) [y TT) [x4—11]
iy oeg (@) [y 1T [z4—2[241]] ooy (@x) [y 1T ][z [2<1]]
—epoeq UT)[ys—II] [z 1][2<1] iy og (Wwz]) [y T ][x1][241]
—epeoq W[y [xT)[z41] = T[wT]|[y<II][zT][z¢1]

CbV Diamond Property. CbV contexts coincide with weak ones. As a consequence,
our presentation of CbV is non-deterministic, as for instance one can have

ez =1 (yly1]) nep, < ID Y1) =, DUy 1])

€cbv (

but it is easily seen that diagrams can be closed in exactly one step (if the two
reducts are different). For instance,

wlrI](yly«1]) =, wlrI(I[y<1]) na, < L)(I[y+1])

€cbv

Moreover, the kind of steps is preserved, as the example illustrates. This is an
instance of the strong form of confluence called diamond property. A consequence is
that either all evaluation sequences normalise or all diverge, and if they normalise
they have all the same length and the same number of steps of each kind. Roughly,
the diamond property is a form of relaxed determinism. In particular, it makes
sense to talk about the number of multiplicative / exponential steps to normal
form, independently of the evaluation sequence. The proof of the property is an
omitted routine check of diagrams.

Normal Forms. We use two predicates to characterise normal forms, one for both
CbN and CbNeed normal forms, for which ES can contain whatever term, and
one for CbV normal forms, where ES can only contain normal terms:

normal(t) normalepy (t)  normalcpy ()

normal(Az.t) normal(t[x<s]) normalcpy (A1) normalcpy (t[z<—s])

Proposition 1 (Syntactic characterisation of closed normal forms). Let
t be a closed term.
1. CbN and CbNeed: Forr € {cbn,need}, t is r-normal if and only if normal(t).
2. CbV: t is cbv-normal if and only if normalcpy (t).

The simple structure of normal forms is the main point where the restriction
to closed calculi plays a role in this paper.

From the syntactic characterization of normal forms (Proposition 1) it follows
immediately that among closed terms, CbN and CbNeed normal forms coincide,
while CbV normal forms are a subset of them. Such a subset is proper since the
closed term I[z<—00] (where I := Az.z and 0 := Ay.yy) is CbN normal but not
CbV normal (and it cannot normalise in CbV).

3 Preliminaries About Multi Types

In this section we define basic notions about multi types, type contexts, and
(type) judgements that are shared by the three typing systems of the paper.
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Multi-Sets. The type systems are based on two layers of types, defined in a
mutually recursive way, linear types L and finite multi-sets M of linear types.
The intuition is that a linear type L corresponds to a single use of a term, and
that an argument ¢ is typed with a multi-set M of n linear types if it is going
to end up (at most) n times in evaluation position, with respect to the strategy
associated with the type system. The three systems differ on the definition of
linear types, that is therefore not specified here, while all adopt the same notion
of finite multi-set M of linear types (named multi type), that we now introduce:

MULTI TYPES M, N == [L;]ics (J a finite set)

where [...] denotes the multi-set constructor. The empty multi-set [] (the multi
type obtained for J = ) is called empty (multi) type and denoted by the special
symbol 0. An example of multi-set is [L, L, L], that contains two occurrences of
L and one occurrence of L'. Multi-set union is noted W.

Type Contexts. A type context I' is a map from variables to multi types such
that only finitely many variables are not mapped to 0. The domain of I' is the
set dom(I") := {z | I'(z) # 0}. The type context I" is empty if dom(I") = 0.

Multi-set union @ is extended to type contexts point-wise, i.e. I' W II maps
each variable z to I'(z) W II(z). This notion is extended to several contexts
as expected, so that [¢),.; I'; denotes a finite union of contexts—when J = ()
the notation is to be understood as the empty context. We write I';x: M for
I'"(x — M) only if x ¢ dom(I"). More generally, we write I'; IT if the intersection
between the domains of I" and IT is empty.

The restricted context I' with respect to the variable z, written I" \\ z is
defined by (I"\ z)(z) =0 and (I"\\ 2)(y) = I'(y) if y # .

Judgements. Type judgements are of the form I' F™9¢: L or I' H™¢: M,
where the indices m and e are natural numbers whose intended meaning is that ¢
evaluates to normal form in m multiplicative steps and e exponential steps, with
respect to the evaluation strategy associated with the type system.

To make clear in which type systems the judgement is derived, we write
Bbepn '™ L if @ is a derivation in the CbN system ending in the judgement
I'H™¢: L and similarly for CbV and CbNeed.

4 Types by Name

In this section we introduce the CbN multi type system, together with intuitions
about multi types. We also prove that derivations provide exact bounds on CbN
evaluation sequences, and define the induced denotational model.

CbN Types. The system is essentially a reformulation of de Carvalho’s system R
[20], itself being a type-based presentation of the relational model of the CbN
A-calculus induced by relational model of linear logic via the CbN translation of
A-calculus into linear logic. Definitions:
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— ax normal
z: (L FOYz . L FO9 Xzt : normal

rEmey. (IT; p(mases)y . Li)ics
fun - -
'\ z e gt s I'(z) - L L+JZ.€J II; Fiesmi-Xicseily [Lilics

many

T M oL T E™ g M app La:ME™Ot L e De: M

’ ’ ’ ! ES
[ [T Fmtmithetelyg. D T Mt o] L

Fig. 1. Type system for CbN evaluation

— CDbN linear types are given by the following grammar:
CBN LINEAR TYPES L,L' z:=normal | M — L

Multi(-sets) types are defined as in Sect. 3, relatively to CbN linear types.
Note the linear constant normal (used to type abstractions, which are normal
terms): it plays a crucial role in our quantitative analysis of CbN evaluation.

— The CbN typing rules are in Fig. 1.

— The many rule: it has as many premises as the elements in the (possibly
empty) set of indices J. When J = (), the rule has no premises, and it types
t with the empty multi type 0. The many rule is needed to derive the right
premises of the rules app and ES, that have a multi type M on their right-
hand side. Essentially, it corresponds to the promotion rule of linear logic,
that, in the CbN representation of the A-calculus, is indeed used for typing
the right subterm of applications and the content of explicit substitutions.

— The size of a derivation ® >u,, I' F"¢: L is the sum m -+ e of the indices.
A quick look to the typing rules shows that indices on typing judgements are
not needed, as m can be recovered as the number of app rules, and e as the
number of ax rules. It is however handy to note them explicitly.

Subtleties and easy facts. Let us overview some facts about our presentation of
the type system.

1. Introduction and destruction of multi-sets: multi-set are introduced on the
right by the many rule and on the left by ax. Moreover, on the left they are
summed by app and ES.

2. Vacuous abstractions: we rely on the convention that the abstraction rule
fun can always abstract a variable x not explicitly occurring in the context.
Indeed, if © ¢ dom(I"), then I"\\ z is equal to I" since I'(z) = 0.

3. Relevance: No weakening is allowed in axioms. An easy induction on type
derivations shows that

Lemma 1 (Type contexts and variable occurrences for CbN). Let
Bepn I ™t L be a derivation. If v &€ £v(t) then x ¢ dom(I').
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Lemma 1 implies that derivations of closed terms have empty type context.
Note that there can be free variables of ¢ not in dom(I"): the ones only
occurring in subterms not touched by the evaluation strategy.

Key Ingredients. Two key points of the CbN system that play a role in the design
of the CbNeed one in Sect. 6 are:

1. Erasable terms and 0: the empty multi type O is the type of erasable terms.
Indeed, abstractions that erase their argument—whose paradigmatic example
is Az.y—can only be typed with 0 — L, because of Lemma 1. Note that in
CbN every term—even diverging ones—can be typed with 0 by rule many
(taking O premises), because, correctly, in CbN every term can be erased.

2. Adequacy and linear types: all CbN typing rules but many assign linear types.
And many is used only as right premise of the rules app and ES, to derive M.
It is with respect to linear types, in fact, that the adequacy of the system
is going to be proved: a term is CbN normalising if and only if it is typable
with a linear type, given by Theorem 1 and Theorem 2 below.

Tight derivations. A term may have several derivations, indexed by different
pairs (m,e). They always provide upper bounds on CbN evaluation lengths.
The interesting aspect of our type systems, however, is that there is a simple
description of a class of derivations that provide ezact bounds for these quantities,
as we shall show. Their definition relies on the normal type constant.

Definition 1 (Tight derivations for CbN). A derivation ®ocpn I’ ey,
is tight if L = normal and I" is empty.

Ezample 2. Let us return to the term ¢t = ((Az.Ay.zx)(II))(II) used in Ex-
ample 1 for explaining the difference in reduction lengths among the different
strategies. We now give a derivation for it in the CbN type system.

First, let us shorten normal to n. Then, we define @ as the following derivation
for the subterm Ax.A\y.xx of t:

—  ax
z:[n] FOD 2:n
O o] —on o O ]
z:[[n] —o n| F%Y g [n] —o T o
o] < app

z:[n,[n] —n] F12) gz n

fun
z:[n,[n] —n] F&2 A\yxz:0 —on h

fun
F12) Xa. Ay.zz 2 [n, [n] —o n] —o (0 —o n)

Now, we need two derivations for I, one of type n, given by ¥ as follows

- ax -
SO s T O g e
FOD Xz.z:[n] — n 09 Xw.w : [n]
app
FOD IT:n

and one of type [n] —o n, given by = as follows
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— 2
w: [n] FOD q:n

ax £
zifn] —on] FOD 2 —en T FOD dwawifa] —on :;ny
un
FO1 Xz.2:[[n] —o n] —o ([n] —o n) FOD Xw.w: [[n] —o n] app

O IT:[n] —on

Finally, we put &, ¥ and = together in the following derivation @ for t =
(s(IT))(IT), where s := Az.\y.zx and nl" = [n] —o n

v )
L PO Iin 0D Ll
F12)g. [n, n["]} —o (0 —o n) F@3) 77 [n, n["]}
app ———— many
H&5) (11):0 —on OO 110
app

FG5) (s(IT))(IT) :n
Note that that © is a tight derivation and the indices (5,5) correspond exactly
to the number of my,,-steps and ecpy-steps, respectively, from ¢ to its cbn-normal
form, as shown in Example 1. Theorem 1 below shows that this is not by chance:
tight derivations are minimal and provide exact bounds to evaluation lengths.

The next two subsections prove the two halves of the properties of the CbN
type system, namely correctness and completeness.

4.1 CbN Correctness

Correctness is the fact that every typable term is CbN normalising. In our
setting it comes with additional quantitative information: the indices m and e
of a derivation @ >ep, I el g provide bounds for the length of the CbN
evaluation of ¢, that are exact when the derivation is tight.

The proof technique is standard. Moreover, the correctness theorems for CbV
and CbNeed in the next sections follow ezactly the same structure. The proof
relies on a quantitative subject reduction property showing that m decreases
by ezxactly one at each mcp,-step, and similarly for e and ecpy-steps. In turn,
subject reduction relies on a linear substitution lemma. Last, correctness for tight
derivations requires a further property of normal forms.

Let us point out that correctness is stated with respect to closed terms only,
but the auxiliary results have to deal with open terms, since they are proved by
inductions (over predicates defined by induction) over the structure of terms.

Linear Substitution. The linear substitution lemma states that substituting over
a variable occurrence as in the exponential rule consumes exactly one linear type
and decreases of one the exponential index e.

Lemma 2 (CbN linear substitution). If by [a: M F™9C(2): L
then there is a splitting M = [L'| W N such that for every derivation ¥ >epy

I L there is a derivation @ bepy I'W IT,2: N I—(m+m/’e+e/71)0<<t>> :L.

The proof is by induction over CbN evaluation contexts.
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Quantitative Subject Reduction. A key point of multi types is that the size of
type derivations shrinks after every evaluation step, which is what allows to
bound evaluation lengths. Remarkably, the size (defined as the sum of the indices)
shrinks by exactly 1 at every evaluation step.

Proposition 2 (Quantitative subject reduction for CbN). Let @ >epy

I L be a derivation.

1. Multiplicative: if t —, s then m > 1 and there exists a derivation ¥ >cpy
rEm=tes. .

2. Exponential: if t —,
rEme g

b

.5 then e > 1 and there exists a derwation ¥ bepy

The proof is by induction on ¢ —, s and t =,
tution lemma for the root exponential step.

o8y using the linear substi-

Tightness and Normal Forms. Since the indices are always non-negative, quan-
titative subject reduction (Proposition 2) implies that they bound evaluation
lengths. The bound is not necessarily exact, as derivations of normal forms can
have strictly positive indices. If they are tight, however, they are indexed by
(0,0), as we now show. The proof of this fact (by induction on the predicate
normal) requires a slightly different statement, for the induction to go through.

Proposition 3 (normal typing of normal forms for CbN). Lett be such

that normal(t), and @ >epy I’ F(™€) ¢ normal be a derivation. Then I is empty,
and so @ s tight, and m = e = 0.

The Tight Correctness Theorem. The theorem is then proved by a straightforward
induction on the evaluation length relying on quantitative subject reduction
(Proposition 2) for the inductive case, and the properties of tight typings for
normal forms (Proposition 3) for the base case.

Theorem 1 (CbN tight correctness). Lett be a closed term. If ® bey,
F™¢: L then there is s such that d: t —*nS, normal(s), |dln < m, |dle < e.

Moreover, if @ is tight then |d|, = m and |d|e = e.

Note that Theorem 1 implicitly states that tight derivations have minimal
size among derivations.

4.2 CbN Completeness

Completeness is the fact that every normalising term has a (tight) type deriva-
tion. As for correctness, the completeness theorem is always obtained via three
intermediate steps, dual to those for correctness.

Normal Forms. The first step is to prove (by induction on the predicate normal)
that every normal form is typable, and is actually typable with a tight derivation.

Proposition 4 (Normal forms are tightly typable for CbN). Let t be
such that normal(t). Then there is tight derivation ® bep, F %t :normal.
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Linear Removal. In order to prove subject expansion, we have to first show that
typability can also be pulled back along substitutions, via a linear removal lemma
dual to the linear substitution lemma.

Lemma 3 (Linear removal for CbN). Let ® ey Iiz: M ™9 C(s) : L,
where x ¢ £v(s). Then there exist

— a linear type L',

— a derivation @, depy T's F)s: L and

— a derivation D¢y Bebn 17,2 M W [L'] I-(m/’el)C’«x» 1L
such that

— Type contexts: I' =Ty W I,

— Indices: (m,e) = (m' + mgs, e +e5—1).

Quantitative Subject Fxpansion. This property is the dual of subject reduction.

Proposition 5 (Quantitative subject expansion for CbN). Let @ bey,
I L be a derivation.

1. Multiplicative: if t —, s then there is a derivation ¥ beyy I’ plmtlel. .
2. Exponential: if t —, s then there is a derivation ¥ bepy I plmetly. .

The proof is by induction on ¢ —,
lemma, for the root exponential step.

sand t —, s, using the linear removal

b b

The Tight Completeness Theorem. The theorem is proved by a straightforward
induction on the evaluation length relying on quantitative subject expansion
(Proposition 5) in the inductive case, and the existence of tight typings for normal
forms (Proposition 4) in the base case.

Theorem 2 (CbN tight completeness). Lett be a closed term. Ifd:t—}, s
and normal(s) then there is a tight derivation @ bcpy Udlnsldle) s normal.

Back to Erasing Steps. Our system can be easily adapted to measure also garbage
collection steps (the CbN erasing rule is just before Example 1, page 7). First, a
new, third index g on judgements is necessary. Second, one needs to distinguish
the erasing and non-erasing cases of the the app and ES rules, discriminated by
the 0 type. For instance, the ES rules are (the app rules are similar):

LEeD L D@)=0_ .  La:M Fomed) g IR s M M #0 o
L Emest ) e s L &

Iy IT Fmtmlsete’,gtd’) tlz<s]: L

The index g bounds to the number of erasing steps. In the closed case, however,
the bound cannot be, in general, exact. Variables typed with 0 by I' do not
exactly match variables not appearing in the typed term (that is the condition
triggering the erasing step), because a variable typed with 0 may appear in the
body of abstractions typed with the normal rule, as such bodies are not typed.

It is reasonable to assume that exact bounds for erasing steps can only by
provided by a type system characterising strong evaluation, whose typing rules
have to inspect abstraction bodies. These erasing typing rules are nonetheless
going to play a role in the design of the CbNeed system in Sect. 6.
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4.3 CbN Model

The idea to build the denotational model from the multi type system is that the
interpretation (or semantics) of a term is simply the set of its type assignments,
i.e. the set of its derivable types together with their type contexts. More precisely,
let ¢ be a term and x4, ..., 2z, (with n > 0) be pairwise distinct variables. If
fv(t) C {z1,...,z,}, we say that the list £ = (z1,...,x,) is suitable for t. If
Z=(x1,...,2,) is suitable for ¢, the (relational) semantics of t for T is

[EISPN = {((My, ..., My,),L) | 3D bepn x1: My, ..., @n: My F™9¢: L)

Subject reduction (Proposition 2) and expansion (Proposition 5) guarantee that
the semantics [t]$PN of ¢ (for any term t, possibly open) is invariant by CbN
evaluation. Correctness (Theorem 1) and completeness (Theorem 2) guarantee
that, given a closed term t, its interpretation [[t]]ng is non-empty if and only if ¢
is CbN normalisable, that is, they imply that relational semantics is adequate.

In fact, adequacy also holds with respect to open terms. The issue in that case
is that the characterisation of tight derivations is more involved, see Accattoli,
Graham-Lengrand and Kesner’s [7]. Said differently, weaker correctness and
completeness theorems without exact bounds also hold in the open case. The
same is true for the CbV and CbNeed systems of the next sections.

5 Types by Value

Here we introduce Ehrhard’s CbV multi type system [29] adapted to our presen-
tation of CbV in the LSC, and prove its properties. The system is similar, and
yet in many aspects dual, to the CbN one, in particular the grammar of types is
different. Linear types for CbV are defined by:

CBV LINEAR TYPES L L :=M-—oN

Multi(-sets) types are defined as in Sect. 3, relatively to CbV linear types. Note
that linear types now have a multi type both as source and as target, and that
the normal constant is absent—in CbV, its role is played by O.

The typing rules are in Fig. 2. It is a type-based presentation of the relational
model of the CbV A-calculus induced by relational model of linear logic via the
CbV translation of A-calculus into linear logic. Some remarks:

— Right-hand types: all rules but fun assign a multi type to the term on the
right-hand side, and not a linear type as in CbN.

— Abstractions and many: the many rule has a restricted form with respect to
the CbN one, it can only be applied to abstractions, that in turn are the only
terms that can be typed with a linear type.

— Indices: note as the indices are however incremented (on ax and app) and
summed (in many and ES) exactly as in the CbN system.
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/ rEmOL M — N 11 F™ s M
- - - app
o MOV M Iy I Emrmitlete g N
Tz N ™9t M (I o) 2\t Ly )iy
fun - - many
IE™ON\gt: N — M Wiy [T Fiermizics®d gt [Li]ics
La:NE™9¢ M s N

7 ; ES
_ Fomre e )

Fig. 2. Type system for CbV evaluation.

Intuitions: the Empty Type 0. The empty multi-set type 0 plays a special role in
CbV. As in CbN, it is the type of terms that can be erased, but, in contrast to
CDbN, not every term is erasable in CbV.

In the CbN multi type system every term, even a diverging one, is typable
with 0. On the one hand, this is correct, because in CbN every term can be
erased, and erased terms can also be divergent, because they are never evaluated.
On the other hand, adequacy is formulated with respect to non-empty types: a
term terminates if and only if it is typable with a non-empty type.

In CbV, instead, terms have to be evaluated before being erased; and, of
course, their evaluation has to terminate. Thus, terminating terms and erasable
terms coincide. Since the multi type system is meant to characterise terminating
terms, in CbV a term is typable if and only if it is typable with 0, as we shall
prove in this section. Then the empty type is not a degenerate type excluded for
adequacy from the interesting types of a term, as in CbN, it rather is the type,
characterising (adequate) typability altogether. And this is also the reason for
the absence of the constant normal—one way to see it is that in CbV normal = 0.

Note that, in particular, in a type judgement I' - ¢: M the type context I’
may give the empty type to a variable x occurring in ¢, as for instance in the
axiom z:0 F x:0—this may seem very strange to people familiar with CbN
multi types. We hope that instead, according to the provided intuition that 0 is
the type of termination, it would rather seem natural.

Definition 2 (Tight derivation for CbV). A derivation &>y I’ e, pp
is tight if M =0 and I" is empty.

Ezample 3. Let’s consider again the term ¢ := ((Az.Ay.zx)(II))(II) of Example 1
(where I := Az.z), for which a CbN tight derivation was given in Example 2, and
let us type it in the CbV system with a tight derivation.

We define the following derivation @ for the subterm s := Ax.\y.xz of ¢
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ax ax
z:[0 — 0] FOD 2:[0 — 0] z:0+OD 2.0
app
z:[0 = 0] -2 z2:0
fun
z:[0— 0] -2 \yzz:0 —-0
many
z:[0 — 0] F2) \y.zx: [0 —o 0]
fun
F1:2) 5:[0 — 0] —o [0 —o 0]
many

F(12) 5[0 — 0] —o [0 — 0]]

Note that [0 — 0] W 0 = [0 — 0], which explains the shape of the type context
in the conclusion of the app rule. Next, we define the derivation @5 as follows

ax

e TR T R TE P

0,1 .

F Az.2:[0 — 0] — [0 — O] many FOD Awaw:0 — 0 many
FOD Xz.2:[[0 — 0] — [0 —o O] Mﬂmmmﬂm@p

FO2) I7:[0 — 0]
and the derivation @3 as follows
_—  ax
200D 2.0
O A 20 00
T2 many —— many
FOD Xz’ 2 : [0 — 0] HO0 1.0
app
FODIT:0

Finally, we put @;, @2 and @3 together in the following derivation & for ¢

2 By
F12) 5[0 —0 0] — [0 —0 0]]  F(12) I7:[0 —o 0] L &y
app :
FGA Az y.zz)(IT):[0 — 0] FODIT:0

. app
FOS (A Ny.xz)(IT))(I1):0

Note that the indices (5,5) correspond exactly to the number of m.p,-steps and
echy-steps, respectively, from ¢ to its CbV normal form, as shown in Example 1,
and that @ is a tight derivation. Forthcoming Theorem 3 shows that CbV tight
derivations are minimal and provide exact bounds to evaluation lengths in CbV.

Correctness (i.e. typability implies normalisability) and completeness (i.e.
normalisability implies typability) of the CbV type system with respect to CbV
evaluation (together with quantitative information about evaluation lengths)
follow exactly the same pattern of the CbN case, mutatis mutandis.

5.1 CbV Correctness

Lemma 4 (CbV linear substitution). Let @ e, I a: M F™OV(z): N,
Then there exists a splitting M = O W P such that, for every derivation W bcpy
I E™ )0, there is a derivation ® ey I'W I, z: P Mot =Dy n . N
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Proposition 6 (Quantitative subject reduction for CbV). Let @ depy

I ™9t M be a derivation.

1. Multiplicative: if t —>mcbvt’ then m > 1 and there exists a derivation @' >y
M=oy

2. Exponential: if t —_  t' then e > 1 and there exists a derivation &' >cpy
e

Proposition 7 (Tight typings for normal forms for CbV). Let @ >epy
I F™%:0 be a derivation, with normaleny (t). Then I' is empty, and so P is
tight, and m = e = 0.

Theorem 3 (CbV tight correctness). Let t be a closed term. If @ Depy
T FU9¢ M then there is s such that d: t —reS, normaleny (), |dln < m,

|d|e < e. Moreover, if ® is tight then |d|l, = m and |d|. = e.

5.2 CbV Completeness

Proposition 8 (Normal forms are tightly typable for CbV). Lett be
such that normaleny (t). Then there exists a tight derivation @ bpy FO0¢. 0,

Lemma 5 (Linear removal for CbV). Let &by, Iz: M F ™V (0): N
where x ¢ £v(v). Then, there exist

— a multi type M’ and two type contexts I'' and II,

— a derivation W e, x: M @M ™)V (2): N, and

— a derivation @ depy I Fme) g
such that

— Type contexts: I' =I" W II,

— Indices: (m,e) = (m' +m”, e +e”’ —1).

Proposition 9 (Quantitative subject expansion for CbV). Let @' >epy
I E"™9% M be a derivation.

1. Multiplicative: if t — ' then there is a derivation @ >epy I’ Fmtle)r pr
2. Exponential: if t —, ' then there is a derivation @ ey I’ FOmet Dy pr

Theorem 4 (CbV tight completeness). Lett be a closed term. If d:t —7%, s
with normaleby (8), then there is a tight derivation @ depy Fdlmldle)s . g,

CbV Model. The interpretation of terms with respect to the CbV system is
defined as follows (where & = (1, ...,x,) is a list of variables suitable for t):

[LSPY = {((My,...,M,),N) | 3D bepy 21: My, ..., xn: My, F™t: N}

Note that rule fun assigns a linear type but the interpretation considers only
multi types. The invariance and the adequacy of [t]S$PV with respect to CbV
evaluation are obtained exactly as for the CbN case.
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FF™9 N — M] ™5 N \
app

———— ax - -
z: MOV M I I Emtmitlete g v
(mi,eq) A
— many, (I + Azt:Li)icsg J#0O many
F(O’O)t :0 LﬂieJ I1; F(Zie‘]mi'zie‘]ei))\x.t: [Li}ie]
z:N; T ROmedg . v z:N; I Fmee. pm Mg N
fun n 7 ES
FE™9Ngt: N — M DI E et e g] 0 M

normal
Qo,o) Az.t:normal J

Fig. 3. Naive type system for CbNeed evaluation.

6 Types by Need

CbNeed as a Blend of CbN and CbV. The multi type system for CbNeed is
obtained by carefully blending ingredients from the CbN and CbV ones:

— Wise erasures from CbN: in CbN wise erasures are induced by the fact that
the empty multi type O (the type of erasable terms) and the linear type
normal (the type of normalisable terms) are distinct and every term is typable
with O by using the many rule with 0 premises. Adequacy is then formulated
with respect to (non-empty) linear types.

— Wise duplications from CbV: in CbV wise duplications are due to two as-
pects. First, only abstractions can be collected in multi-sets by rule many.
This fact accounts for the evaluation of arguments to normal form—that is,
abstractions—before being substituted. Second, terms are typed with multi
types instead of linear types. Roughly, this second fact allows the first one to
actually work because the argument is reduced once for a whole multi set of
types, and not once for each element of the multi set, as in CbN.

It seems then that a type system for CbNeed can easily be obtained by basically
adopting the CbV system plus
— separating 0 and normal, that is, adding normal to the system;

— modifying the many rule by distinguishing two cases: with 0 premises it can
assign 0 to whatever term—as in CbN—otherwise it is forced to work on
abstractions, as in CbV;

— restricting adequacy to non-empty types.

Therefore, the grammar of linear types is:

CBNEED LINEAR TYPES L,L' :==normal | M — N

Multi(-sets) types are defined as in Sect. 3, relatively to CbNeed linear types.
The rules of this naive system for CbNeed are in Fig. 3.

Issue with the Naive System. Unfortunately, the naive system does not work: tight
derivations—defined as expected: empty type context and the term typed with
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[normal]—do not provide exact bounds. The problem is that the naive blend of
ingredients allows derivations of O with strictly positive indices m and e. Instead,
derivations of 0 should always have 0 in both indices—as is the case when they
are derived with a many, rule with 0 premises—because they correspond to terms
to be erased, that are not evaluated in CbNeed. For any term ¢, indeed, one can
for instance derive the following derivation @:

—————— manyj,

H09 2:0 fun
FO9 Xz.2:0 — 0 many., —— many,
0.0 \g.z: [0 —o 0] 0.0 +.0 app

FOO (\z.z)t:0

Note that introducing (') z:0 with rule ax rather than via many, (the typing
context x:0 is equivalent to the empty type context) would give a derivation
with final judgement 1) (Az.x)t: 0—thus, the system messes up both indices.
Such bad derivations of 0 are not a problem per se, because in CbNeed one
expects correctness and completeness to hold only for derivations of non-empty
multi types. However, they do mess up also derivations of non-empty multi
types because they can still appear inside tight derivations, as sub-derivations of
sub-terms to be erased; consider for instance:
normal

many. g

H(0.9) T : normal
-(0:0) - [normal]
fun .
F(0:0) \y.T:0 —o [normal] C P
many. :
H(0:9) Xy.T: [0 —o [normal]] 10 (A\z.z)t: 0
F20) (A\y.I)((Az.z)t) : [normal]
The term normalises in just 1 myeeq-step to I[y«(Az.x)t] but the multiplicative
index of the derivation is 2. The mismatch is due to a bad derivation of 0 used

as right premise of an app rule. Similarly, the induced typing of I[y+(Az.x)t] is
an example of a bad derivation used as right premise of a rule ES:

app

——— normal .
F(0.9) T normal - P

many ’
(.0 T [normal] 7o (Az.z)t:0
FOO) Iy« (Az.z)t] : [normal]

ES

The Actual Type System. Our solution to such an issue is to modify the system
as to avoid as much as possible derivations of 0. The idea is that deriving 0
is only needed for the right premise of rules app and ES, when N = 0, and so
we add two dedicated rules app,, and ESyc, and instead remove rule many, and
forbid axioms to introduce 0—the system is in Fig. 4 and it is based on the
same grammar of types of the naive system. Note that rules app and ES now also
require IV to be different from 0, to avoid overlaps with app,. and ESg.
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—_— ax normal
/ z:MEFOD g M F©0 A\z.t:normal \

Iyx: MM ¢ N (I Fmieed) Not: Li)ies  J #0
fun many
IHm™9) g t: M — N W,e, i FEiermeZiered Ngt: [Lilies
I H™e) 1[0 — M] FEMS (N —M] ITH™) s:N N#0
app,. app

[ EMHLO 45 0 [ w IT -+ lete) o 0y

LEm9e:M IL@)=0_  La:NE™) M m-"<)s:N N#0 e
Kr FO) taes] M I EEmete) ylpe o M /

Fig. 4. Type system for CbNeed evaluation.

Note that the indices m and e are incremented and summed exactly as in the
CbN and CbV type systems.

Definition 3 (Tight derivations for CbNeed). A derivation D >peed
I =€) ¢ M s tight if M = [normal] and I is empty.

Ezample 4 (The needed one). We return to t :== ((Az.A\y.xx)(II))(II) used in
Example 1 and we give it a tight derivation in the CbNeed type system.
Again, we shorten normal to n. Then, we define ¥ as follows

o1 ax 01 ax
z : [[n] —o [n]] FOD 2 [[n] —o [n]] x: [n] FOU 2 [n] app
z: [n,[n] —o [n]] F&2) 2z [n]
2 ] — [n]] M09 Ayaz 0 —o fn]
- s many
x : [n,[n] — [n]] FO2) \y.zx: [0 —o [n]]
fun
F(12) Az Ay.xx:[n, [n] —o [n]] — [0 —o [n]] many
FOL2) Az Ay.zx: [[n, [n] = [n]] — [0 — [n]]]
and, shortening [n] — [n] to n", we define O as follows
ax ax
z: [, O 2 [n ") fun | w: [n] FOY w:[n] c
FOD Nz.z: [n,n"] —o [n,n"] many OO0 Xw.aw:n norma FOD Xw.aw: " m;:;,
FOD Xz z: [[n,n"] —o [n,n"]] FOD Xw.aw : [n, n"] app

O IT: [n,n"]

Finally, we put ¥ and © together in the following derivation & for ¢
v )

F2) Az Ay.zx:[[n,[n] —o [n]] — [0 — [n]]]  F®2) IT:[n,n"

FGA Az Ny.zz)(IT): [0 —o [n]]

FED (Az A y.zx)(I1))(II) : [n]

app

app,
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Note that the indices (4,4) correspond exactly to the number of myeeq-steps and
enced-Steps respectively, from ¢ to its need-normal form—as shown in Example 1—
, and that @ is a tight derivation. Forthcoming Theorem 5 shows once again that
this is not by chance: CbNeed tight derivations are minimal and provides exact

bounds to evaluation lengths in — .-

Remarkably, the technical development to prove correctness and completeness
of the CbNeed type system with respect to CbNeed evaluation follows smoothly
along the same lines of the two other systems, mutatis mutandis.

6.1 CbNeed Correctness

Lemma 6 (CbNeed linear substitution). Let g,y Pueed z: M; 1 p(m.e)
E{(x)): O be a derivation and v a value such that O # 0 and E does not capture
the free variables of v. Then there exists a splitting M = My W My, with My # 0,
such that for every deriwvation ¥ bpeeq I1 F(me’) 4 M there exists a derivation
Py Preed T: My ' IT =M ete’ =D By - O,

Proposition 10 (Quantitative subject reduction for CbNeed). Let
D peeq I HF™) t: M be a derivation such that M £ 0.
— Multiplicative: if ¢ ey S then m > 1 and there is a derivation @' >peed
I Em=Le) ¢ 0.
— Exponential: if ¢ —e...uS then e > 1 and there exists a derivation D' >reed
rEtme=b ¢\,

Proposition 11 ([normal] typings for normal forms for CbNeed). Let
v N A GO [normal] be a derivation, with normal(t). Then I is empty,
and so P is tight, and m = e = 0.

Theorem 5 (CbNeed tight correctness). Lett be a closed term. If @ >peed
F(mse) 2 M then there is s such that d: t —% .48, normal(s), |d|s < m, |d|. < e.

need

Moreover, if @ is tight then |d|, = m and |d|. = e.

6.2 CbNeed Completeness

Proposition 12 (Normal forms are tightly typable for CbNeed). Lett
be such that normal(t). Then there is a tight derivation ® bpeeq FO9 t: [normall.

Lemma 7 (Linear removal for CbNeed). Let ®>peeq I' F™¢) E(v): O
be a derivation, with O # 0 and x ¢ £v(v). Then there exist

— a multi type M,

— a derivation @y bpeeq Ly FMoev) o M, and

— a deriwation P gy Pneed 1" W {x: M} Hmhe) Bz) -0
such that

— Type contexts: I' =I" W T,.

— Indices: (m,e) = (m' +my, e +e, —1).
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Proposition 13 (Quantitative subject expansion for CbNeed). Let
D >poea I'H™9) s: M be a derivation such that M % 0. Then,
— Multiplicative: if t —n... S then there is a derivation &' Dpoeq I FTLE) t: M,
— Exponential: ift —, s then there is a derivation & Breea I FeTD ¢ M.

Theorem 6 (CbNeed tight completeness). Let t be a closed term. If
d:t —* 45 and normal(s) then there exists a tight derivation ® dpeeq (4l
t: [normal].

CbNeed Model. The interpretation [t]$PNeed with respect to the CbNeed system
is defined as the set (where & = (z1,...,x,) is a list of variables suitable for ¢):

{(My,...,Mp),N) | 3P bneeq 1: My, ..., 2n: My F™t: N and N # 0} .

Note that the right multi type is required to be non-empty. The invariance and
the adequacy of [[t]]ngeed with respect to CbNeed evaluation are obtained exactly
as for the CbN and CbV cases.

7 A New Fundamental Theorem for Call-by-Need

CbNeed Erases Wisely. In the literature, the theorem about CbNeed is the
fact that it is operationally equivalent to CbN. This result was first proven
independently by two groups, Maraist, Odersky, and Wadler [45], and Ariola and
Felleisen [10], in the nineties, using heavy rewriting techniques.

Recently, Kesner gave a much simpler proof via CbN multi types [37]. She
uses multi types to first show termination equivalence of CbN and CbNeed, from
which she then infers operational equivalence. Termination equivalence means
that a given term terminates in CbN if and only if terminates in CbNeed, and it
is a consequence of our slogan that CbN and CbNeed both erase wisely.

With our terminology and notations, Kesner’s result takes the following form.

Theorem 7 (Kesner [37]). Let t be a closed term.

1. Correctness: if D >epn ™)t I then there exists s such that d: t = edSs
normal(s), |d|ln < m and |d|. < e.
2. Completeness: if d:t—%__ s and normal(s) then there is @>cpn F ™ t:normal.

Note that, with respect to the other similar theorems in this paper, the result
does not cover tight derivations and it does not provide exact bounds. In fact, the
CbN system cannot provide exact bounds for CbNeed, because it does provide
them for CbN evaluation, that in general is slower than CbNeed. Consider for
instance the term ¢ in Example 1 and its CbN tight derivation in Example 2: the
derivation provides indices (5,5) for ¢ (and so ¢ evaluates in 10 CbN steps), but ¢
evaluates in 8 CbNeed steps. Closing such a gap is the main motivation behind
this paper, achieved by the CbNeed multi type system in Sect. 6.
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CbNeed Duplicates Wisely. Curiously, in the literature there are no dual results
showing that CbNeed duplicates as wisely as CbV. One of the reasons is that it
is a theorem that does not admit a simple formulation such as operational or
termination equivalence, because CbNeed and CbV are not in such relationships.
Morally, this is subsumed by the logical interpretation according to which CbNeed
corresponds to an affine variant of the linear logic representation of CbV. Yet,
it would be nice to have a precise, formal statement establishing that CbNeed
duplicates as wisely as CbV—we provide it here.

Our result is that the CbV multi type system is correct with respect to
CbNeed evaluation. In particular, the indices (m,e) provided by a CbV type
derivation provide bounds for CbNeed evaluation lengths. Two important remarks
before we proceed with the formal statement:

— Bounds are not exact: the indices of a CbV derivation do not generally
provide exacts bounds for CbNeed, not even in the case of tight derivations.
The reason is that CbNeed does not evaluate unneeded subterms (i.e. those
typed with 0), while CbV does. Consider again the term ¢ of Example 1, for
instance, whose CbV tight derivation has indices (5,5) (and so ¢ evaluates in
10 CbV steps) but it CbNeed evaluates in 8 steps.

— Completeness cannot hold: we prove correctness but not completeness simply
because the CbV system is not complete with respect to CbNeed evaluation.
Consider for instance (Az.1){2: it is CbV untypable by Theorem 4, because
it is CbV divergent, and yet it is CbNeed normalisable.

CbV Correctness with Respect to CbNeed. Pleasantly, our presentations of CbV
and CbNeed make the proof of the result straightforward. It is enough to observe
that, since we do not consider garbage collection and we adopt a non-deterministic
formulation of CbV, CbNeed is a subsystem of CbV. Formally, if ¢t — _ 45 then
t =S, as it is easily seen from the definitions (CbNeed reduces only some
subterms of applications and ES, while CbV reduces all such subterms). The
result is then a corollary of the correctness theorem for CbV.

Corollary 1 (CbV correctness wrt CbNeed). Lett be a closed term and

Doy Ft M be a derivation. Then there exists s such that d: t = ed
and normal(s), with |dly < m and |d|e < e.

Since the CbNeed system provides exact bounds (Theorem 5), we obtain that
CbNeed duplicates as wisely as CbV, when the comparison makes sense, that is,
on CbV normalisable terms.

Corollary 2 (CbNeed duplicates as wisely as CbV). Let d:t =7 u

cbv
with normalcyy (u). Then there is d': t =7, 4s with normal(s) and |d'|y < |d|n and
|d'le < |dle.

8 Conclusions

Contributions. This paper introduces a multi type system for CbNeed evalua-
tion, carefully blending ingredients from multi type systems for CbN and CbV



Types by Need (Extended Version) 25

evaluation in the literature. Notably, it is the first type system whose mini-
mal derivations—explicitly characterised—provide exact bounds for evaluation
lengths. It also characterises CbNeed termination, and thus its judgements pro-
vide an adequate relational semantics, which is the first one precisely reflecting
CbNeed evaluation.

The technical development is simple, and uniform with respect to those of
CbN and CbV multi type systems. The typing rules count evaluation steps
following ezxactly the same schema of the CbN and CbV rules. The proofs of
correctness and completeness also follow exactly the same structure.

A further side contribution of the paper is a new fundamental result of
CbNeed, formally stating that it duplicates as wisely as CbV. More precisely,
the CbV multi type system is (quantitatively) correct with respect to CbNeed
evaluation. Pleasantly, our presentations of CbV and CbNeed provide the result
for free. This result dualises the other fundamental theorem stating that CbNeed
erases as wisely as CbN, usually formulated as termination equivalence, and
recently re-proved by Kesner using CbN multi types [37].

Future Work. Recently, Barenbaum et al. extended CbNeed to strong evaluation
[12], and it is natural to try to extend our type system as well. The definition
of the system, in particular the extension of tight derivations to that setting,
seems however far from being evident. Barembaum, Bonelli, and Mohamed also
apply CbN multi types to a CbNeed calculus extended with pattern matching
and fixpoints [13], that might be interesting to refine along the lines of our work.

An orthogonal direction is the study of the denotational models of CbNeed.
It would be interesting to have a categorical semantics of CbNeed, as well as
a categorical way of discriminating our quantitative precise model from the
quantitatively lax one given by CbN multi types. It would also be interesting to
obtain game semantics of CbNeed, hopefully satisfying a strong correspondence
with our multi types in the style of what happens in CbN [33,34,53,48].

A further, unconventional direction is to dualise the inception of the CbNeed
type system trying to mix silly duplication from CbN and silly erasure from CbV,
obtaining—presumably—a multi types system measuring a perpetual strategy.

Acknowledgements. This work has been partially funded by the ANR JCJC grant
COCA HOLA (ANR-16-CE40-004-01) and by the EPSRC grant EP/R029121/1
“Typed Lambda-Calculi with Sharing and Unsharing”.
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Proof Appendix

A Closed A-Calculi (Sect. 2)

Remark 1. Let t be a term. According to definition of the predicate normal,
normal(t) if and only if ¢ := S(A\x.s) for some term s and substitution context S.

Remark 2. Let t be a term. According to definition of the predicate normalcy,y,
normaley (t) if and only if ¢ := (Az.s)[y14=51] ... [yn¢sn] for some n € N and
terms s, $1,...,8, such that normalcyy,(s;) for all 1 < ¢ < n. In particular, if
normalcpy (t) then normal(t).

Remark 3. Every term can be written in a unique way as C(t) for some CbN
context C, where t is either a variable or an abstraction.

Remark 4. Every CbN context is a CbNeed context and a CbV context.

Proposition 14 (Syntactic characterisation of closed normal forms).
Let t be a closed term.
1. CbN and CbNeed: For r € {cbn, need}, ¢ is r-normal if and only if normal(t).
2. CbV: t is cbv-normal if and only if normalcpy (t).

Proof.
1. First, we prove that a closed term ¢ is CbN normal if and only if normal(t).
=-: Let ¢ be a closed and CbN normal term. We prove by induction on ¢ that
normal(t). Cases:

— Variable, i.e. t == x: it is impossible because ¢ is closed by hypothesis.

— Abstraction, i.e. t := Ay.s: then, normal(t) according to the definition
of the predicate normal.

— Application, i.e. t = su: this case is impossible, we prove it by
contradiction. Suppose t = su, then s would be closed and CbN
normal (as t is so), and hence normal(s) by i.h. According to Remark 1,
s = S{Ay.r) and so t = S{Ay.r)u, which is impossible because ¢ would
be a m-redex.

— Explicit substitution, i.e. t := s[x<u]: then, s is CbN normal. There
are four subcases:

e s is closed, then normal(s) by i.h., and hence normal(t);

e s:= S(\y.r), then normal(s) by Remark 1, and hence normal(t);

e s:= C(y): this is impossible because otherwise (since ¢ is closed)
t = C'(D{(y)[y<r]) which is not ecpn-normal;

e s is none of the above, then by Remark 3, s := C(\y.r) for some
CDbN context C' that is not a substitution context: this case is
impossible because otherwise, by Remark 3, s :== D(S(A\y.r)q) for
some CbN context D, which is not mep,-normal.
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<: We prove by induction on the definition of normal(¢) a stronger statement:

for

any term ¢, if normal(¢) then ¢ is CbN normal (we dropped the

hypothesis that ¢ is closed). There are only two cases:

Abstraction, i.e. t :== Ax.s, then t is CbN normal because —_,  does
not reduce under abstractions.

Explicit substitution, i.e. t = s[x<u] with normal(s), then s =
S{Ay.r) for some substitution context S according to Remark 1,
thus ¢ = S'(\y.r) for the substitution context S’ = S[z<u|. By i.h.,
s is CbN normal. Hence, t is mcp,-normal. Moreover, ¢ # C{x) for

any CbN context C, so t is also e¢py-normal and hence CbN normal.

cbn

2. We prove that a closed term ¢ is CbNeed normal if and only if normal(¢).
=: Let t be a closed and CbNeed normal term. We prove by induction on ¢
that normal(t). Cases:

Variable, i.e. t :== x: it is impossible because t is closed by hypothesis.
Abstraction, i.e. t = Ay.s: then, normal(t) according to the definition
of the predicate normal.
Application, i.e. t = su: this case is impossible, we prove it by
contradiction. Suppose t := su, then s would be closed and CbNeed
normal (as t is so), and hence normal(s) by i.h. According to Remark 1,
s = S(A\y.r) and so t = S(Ay.r)u, which is impossible because ¢ would
be a m-redex.
Ezxplicit substitution, i.e. t = s[x<u]: then, s is CbNeed normal.
There are four subcases:
e s is closed, then normal(s) by 4.h., and hence normal(t);
o s:= S(\y.r), then normal(s) by Remark 1, and hence normal(t);
e s := F(y): this is impossible because otherwise (since t is closed)
t = E'(E'{y)[y<r]) for some r := S(v) (by i.h. and Remark 1,
since r is CbNeed normal), and so ¢ would not be epeeq-normal;
e s is none of the above, then by Remark 3, s := C(\y.r) for some
CbN (and hence CbNeed, by Remark 4) context C' that is not a
substitution context: this case is impossible because otherwise,
according to Remark 3, s :== D(S(\y.r)q) for some CbN context
D, which is not myeeq-normal (since D is a CbNeed context by
Remark 4).

<: We prove by induction on the definition of normal(t) a stronger statement:

for

any term ¢, if normal(t) then ¢ is CbNeed normal (we dropped the

hypothesis that ¢ is closed). There are only two cases:

Abstraction, i.e. t == Ax.s, then t is CbNeed normal because —
does not reduce under abstractions.

Explicit substitution, i.e. t = s[x<+wu] with normal(s), then s =
S{Ay.r) for some substitution context S according to Remark 1,
thus ¢ = S’(\y.r) for the substitution context S’ = S[z<+u|. By i.h.,
s is CbNeed normal. Hence, t is myeeq-normal. Moreover, t # E{x) for
any CbNeed context F, so t is also epeeq-normal and hence CbNeed
normal.

need
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3. We prove that a closed term ¢ is CbV normal if and only if normalcp, (¢).
=: Let t be a closed and CbV normal term. We prove by induction on ¢ that
normalepy (¢). Cases:

— Variable, i.e. t := x: it is impossible because t is closed by hypothesis.

— Abstraction, i.e. t == Ay.s: then, normalcpy () according to the defini-
tion of the predicate normalgpy .

— Application, i.e. t = su: this case is impossible, we prove it by
contradiction. Suppose t = su, then s would be closed and CbV
normal, and hence normalcpy(s) by @.h. According to Remark 2, s =
S(Ay.ry and so t = S(\y.r)u, which is impossible because ¢t would be
a m-redex.

— Ezplicit substitution, i.e. t = s[z<u]: then, s and v are CbV normal,
and w is closed (as t is so), thus normalcyy (u) by i.h. There are four

subcases:
e s is closed, then normalcy,y(s) by i.h., and hence normalepy (¢);
o s:= (Ay.r)[y14=s1] ... [yn¢Sn], then all r;’s are CbV normal (as

s 18 80); by i.h., normalcpy (r;) for all 1 < i < n, thus normalepy(s)
(since normalcpy (Ay.r)) and hence normalepy (t);
e s:= V{(y): this is impossible because otherwise (since ¢ is closed)
t =V {(V"{y)[y+r]) for some r := S(v) (by i.h. and Remark 2,
since r is CbV normal), and so ¢ would not be ecp,-normal;
e s is none of the above, then by Remark 3, s := C'(A\y.r) for some
CbN (and hence CbV, by Remark 4) context C that is not a
substitution context: this case is impossible because otherwise,
by Remark 3, s := D(S(\y.r)q) for some CbN context D, which
is not mepy-normal (since D is a CbV context by Remark 4).
<: We prove by induction on the definition of normalcyy (t) a stronger state-
ment: for any term ¢, if normalcy,y (¢) then ¢ is CbV normal (we dropped
the hypothesis that ¢ is closed). There are only two cases:
— Abstraction, i.e. t := Ax.s, then ¢t is CbV normal because —, does
not reduce under abstractions.
— Ezplicit substitution, i.e. t := s[x<+—u| with normalcpy (s) and normalepy (u),
then t = (Ay.r)[y14=s1] - . . [Yn$Sn][z<u] where normalcpy(s;) for all
1 <i < n, by Remark 2 applied to s. By i.h., u,s1,...,s, and s are
CbV normal. Hence, ¢ is mepy-normal. Moreover, ¢ # V(x) for any
CbV context V, so t is also ecpy-normal and hence CbV normal. O

B Types by Name (Sect. 4)

B.1 CbN Correctness

In order to prove subject reduction, we have to first show that typability is pre-
served by linear substitutions, via a dedicated lemma. We also need the following
splitting property of multi-sets, whose proof is omitted because straightforward.
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Lemma 8 (Splitting multi-sets with respect to derivations). Let ¢ be
a term, Docpy I F™€) t: M a derivation, and M = N WO a splitting. Then
there exist two derivations

— dyvepy Iv Fmven) 2N and

— Po>epny To F(mo.eo) ¢.0
such that

— Type contexts: I' = I'y W [,

— Indices: m = my +mp and e = ex + €.

Lemma 9 (CbN linear substitution). If ® ey, Ia: M F™)C(a): L
then there is a splitting M = [L'| W N such that for every derivation ¥ bepp

I L there is a derivation © bepy T'W II,z:N I-(m+ml’e+e/_1)0<<t>> L.
Proof. By induction on C. Cases:
— Empty context, i.e. C' = (-). The typing derivation @ is simply
— T
x:[L] RO L

and I" is empty. Then M = [L] and so N is empty. The statement then holds
with respect to @¢ 4y = ¥, because m = 0 and e = 1.
— Left on an application, i.e. C' = Ds. The last rule of @ can only be app, and
so @ has the form:
x: Ma; AFMaea) D) N — L x: My; X Fm=es) 5. N
z: (Maly Ms); (Al X) Himatmetleates) Dzhs: L

app

where I' = A X, A(z) = X(z) =0, MaW My =M, m=ma+myx +1,
and e = ep + ex.

By i.h., there exists a splitting M = [L'] W O such that for every derivation
Uopn I F(m"€)¢ . [/ there exists a derivation

Bpay born @ O; AlHIT plmatmieate=Dpmy . N — L
By applying an app rule we obtain:

x:0;AWIT I—(mA+m/’eA+eLl)D<<t>> ‘N — L x: Myg; X Fm=es) . N
z: (OWMs); (AW [Ty X) Fimatm/tmetleate’tes—1) Dia)s: [,

a

Now, by defining N := OW My, we obtain M = MaW My = [L'|dOWYMs =
[L'] @ N. Therefore by applying the equalities on the type context the last
obtained judgement is in fact:

x: N;(I'w 1) | (matm’+mstleate tes—1) D{x)s:L
and by applying those on the indices we obtain:
x: N;(I'wII) - (mm’ ee’ 1) D{x)s: L

as required.
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— Left of a substitution, i.e. C = D[y<s]. Note that z # y, because the
hypothesis C'{(x)) implies that C' does not capture x.
The last rule of @ can only be ES, and so @ has the form:

x: Masy: M'; ARmaea) Dx): L x: My; X Fm=es) g M/
z: (MaW Ms); (AW X) pmatmetleates) Dghy«s]: L

where I' = AW X, A(zx) = X(x) =0, MaAW My =M, m=ma+mx + 1,
and e = ep +ex.

By i.h., there exists a splitting M = [L'] W O such that for every derivation
Uopn I F(m"€)¢ . [/ there exists a derivation

Doy Pepn z: O3y: M AW IT pmatmieate =Dy .

Note that by Lemma 1 and the fact that we are working up to a-equivalence,
we can prove that y ¢ dom(IT). By applying a rule ES we obtain

:0;y: M'; AW I I—(mAer/’eAJre/*l)D((t» L x: My:; X Fmses) g pp/
2:0W Ms; AW ITW X Fmatm’smetleate’tes—1) Dy s]: L

ES

Now, by defining N := OW My, we obtain M = MaW My = [L'|dOWYMs =
[L'] W N. Therefore by applying the equalities on the type context the last
obtained judgement is in fact:

z: N; (1—1 W H) l_(m4+m/+m2+1,54+e/+e>:fl) D<<£L’>> [y<_s] L
and by applying those on the indices we obtain:
z: N; (D IT) Fmhete=D Do yes): L

as required. a

Proposition 15 (Quantitative subject reduction for CbN). Let @ by,

'™t L be a derivation.

1. Multiplicative: if t gy S then m > 1 and there exists a derivation ¥ dgpy
rrm=teg. .

2. Exponential: iof £ —,
rEmeg. .

b

w8 then e > 1 and there exists a derivation ¥ >cpy

Proof.
1. By induction on ¢t —,s. Cases:
— Step at top level, i.e. t = S{Az.u)yr —, S{ulx+r]) = s. This case is itself
by induction on S. Two sub-cases:
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o Empty substitution context, i.e. S = (-). By construction the deriva-
tion @ is of the form:

x: M; T, Fmecay
fun
I, Pt \g e M — L I, I—(m“e"')réé\)ip
I, W I, pmetmetleater) (Az.u)r: L

With I'=T, W I}, m =m, +m,, and ¢ = e, + e,.. Note that m > 1
as required. We construct the following derivation ¥, verifying the
statement:

@ My, F ey [ [ e

r,er, I—(m“er“e“Jre’“)u[:v(—r] L

ES

e Non-empty substitution context, i.e. S = S’[y<—q]. Then @ has the
following structure:
y:N; T, I—(m“’e“)S'(/\x.u) M —L I, F(maca)g. N £
r,wiy pmutmacutea 61\ g u)[y<—q]: M — L I, Bmeeny . pp
(my+mg+m,+1,e,+eq+e;) app
Iy W, W I e mametseuteaTer) ol A g u) [y<—q]r: L

With I' = W I W1, m=my,+mg+m,+1,and e = e, +e4+e,.
Note that m > 1 as required.
Consider the following derivation, obtained by removing the rule ES:

y: Ny L Fo) S Oy : Mo L T FO ) M

(my+me+1,eq+er) app
y: N; I, WL BTl oo er) §H e uyr . L

By i.h., we obtain a derivation
O y: N; LW, Fmedmreten) §ype o)) L

Now, we apply a rule ES with respect to y and ¢, obtaining the
following derivation ¥, satisfying the statement:

y: N; [, W I I—(m”+m’"’e”+e"')S'(u[m(—r]> L I, I—(m“’e“)q N
Fu W Fq W Fr |_(mu,+7nq+m7~7eu+€q+ev‘)S/ <u[z%r}>[y%q] L

ES

— Contextual closure. We have t = C(u) —,C(r) = s. Cases of C:
o Left on an application, i.e. C = Dgq. The last typing rule in @ is
necessarily app and @ is of the form
L, Fmwes) Du)y: M —o L T, Hmaea) ¢: M
I, W I, Fmetmatleated Diyyg: L

app

With I' =T, W1, m=my, +mg+1,and e = e, + ¢€,.
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By i.h., m, > 1 and there exists a derivation I, F(™«=hew) D(r): M —o
L, thus allowing us to construct ¥ as follows:
Fu l_(mufl,eu) D<T> M — L ]"q |—(mq,€q) qM
I, I Fmetmaeated) Dipyg: L

appy,

Note that (m, +mg, e, +€4) = (m —1,¢).
e Let C = D[z<—q]. The last typing rule in @ is necessarily ES and ¢
is of the form
Lyyw: M FMwes) D@y L T, Fmaed g2 M
Iy Iy Fmetmaeated) D(y)[z—q): L

ES

With I' = I, W Iy, m = my +mgy, and e = e, + 4.

By i.h., my, > 1, and so m > 1, and there exists a derivation
Ly, x: M Fme=bed) D). L, thus allowing us to construct ¥ as
follows:

Ly s M Emu=bed) Dpy L [, H0maca) g2 M
I, W, Fmetme=lewted) Diy)[zée—q]: L

ES

Note that (m, +mq — 1,6, +e4) = (m — 1,€).
2. By induction on t —,s.
— Step at top level, i.e. t = C{a)|r+u] = ,C{u)[x+u] = s. The last
typing rule in @ is necessarily ES and @ is of the form

Poay > IToyo: M p(mc,ec) C{a):L II F(m'e’) g M
T'o W IT Fmetmuected) O [zu]: L

ES

WithI'=IcWIl, m=mc+m,and e =ec + €.

Let M = [L'] W N be the splitting of M given by the linear substitution
lemma (Lemma 2) applied to @¢,y. By the multi-sets splitting lemma
(Lemma 8) there exist two derivations

(a) Y >obn gy FmL€L) g, I and

(b) Uy oy N F(mN’eN)’LL :N.

such that IT = IT;, W IIxy, m' = m/, + my, and ' = e}, + ey

Now, by applying again the linear substitution lemma to @¢ ) with
respect to ¥y, we obtain a derivation

Pouy PebN T N3 To W |‘(mc+mlL”eC+e/L/71)C<<u>> L
Then ¥ is built as follows:

x: NyTow I, Fmetmuecten Doy [ Ty BN ey N
T Wl W Iy Fmetmytmy.ecter +en—1) C{u)[z+u]: L

ES
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Now, note that the last judgement is in fact
Tew IT Fmetmbecte=1) oW g : L

which in turn is
I =me=D Cu)) [aeu] : L
as required.
— Contextual closure. As in the — case. Note that indeed those cases

do not depend on the details of the step itself, but only on the context
enclosing it. ad

Proposition 16 (normal typing of normal forms for CbN). Let t be such

that normal(t), and @ >epy I F(™€) ¢ normal be a derivation. Then I is empty,
and so @ s tight, and m = e = 0.

Proof. By induction on the derivation of normal(t). Cases:
— Base, i.e. normal(Az.t). Then & can only be:

normal
FO9\z ¢ normal

which satisfies the statement.
— Inductive, i.e. normal(t[x<s]) because normal(t). Then & has the following
shape.

D> Iy M e normal @y I FMee)g: M

Ly I pmetmeecteyine o) normal

ES

with I'=I W Iy, m = m; +ms, and e = e; + e;. We can apply the .h. to
@, obtaining that M = 0, I} is empty, and m; = e; = 0. Then @, is simply
a many rule with 0 premises. Therefore, 'y is empty and mgs = e, = 0. Then
I' is empty and m = e = 0. ad

Theorem 8 (CbN tight correctness). Let t be a closed term. If ® beyn
F™¢: L then there is s such that d: t —*nS, normal(s), |dln < m, |dle < e.
Moreover, if ® is tight then |d|, = m and |d|. = e.

Proof. By induction on m + e and case analysis on whether ¢ reduces or not. If

tis a —, normal form then we only have to prove the moreover part, that

states if @ is tight then m = e = 0, which follows from Proposition 3.
Otherwise, two cases:

1. Multiplicative steps: t — u and by quantitative subject reduction (Proposi-

tion 2) there is a derivation ¥ >eopn Fm=be)y . L. By i.h., there exist s and
d’ such that normal(s) and d' : u =% s, |d'|ls < m —1 and |d'|¢ < e. Just
note that ¢ — u and so, if d : t =%, s is d’ preceeded by such a step, we have
|dln < m and |d|. < e.
If & is tight then ¥ is tight. Then |d'|, = m — 1 and |d’|e = e by i.h., that
give |d|, =m and |d|. = e.
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2. Ezponential steps: t —,u and by quantitative subject reduction (Proposi-

tion 2) there is a derivation ¥ >copn p(moe—1)

w: L. By i.h., there exist s and
d’ such that normal(s) and d' : uw =%, s, |d'|ls < m and |d'|e < e— 1. Just
note that t —,u and so, if d : t =7, s is d’ preceeded by such a step, we have
|dln < m and |d|e < e.
If @ is tight then ¥ is tight. Then |d'|, = m and |d'|c = e — 1 by i.h., that

give |d|, =m and |d|. = e. O

B.2 CbN Completeness

Proposition 17 (Normal forms are tightly typable for CbN). Let ¢ be
such that normal(t). Then there is tight derivation @ >epy FO9%. normal.

Proof. By induction on normal(t). Cases:
— Abstraction: if normal(t) because t = Ax.s then

normal
FO9 \2 s normal

— Substitution: if normal(t) because t = s[z<—u] and normal(s) then by i.h. there

)

exists a tight derivation ¥ >opn F©0: normal. Then & is given by:

— many
T OO0 normal 9.0

I-(O’O)s[xeu] :normal

O

In order to prove subject expansion, we have to first show that typability can
also be pulled back along substitutions, via a linear removal lemma. We also need
the following merging property of multi sets, whose proof is omitted because
straightforward.

Lemma 10 (Merging of multi-sets with respect to derivations). Lett
be a term. For any two derivations

— dnr>opny I'n F(mn.en) t:N, and

— Doy IO F(moseo) .0
there is a derivation ®ywo >epny v W Lo HMmy+Tmosenteo) . Ny O,

Lemma 11 (Linear removal for CbN). Let ®vepy Iz M F ™9 C((s) : L,
where x ¢ £v(s). Then there exist

— a linear type L',

— a derivation ®, depy T's F%)s: L/ and

— a derivation ey Pebn 17, 2: M W [L'] I—(m/’e/)C’«x)) L
such that

— Type contexts: I' = [, W 1.

— Indices: (m,e) = (m' +ms, e’ +e5,—1).
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Proof. By induction on C. Cases:
— Empty context, i.e. C = (). Then ®cpn [2: M Fmelg. L. By Lemma 1,

x ¢ fv(s) implies M = 0. Then we simply take
e &, := P, that implies L' := L, I, :=I', m, := m, and e, := e, and
e @, defined as the axiom

—  ax
x:[L] FO .

and for which I is empty, m’ =0, and ¢’ = 1.
Then the statement holds:
o Type contexts: ' =0 =0W s =I"WI, and
o Indices: (m,e) = (ms,es5) = (0+mgs,14+e5s—1) = (m' +mg, e +e5s—1).
Left of an application, i.e. C'= Du. Then @ has the form

By > Tppsy;z: M EM2EE2) D) N —o L T, F™o)y: N
I'py W Dy M I—(mD<5>+m“+1’eD<S>+e“)D<s>u L

app

where z ¢ dom(I,) (by Lemma 1, because « ¢ fv(u) by hypothesis), I' =
I'pgy Wy, m=mpe) +my+1,and e = eps) + €y-
Applying the i.h. to @p sy provides a type L’ and derivations:

by vopn Ly Foe)s L

and
@D«m» >CbN F”;Z‘ZM (] [L/] |_(m € )D<<1‘>> ‘N — L

such that I'py = 1" W Iy and (mpsy, epesy) = (m” + mg, €’ + e, —1).

Then @,y is given by:

Py Poon 3w ML F™ D) i N — L 1, Fmedu: N
(I L,);a: My [L] 0 Tmetbe ™ el p gy

app

that, by taking IV := I W I, m' =m” +m, + 1, and € = " + ¢, verifies
the statement because:
o Type contexts: I' = I'py W Iy =I"W I W, =1"WI, and
o Indices: (m,e) = (Mpsy +mu+1,eps) +eu) = (M +ms+my+1,¢" +
es—1+e,)=(m +ms e +e;—1).
Left of a substitution, i.e. C = D[y<u]. Then ¢ has the form

Ppsy > I'pgsy; v Miy: N I—(mD<S>’eD<S>)D<s> 'L L, Moty N
Ty Dys s M 2@t mwcne e D)y q]:

ES

where = ¢ dom([,) (by Lemma 1, because = ¢ f£v(u) by hypothesis), I' =
I'py W Iy, m = mps) + My, and € = epq) + €y-
Applying the i.h. to @p(,y provides a type L' and derivations:

D, >opn s F(ms,es)s L
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and " "
Dpz) PCbN 'z Mw[L';y: N p(m7 e )D<<:c>> : L
such that I'py = I'" W Iy and (mpsy, ep(sy) = (M +ms,e” + e, —1).
Then @¢ .y is given by:
Bpay Ponn Tz Mw L]y N ™ D)L 1, F™ee)y: N

" 1" ES
(I )y o: My [L] e ) Dy ye ] L

that, by taking I := I W Iy, m' =m” +m,, and €' = €” + e,, verifies the
statement because:
o Type contexts: I' = I'py W Iy =I"W I, W, =1"WI, and
o Indices: (m,e) = (Mpsy + Mu,ep(s) +eu) = (M’ +mg +my, e’ +es —
1+ey)=(m +ms,e +e;—1). O

Proposition 18 (Quantitative subject expansion for CbN). Let @ >epy
I' ™9 L be a derivation.

1. Multiplicative: if t —_ s then there is a derivation ¥ bepy I pOmtlel. .

ety .

Mcbn

2. Exponential: if t —, s then there is a derivation ¥ ey, I'F

Proof.
1. By induction on ¢t —s. Cases:
— Step at top level, i.e. t = S(Az.u)r —,S{ux+r]) = s. This case is itself
by induction on S. Two sub-cases:
o Empty substitution context, i.e. S = (-). The derivation @ has the
form:

w: M; T, Fm ey [ L Fmeen) e

r,wir, I-(m“+m“e“+”)u[:c<—r] L

ES

With I' = I, W I}, m = m, +m,, and e = e, + e,. We construct the
following derivation ¥, verifying the statement:
x: M; T, Fmeea)y . [
fun
L, Fmee)\au: M = L I, |—<m“€r>ré£\)4p
LI, Fometmetbecten) (g ) L

e Non-empty substitution context, i.e. S = S’[y<—q]. Then @ has the
following structure:

y:N; [, W I, I—(m“+m“e“+€*)S’(u[x(—r]> L I, I—(mq’e‘I)q:N

ES
I, Fq W, |_(mu+mq+mr,eu,+eq+er)S/<u[1.<_ﬂ>[y<_q] - L

With I' =, W I, W1, m=my,+mg+m,+1,and e = e, + ¢4+ e,.
By i.h. applied to the left premise, we obtain a derivation
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y: Ni Dy I Rmetmetbectend) o uyr: L

that has the following structure:

y: N; D, F )8 Oy M — L T F ) M
y: N; Dy I Bmetmetbeaten) gt uyr: L

app

We then construct ¥ has follows:
y:N; D, Fm o) gy : M — L Ty Fmof)g: N "
r,vi, I—(m“+m‘“€“+e‘1)5’</\a:.u> [y<—q]: M — L I, F(meser) . pp
(my+mg+m,e+1,e,+eq+er) app
IyW LW I e rmatie T e Caten) §1 e u) [y<—qr: L

— Contextual closure. We have t = C(u) —,C(r) = s. Cases of C:
o Left on an application, i.e. C = Dgq. The last typing rule in @ is
necessarily app and @ is of the form

I Emee) DY M —o L Ty Fmaea) g2 M
I @I, Fmetmatlete) Diryg: L

appy

With I' =1 W1, m=m, +m,+1, and e = e, + ¢,.
By i.h., there exists a derivation I, F™r+her) D(u): M —o L, thus
allowing us to construct ¥ as follows:

I, l_(mT—&-l,eT) D(u) M —o L Fq |—(mq7€q) q: M
I I, Fmetmat2ented Diy)g: L

app

Note that (m, + mq + 2,6, +¢4) = (m+1,e).
e Let C' = D[z4—q]. The last typing rule in @ is necessarily ES and &
is of the form
I,z : M p(mrer) D(r):L Iy H(maea) g M
I W, p(metmg,erteq) D{(u)[z<—q]: L

ES

With I' = I W I, m = m, +mg, and e = ¢, + ¢,.
By i.h., there exists a derivation I,z : M F™r+1er) D(y): L, thus
allowing us to construct ¥ as follows:

L,z M Emetler) D(u):L I H(maea) . M
I Iy Fmetmatlertea Dy [ze—q]: L

ES

Note that (m, + mq+ 1,6, +¢4) = (m+1,¢).
2. By induction on t —s.
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— Step at top level, i.e. t = C{a)|r+u] =,C{u)[x+u] = s. The last
typing rule of @ is necessarily ES and @ is of the form

Pozy > Lo, x: M Fmesee) C(u)y: L 1T Fm'se) o M
Io W IT Hmetmueoten) Cu) [z : L

ES

With I'=TcWII, m=m¢g+m',and e =ec +¢€'.
The linear removal lemma (Lemma 3) applied to @,y gives a type L’
and two derivations
(a) Py epn Lo I—(m'“’E“)u:L’, and
(b) Doy bevn M5 M W L] F™ )0 (a) L
such that ¢ =TI, WI’, mg=m,+m"”, and ec = ¢, +¢€”" — 1.
Now, by applying the multi-sets merging lemma (Lemma 10) to @, and
the right premise of @: o
I e M

we obtain a derivation

W, bopy [T W I, M Fmee’®en) s 0w (L]
Then ¥ is built as follows:

IeMy L) F 0y L ITw L, -+ mae’+en) M w (1]
I'WITW I, 0 Tm/tmae+etew) C{x)|[x+u]: L

ES

Now, note that the last judgement is in fact
Tow IT Fimetmiecte' 1) oW (pe) : L

which in turn is
I et O [aeu] : L

as required.

— Contextual closure. As in the —  case. Note that indeed those cases
do not depend on the details of the step itself, but only on the context
enclosing it. 0

Theorem 9 (CbN tight completeness). Lett be a closed term. If d:t—}, s
and normal(s) then there is a tight derivation @ >epn F(dlwldle)s . normal.

Proof. By induction on the length k = |d| of the evaluation d: t =% s. If k=0
then ¢ = s and normal(t). Proposition 4 gives the existence of a tight derivation
D >ebn (0. normal, that satisfies the statement because |d|, = |d|e = 0.

If k> 0 then t = u —F 1 s Let d be the evaluation u =" 1 5. By i.h.
there exists a tight derivation ¥, R4kl 'le)y, - normal. By quantitative subject
expansion Proposition 5 there exists a derivation @ of ¢ with the same types in
the ending judgement of ¥—then @ is tight—and with indices (|d|q, |d|e). O
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C Types by Value (Sect. 5)

Lemma 12 (Type contexts and variable occurrences for CbV). Let
By I ™ M be a derivation. If x & £v(t) then x ¢ dom(I').

Proof. By straightforward induction on the derivation @. ad

C.1 CbV Correctness

Lemma 13 (Typing values). Let v be a value and @ dery I’ Fme) 42 M be
a derivation for it. Then,

1. Empty multi-set implies null size: if M = 0, then dom(I") = § withm =0 = e.
2. Multi-set splitting: if M = N WO, then there are two type comf/exzfls IT and A

and two derivations ¥ ey 11 F% N and © by A F™5) 0 such
that T =ITWA, m=m'+m" ande=1¢' +¢€"

Lemma 14 (CbV linear substitution). Let ®ocyy Iz M F™V () : N.
Then there exists a splitting M = O W P such that, for every derivation ¥ >ey

1T+ 0, there is a derivation &' e, I'W IT, z: P I—(m+m/’e+e/71)V<<v>> :N.

Proof. By induction on V. Cases:
— Hole, i.e. V.= (), then V{{v)) = v and V{(z)) = z, hence & consists only
of an ax-rule and so N = M and dom(I") = ), with m = 0 and e = 1. Let

O = M and P := 0. Thus, every ¥ b¢,, IT F(m¢)y . O coincides with a type
derivation ¢'>eyy I'W IT, z: P I—(m+ml’e+€'71)V<<v>> :N,since 'Wll,x:P =1
and N =0 and (m+m/,e+¢e —1) = (m/,€).

— Left application, i.e. V := V't. Then, the derivation @ has the form

x: My, Iy I—(ml’el)V’«x» :[N' —o N] x: My, Ty FM2e2) N7
oM, T F™OV/ (a)t: N

app

where M = MiW My, I' = I1 W1y, m = mi +mg+1and e = e; +
es. By 4.h., there exists a splitting M; = O W P’ such that, for every
derivation ¥ >g,, IT (e, . O, there exists a derivation with conclusion
nwilz: P I—(mﬁm,’eﬁe'*l)‘/’((v)} :[N" —o NJ]. So, we can construct the
following derivation &’

NIz P Emtmiete=Dyron  INY o N 2 My, Iy FMm22)p N7
@My W P/, T IT Fmtmiete =Dyrng . N

where P:= MywW P and M = MW My =0OWP WMy =0WwP.
— Right application, i.e. V :=tV'. Then, the derivation @ has the form

z: My, Iy Fme) e [N —o N z: My, Ty Fm 22y (1) N/
oM, T ™ty (a) : N

app

app
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where M = Mi WMy, I' = INTWlils, m = my+mg+1and e = e; +
es. By 4.h., there exists a splitting My = O W P’ such that, for every
derivation ¥ >y, IT ey, O, there exists a derivation with conclusion
Wil x: P I—(m2+ml’62+e/_1)V’(<v>> : N'. So, we can construct the following
derivation @’

wi My, Ty FOD4 NY o N Ty w IT, o0 P Rmetmiete=Dyrn .\
@My WP T IT Rmmiete =Dy N

app

where P =M WP and M =M WMy =M WOWP =0WwP.

— Left explicit substitution, i.e. V := V'[y«t]. We can suppose without loss of
generality that y ¢ fv(t) Ufv(v) U{z}, and hence y ¢ dom(IT) by Lemma 12.
So, the derivation @ has the form

w: My, y: N, Iy FoeOV (e N ai My, Ty M2 N7
z: M, T Fm™OV () [yt]: N

ES

where M = My W My, I' =17 0I5, m =mq +mo and e = e1 + e2. By i.h.,
there exists a splitting M; = O W P’ such that, for every derivation ¥ by,
ITH™ )y 0, there exists a derivation of I W IT, z: P/, y: N’ Fmtmberte =Dy i,n . N
Therefore, we can construct the following derivation @’
nNnwilz:PLy:N’ I—(m1+m/’el+el_1)V'<<v>> :N 2 My, Ty Fm2e2): N7
@My W P/, T IT F et =Dyrgnine 4. N

ES

where P = Mo WP and M = M WMy, =06 P WMy=04P.

— Right explicit substitution, i.e. V := t[y+V’]. We can suppose without loss of
generality that y ¢ fv(v) U {z}, and hence y ¢ dom(IT) by Lemma 12. Then,
the derivation @ has the form

x:My,y:N', Iy plmiey. v x: My, I I—(mz’ez)V’«x)) : N/

e M, T F™ 4y eV (2)]: N

ES

where M = MyWMs, I' = 1015, m = mi+msg and e = e;+e5. By i.h., there
is a splitting My = OWP’ such that, for every derivation Wy I F™ )y 0,
there exists a derivation of I & IT, z: P! Fm2Fmieet e =Dy N7 S, we
can construct the following derivation ¢’
i My,y: N, T FeDe N Dy T, g PRt =Dy gy

2 My WP T IT R et e =Dy yrigh) N

ES

WhereP::Ml&JP’andM:MlLﬂMgle&JO&JP’:OLtIP. O

Proposition 19 (Quantitative subject reduction for CbV). Let @ >epy
I 9% M be a derivation.
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1. Multiplicative: if ¢ —>mcbvt’ then m > 1 and there exists a derivation @' >y
rEm=bOy M

2. Exponential: if t —>ecbvt' then e > 1 and there exists a derivation @' Depy
rEme Dy M.

Proof. By induction on the reduction relation — ;. , with the root rules —, and
e, a5 the base case, and the closure by CbV contexts of —cpy i=rn U e,
as the inductive one.
— Root step for —, —ie t = S ru)r =y S(ufz<r]) = t' where S =
[y14=s1] ... [yn¢sn] for some n > 0. We proceed by induction on n € N.
If n =0 then S = (-) and so t = S{(Az.u)r = (Az.u)r and t' = S{ulz+r]) =
u[z<—r]. Hence, @ has the form

U bgpy I, 2:0 Fm€) M
fun

17 '_(m',e/) Arxu:0 —o M many

I EM) g [0 — M Obeyy AFME) 10
app

"o

Ty A FQtm+m e ) (g a)e: M
where ''=ITWA, m:=1+m'+m” and e := ¢’ + €”. Therefore, m > 1. We

can construct the following derivation @’:

W [>cbv H,.%‘ZO |_(7n’,e/) UZM @ chv A |_(m”,e”) T O

"ot

7 7 ES
I EmAm%e e g lper): M

where (m’ + m” e’ +¢e") = (m —1,e).

Suppose now n > 0. Let S := [y14=51] ... [yn—14Sn—1]: then, t = S(Az.u)r =
S Az u)ynsn]r and t' = S{u[z<r]) = S (u[x7r])[yn<sn]- Hence, @ has
the form

W” Dcbv H: Yn : Nn |_(m”,e//)S/<)\I.,u> M Wn D>cbv Fn |_(mn,en,)5n ZNn S
" " E ’ ’
T I, Fmfmeetren) g 4y - M @Dacﬂs I Emoc)r . 0
MW, w I Fmmatmotle tented) g xg ) M

where I' == II W I, W [} and (m,e) = (m" +m, +mi+ 1,e" + e, + €f).
Note that m > 1 as required. Consider the following derivation ¥

v Pcby H7 Yn: Nn '-(m/,76/,)5/<>‘x'u> M e D>cbv Fé F(mé”ez’)r :0

1" !’ 1 1" ! app
oy I, y,: N, p(m7+mo+le +50)S'<)\a:.u>r:M

By i.h. applied to ¥ (since S"{(A\x.u)r +—y S’ (u[z<r])), there is a derivation
V' bepy WG, yn: Ny I—(m,’e/)S’<u[Jc<—r]> ‘M

where (m/,e’) = (m”" 4+ mg,e” + e})). We can then construct the following

derivation ¢’

U Sy WL yn: Ny I-(m/’e/)S’<u[z%r]> M U, Doy In I-(m"’e")sn ' N,

(m'+mp,e’+en) or . ES
Ik S’ (u|zr])[yn<sn] : M

where (m’ +my, e’ +e,) = (M" +m\+ mp, e’ +ej +e,) =(m—1e).
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— Root step for —,  , i.e. t == V{(x)[rS()] e, S(V{(v)[z0]) =t with
S = [y14=51] . . . [yn<—sy] for some n > 0. We proceed by induction on n € N.
If n =0 then S = (:) and so t = V{(z)[z<v] and ¢’ = V{v))[z+v]. Hence,
@ has the form

by ,z:0FM ) V{E): M Ovey To M) 4:0
IT @ Ty i +mose’+eo) V(g [xev]: M

ES

where I' := ITWIy, and m := m/+mg and e := €’ +¢ey. Let O = O'WO” be the
splitting of O given by linear substitution for CbV (Lemma 4). According to
the multiset splitting property (Lemma 13.2), there exist a splitting Iy = I'jW
I’} and the derivations Oy 1) F(mo.e0) 4 : O and O >epy Iy F(m0-e0)y, . 0",
with mg = mgy + my and ey = ¢, + ej. By linear substitution for CbV
(Lemma 4), there exists a derivation W' bey,y I W I}, 2: 0" m/+moe’+eo—1)
V{{(v) : M. We can then construct the following derivation ¢’

U by T WIG,2:0" FOVHEmoe D Vi) : M 0" bay, Ty FM0<0) v: 0" -
ITw T Iy - tmotmge'teoteq —1) 17 (W) [1e—v] : M

where TWIHWI)/ =HWIly=1 and (m' +mj+mj,e +ej+ej—1)=
(m' +mp,e’ +eg—1) = (m,e—1).

Suppose now n > 0. Let S = [y1¢-s1]...[yn—14Sn_1]: then, S{v) =
S (VY yn<—sn] and so t = V{(x) [x<-5"(v)[yn+s,]] and t' = S(V{(v))[z+v]) =
SV (o)) [xv])[yn¢5r]. Hence, & has the form

O Doy Yn i N, I} F0 <) S (0) N O beby T Fm) s, N,
Obeby I§,2: N 0OV () : M I W I, o tmacgten) gy o N o
[y Iy @I, Fmotm tmneoteven) yahiae S M

ES

where I' := IJWIYWI, and (m,e) == (my+m” +my, e[ +¢e’+e,). Consider
the following derivation ¥
Obepy I a:N OOVl M 0" bapy yn: Ny, Tl 00§/ (1) : N

’ " ’ " ES
LYW Y,y Ny, EmotmTeote™) YW zeS" (v)] : M

By i.h. applied to ¥ (since V {x))[z+S'(v})] —e... S (V{v))[x<])}), one has
ey + €” > 1 and there exists a derivation

U bepe THW Y, yp: Ny F) SV (o) [wen]) s M

where (m/,€’) = (m{+m”, el + e’ —1). We can then construct the following
derivation &'

U oy WY yn: Ny FT DSV () [00]) : M O bepy Ty )5, N,
[ R mnseen) gy () [24—0]) [y 4—sn] : M

ES

where (m’ +my, e’ +e,) = (my+m" +mp,ej+e”" —14e€,) =(m,e—1).
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— Application left, i.e. t = su —,s'u =:t' with s —,s" and r € {mcpy, €cby }- S0,

@ has the form
Vi beby 1 H) s [N —o M) Wybapy 15 F0m2) ui N
I W Iy Fmitmetleites) ¢ pf

app

where ' :=I'1 W15 and m := mq + mo + 1 and e := e; + e5. By i.h. applied
to ¥y, there is a derivation ¥ bcpy 1 e g . [N — M] where

e m' :=my; —1and e :=eq if r = mg,y,

o m :=m;and e :=e; —1if r = ey
Thus, we can construct the following derivation @’

Uoepy TLF N —o M) Wybepy Ih FM22) i N

7 7 app
Iy W Iy midmatletes) ¢ pp
where
oem +ma+l=mi—14+me+1l=m—-1lande +ey=¢; +ey =cif
= Mchy,
oem +mo+1l=mi+ma+1l=mande +eys=€e;—1+ey=e—1if
I = €ecphy-

/

Application right, i.e. t == us —us’ =t with s —,s' and r € {mcpy, €cby }-

So, @ has the form

Uy bepy 1) FM00) 4 [N —o M) Wy bayy Ty FM202) 50N
[’1 W F2 l—(m1+m2+1,€1+€2) t-M

app

where I' :=I'1 W15 and m :=mq +mo + 1 and e := e; + e3. By 4.h. applied
to Wy, there is a derivation ¥ papy o F™€) o't N where

e m' :=my —1and e = ey if r = mgy,

o m :=mg and € :=ey — 1 if r = ecpy.
Thus, we can construct the following derivation ¢’

Uy Dby 11 FOmasen) 4 ; [N — M] Uy 15 p(m'e’) o . N

!’ !’ app
Iy [ pimtmitheted 47 pp
where
emi+m +1l=mi+ma—1+1l=m-—1ande +e =€ +e =cif
= Mchy,
emi+m +1l=mi+me+1l=mande +€ =¢; +es—1=e—1if
I = €chy-

Left explicit substitution, i.e. t .= s[z+u| — s'[z+u] = t' with s — s’ and
r € {mcbv, €cbv }. S0, @ has the form
Iy, x:NEmue) g pf Iy pmee2) 0 N
Iy @ Iy Fmitmaetes) ¢y

ES

where ' := Iy W Iy and m := my + mo and e := e; + e2. By i.h. applied to
Wy, there is a derivation ¥ boyy 11, 2: N F™5€) - M where
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e m' :=m; —1and e :=ey if r = mgy,
o m :=m;and € :=e; —1if r = ecpy.
Thus, we construct the following derivation @&’

Uy Ih,z:N M) g M Wy, Iy Fm2e2) 4 N

’ ’ ES
Iy I Fmidmaeitea) ¢

where
em +mo=mi—1+me=m—1land e +ey=¢e; +e =ceif r =muy,
oem +my=mi+me=mande +eys=e; —1+e3=e—1if r = eqpy.
— Right explicit substitution, i.e. t = s[x<u] =, s[z+u'] = ¢’ with v —,u' and
r € {mchy, €cby - S0, P has the form

Iy, x:NEmue) g pf o [y pmee2) 0 N
Iy @ Iy Fmitmeeates) ¢y

ES

where ' := I'y & Iy and m = my + mo and e := e; + e5. By i.h. applied to
U,, there is a derivation ¥ >cpy 1o F(m"e) 4/ N where

e m' :=my —1and e = ey if r = mgy,

o m :=mg and € =€y — 1 if r = ecpy.
Thus, we can construct the following derivation ¢’

Uy Doy i, N EMe) so M Wy, T Fme) o/ i N

’ ’ ES
Iy Iy matmbented) ¢ p

where
emi+m' =mi+mo—1=m—1ande; +e =e; +ey=cif r =my,,
e mi+m =mi+me=mande;+e =e;+es—1=e—1ifr=eq,. O

Proposition 20 (Tight typings for normal forms for CbV). Let >y,
T 9.0 be a derivation, with normaleyy(t). Then I' is empty, and so @ is
tight, and m = e = 0.

Proof. By induction on the derivation of normaleyy (t). Cases:
— Base, i.e. t := \z.s. Since P >y, I I—(m’e)t:O, the last rule of @ can only be
a 0-ary instance of many, thus dom(I") = () and m = e = 0.
— Inductive step, i.e. t := s[z<—u] with normalcy(s) and normale,y (u). Hence,
@ has the form

"o

Uy I, x:N Hm'e) g:0 Obepy AR 4 N
I=me) ¢:0

ES

where I' .= ITW A and m :=m’' +m” and e .= ¢’ 4+ €”. By i.h. applied to ¥,
dom(II) = and N = 0 and m’ = 0 = ¢’. By i.h. applied to © (as N = 0),
dom(A) = () and m” = 0 = ¢’. Therefore, dom(I") =@ and m =0 =e. O
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Theorem 10 (CbV tight correctness). Lett be a closed term. If @ depy

I FO™ M then there is s such that d: t —%, s, normalepy(s), |da < m,
|dle < e. Moreover, if @ is tight then |d|n = m and |d|. = e.

Proof. By induction on m + e and case analysis on whether ¢ reduces or not.

If normalcpy () then the statement holds with s := ¢ and d the empty evaluation,
so that |d|y = 0 = |d|e. If moreover @ is tight then |d|l, =0=m and |d|e=0=¢
by Proposition 7.

Otherwise —normalepy (), then ¢ — u according to the syntactic characteri-
zation of closed cbv-normal forms (Proposition 1), since ¢ is closed. As t = u
means either ¢ —, wort —, u, by quantitative subject reduction (Proposi-

Mcbv €cbv
tion 6) there is ¥ bepy I F(m"e) 4y 0 M with:
-m''=m—1lande =eift =, u,
-m'=mande =e—1ift =, u.
By i.h. (since m' +¢e = m+ e — 1), there is a term s such that d': v —% s and
normalepy (s), with |d'[, < m' and |d'|e < €'; and if, moreover, ¥ is tight, then
|d'|lw = m’ and |d'|¢ = €’. The evaluation d: t —* s obtained by prefixing d’
with the step t = u verifies |d|ln < m and |d|e < e (and |d|y =m and |d|e =€
if moreover d—and hence ¥ since dom(I") = (§ and M = 0—is tight) because:
—ift =, wthen |dy = |d'|a +1<m'+1=m and |[d[e = |d'|. < ¢ = e (and
ldls = |d'|a+1=m'"4+1=m and |d|e = |d'|c = ¢’ = e if moreover @ is tight),
— ift =, wthen |dly = |d'|ls <m' =m and |d|e = |d'|l +1 <€ +1=e (and
ldln = |d'|]a = m' = m and |d|e = |d'|e + 1 = ¢/ + 1 = e if moreover P is
tight). O

C.2 CbV Completeness

Proposition 21 (Normal forms are tightly typable for CbV). Lett be
such that normalewy (t). Then there exists a tight derivation @ bpy FO9¢. 0.

Proof. By induction on normalcp, (t). Cases:
— Abstraction: if normalgy (t) because t = Az.s then @ is given by
many

FODNz.s:0

— Substitution: if normalcwy,(t) because t = s[z<+u] with normaleyy(s) and
normalcpy(u) then by i.h. there exist tight derivations ¥ bepy 0.0
and O depy F(©94:0. Then @ is given by:

v FO004.0 o F%94.0 e

I—(O’O)s[x<—u] :0

S

Lemma 15 (Typability of values). Let v be a value.
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1. Empty judgement: There is a derivation ¥ >y, F©0y 0.

2. Multi-set merging: If there are derivations @ bepy I Fmee) v M and W bepy
1Ty N, then there is a derivation O bep, I'W IT ey My N
withm” =m+m/ ande”’ =e+¢€'.

Lemma 16 (Linear removal for CbV). Let &b, I a: M F ™V (o) N
where x ¢ £v(v). Then, there exist

— a multi type M’ and two type contexts I and II,

— a deration W bepy v: MW M IT I—(m”’e”)V«x)) N, and

— a derivation @ >y I S V'l
such that

— Type contexts: I' = I"" W II,

— Indices: (m,e) = (m' +m”, e’ +e"’ —1).

Proof. By induction on V. Cases:
— Hole, i.e. V := {-): then, V{(v) = v and V{(z) = z. Since = ¢ fv(v), then
M = 0 according to Lemma 12. Let M’ := N and IV := I" and II be such
that dom(I1) = 0: hence, I' = I" W II. Let &' := & and ¥ be the following

derivation
X

— a
o:NFOYg: N
Thus, Ubepy 17, 2: M & M ™ <DV (2) : N with (m”,e”) == (0, 1), because
Do :MWM =2:M =z:N; and & ey 17 F™90: M because
I'z:M = I". Moreover, (m,e) = (m+0,e+1—1)=(m+m”,e+e” —1).
— Left application, i.e. V.= V't: then, V{(x)) = V'{z))t and V{{v)) = V'{{v)t.
So, @ has the form

By ey T,z My FIV () [0 —o N| @y bepy o, My FM22)¢:0 .
M BV (o)t : N

193

where I' := I W15 and M = M; W My and (m,e) = (my +ma + 1,61 + e3).
By i.h., there exist a multi type M’, two type contexts I'j and II;, and
two derivations ¥y bepy 11, x: MW M’ I-(mll/’e,l/)V'((x)) :[O — N] and @' >epy
'y MY such that I = "W IT; ad (my,e1) = (m +mf, e +ef —1).
We can then construct the following derivation ¥

U bope I,z My W M TV () [0 —o N] Gy bay Ty My F™22)¢:0 app
I Wy o My W M @ My i Tmerbeiteyrgn, .

where My W M WMy = MW M. If weset IT := I} W Iy and (m”,e”)
(m{ +ma+1,ef +e3), then we have I"W [T =" WIL Wb =1 W1 =
and (m’ +m” e +e" —1) = (m' + m + ma+ 1,/ + e + e —1)
(my 4+ mg + 1,e1 + e2) = (m, e), as required.

o~
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— Right application, i.e. V.= tV': then, V{(z)) = tV'{(z)) and V{(v)) = tV'{{v}).

So, @ has the form

By ey T,z My ML [0 o NT By bapy I, @: My F2D V() : O
Loz M ™ () : N

app

where I' .= It W Iy and M := M; W My and (m,e) == (my +ma + 1,1 +
€2). By i.h., there exist a multi type M’, two type contexts Iy and Ils,
and two derivations Ws bepy Ila, x: Mo W M’ I—(mg’eg)V’((x)) :0 and @' bepy
I ) MY such that I =T"WII; ad (ma,e3) = (M +mb, e’ +ef —1).
We can then construct the following derivation ¥

By ey Th,x: My FE [0 —o N Wy bayy o, My W M 2DV (0)) O
W, o: Myw My My Fmetmtbeated oy,

app

where My WM’ ' W My = MW M. If we set IT :== I, W I'] and (m”,e") =
(m§4+mi+1,ef +e), then wehave "W [T =" WIlh,wlh = Wily=T
and (m' +m” e +e" —1) = (m' +mi +my + 1, +ef +e1—1) =
(my 4+ mg + 1,e1 + e2) = (m, e), as required.

Left explicit substitution, i.e. V- = V'[y<«t]: then, V{(z)) = V'{(z))[y«t] and
V{v)) = V'{v)[y+t] where y ¢ £v(v) U {x}. We can suppose without loss of
generality that y ¢ £v(t). So, @ has the form

By ey T,z My, y:O FMOVIN N By ey Th,2: My FM24:0
Loz MOV () [yt]: N

ES

where I' := INWI and M = M;WMs; and (m, e) := (m1+ma, e1+e3). By i.h.,
there exist a multi type M’, two type contexts I'] and II;, and two derivations
Uy ey 1,2 My w MY y:0 ™00V () N and @ bepy I F Dy MY
such that It = I" W II; ad (mi,e1) = (m' +mf, e +ef — 1) (note that
y ¢ dom(I") because of Lemma 12, since y ¢ fv(v)). We can then construct
the following derivation ¥

Uy ey I, My WMy 0 BV () N Bypayy Do,z My ™20
I W Ty, 2 My W M@ My B meeite oy, N

ES

where My WM’ WMy = MW M. If we set IT :== IT} W I, and (m”,e") =
(mf{ +ma, el +e2), then we have I"W T = I"WIL Wiy =110, =1 and
(m'+m” e +e"—1) = (m' +my+ma, e +ef +ea—1) = (m1+ma,e1+e2) =
(m, e), as required.

Right explicit substitution, i.e. V = t[y«V']: then, V{(z)) = t[y+V'{{x))] and
V{(v) = tly«V'{v)]. So, ¢ has the form

P1vepy [1,2:Myy:0 E™ DV () N Byvay, oz My F™ V()10
LM Oty V()] : N

ES
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where I' := INWIs and M = MjWMs and (m, €) :== (m1+ma, e1+ez). By i.h.,
there exist a multi type M’, two type contexts I'y and I1s, and two derivations
Yo bey o, x:MoywW M y:0 I—(mg’eg)V'«x» :0 and @' >y I ey
such that Iy = IV W IT5 ad (ma,ez) = (m' +mb, e’ + e — 1) (note that
y ¢ dom(I") because of Lemma 12, since y ¢ fv(v)). We can then construct
the following derivation ¥

D1 Doy I1,2:M1,y:0 Flmueny. v Uy Doty o, x: Mo W M’ I—(m/zl’e/z/)V’«x» :0
My Iy My MY W My 2 E ety vy N

ES

where M1 W MW My = MW M'. If we set IT := II, W Iy and (m”,¢e") =
(m4 +mq, ey +eq), then we have I"WII =T"WIlL,WIy =MWl =1 and
(m'+m” e +e"—1)=(m'+mli+my, e +ef+e1—1) = (my+ma,e;+er) =
(m, e), as required. ad

Proposition 22 (Quantitative subject expansion for CbV). Let &' bepy
I 9% M be a derivation.

1. Multiplicative: if t — ' then there is a derivation @ >epy I’ Fmtle) pr
2. Exponential: if t —_ ' then there is a derivation @ ey I’ FOmet Dy pr

Proof. By induction on the reduction relation — ;. , with the root rules —, and
e, &S the base case, and the closure by CbV contexts of +—cpy =y U e |
as the inductive one.
— Root step for —, e t = S{Ar.u)r =y S{u[zr]) = t' where S =
[y14=51] . .. [yn$—8y] for some n > 0. We proceed by induction on n € N.
If n =0 then S = (-) and so t = S{(Az.u)r = (Az.u)r and t' = S{ulz+r]) =
u[z<r]. Hence, ¢’ has the form

Uy I, z:0 F(m'e’) g M Obyy A Fm"e) . O E

"ot

[ (m/+m” e +e’) u[zer]: M

S

where I' .= ITW A and m :=m’+m” and e := ¢’ +¢”. We can then construct
the following typing derivation ®:

Ubepy H,2:0 M) g M
ik fun
™) \pu:0 — M many
I |—(m”e,) AT [O —o M] Obdgpy A |—(m”’e“) r:0
app

"ot

[ EOFmim e e (g a)r: M

where (1 4+m' +m” e’ +¢€”) = (m+1,e).

Suppose now n > 0. Let S" == [y14=51] ... [yn—1¢Sn—1]: then, t = SQAz.uyr =
S (Az.u) [yns—sp]r and t' = S{ulx<r]) = S (u[z<r]) [yn<sn]. Hence, &' has
the form

U >y I yn: Ny I—(m/’e/)S’(u[x%rD M Uy Sepy Ty FM) g, N,

r I—(m’e)S’<u[m<—r]> [Yns—sn]: M

ES
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where I' .= "W I, and (m,e) = (m' +my, e +e,). By i.h. applied to ¥’

(since S"{(Az.u)r >y S"(u[z<—r])), there exists a derivation with conclusion

I, yn: N, FmHLe )S’<)\x.u>r : M, which necessarily has the form (as y, ¢

dom([}}) by Lemma 12, since y,, ¢ fv(r))

Ubepy I,2:0,y,: Ny F S Dau) i M Obayy T ™00 0
Iy, : N, I—(m/’e/)S’<)\x.u>r:M

ES

where IV := T W I and (m',e’) = (m"” + mg,e” + ¢f). Therefore, we can
construct the following derivation @:

"o

by T,2:0,yn: Ny F™ 08 D) : M Wy bey T F s, 0N,
nwil,,z:0 I—(m//+m’L’€//+e")S()\a:.u> ‘M

ES

W T, @I 0 tmatmot e tenten) ging y)p: M

where TW L, WIi=T"WIl, =1 and (m”"+m,+m{+1,e" +e,+ep) =
(m' +m,+ 1, +e,+1)=(m+1,e).

Root step for —, | i.e. t =V {x)[rS(v)] e, S(V{v)|zsv]) =t with
S = [y14=51] . . . [yn<—sy] for some n > 0. We proceed by induction on n € N.
If n =0 then S = () and so t = S{v) = v and ¢ = S(V{(v)[z<v]) =
V{(v))[z+v]. Hence, ¢’ has the form

Wy ety Lo, 2: N FTOOVN M Oy [ F™ o N
I =me) V) [wev] : M

ES

where I' .= Iy W I}, and m = mg + mq and e := eg + e1. By linear removal
(Lemma 5), there are a multi type N’, two type contexts I} and IT and two
derivations @'y, 1] F(m0:m0)y, - N7 and Ubepy I, 2: N W N’ I—(m”"e”)V«v)) M
such that Iy = I'i W IT and (mg,ep) = (my + m”, e, + ¢’ — 1). Note that
x ¢ dom(I})) by Lemma 12, since ¢ fv(v). By merging of multitypes
(Lemma 15.2), there is a derivation © by I W I F(motmueoten), . Ny N7,
We can construct the following derivation @:

O ey I} F(mo:e0) . O
app

Ubepy o NWN V) M Obeyy Ty Iy Fmotmicoten, Ny N7

I Iy Iy 0 motmuereote) Vg xS (v)] : M

where T WIiWIl = [hWIy =T and (m” +m{+my, e’ + ey +e) =
(mo+mi,eg+1+e1)=(me+1).

Suppose now n > 0. Let S := [y14=$1] ... [yn—14Sn—1]: then, t = S{v) =
S/ (V) [yn<—5n] and t' = SV {(v)[zv]) = S (V{v)[x<v])|[yn<sn]. Hence,
@' has the form

ES

U oy Ty, yn: Ny OO SV (0N [m0]): M Op by Ty F™)s, o N,

I Fme) S(V (o)) [x—v]) : M

where I' := Iy W [, and (m,e) = (mg + mp,e0 + ey). By i.h. applied to ¥’
(since V {(x)[z<S"(v)] —e,., S'(V{v)[x+v])), there exists a derivation with

ES
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conclusion Iy, yy, : Ny F00 DY (W [24-8" (v)] : M, which necessarily has
the form (as y, ¢ dom(Ij)) by Lemma 12, since y, ¢ £v(V{(z))))

Ubepy T a:NEFMCOVaN M 0 by yn: Ny, TY 00 S () N
Lo,y : Ny P00t ) V() [2e-8" (0)] : M

ES

where I'y = I} W I and (mg,eq + 1) = (mf +my, e, + ej). Therefore, we
can construct the following derivation &:
T Beby Yn: No, T F0D S (0) N O by T Fm) s, 0 N,
U bepy T4, x: N 0OV () : M Iy W T, e tmnegten) gy . N o
[GW Y L, Fmotm Fma ok en) v o) ze-S(v)]: M

ES

where IfWIY W, =TowWwl, =T and (mj +my + mn, ey +ej + e,) =
(mo + mp,e0+1+e,) =(m,e+1).

Application left, i.e. t == su —,s'u =t with s —_s" and r € {mcpy, €cbv }. S0,
@' has the form

Ui beby 11 Ry [N — M] Wy ey T HM202) 4 N
Inwlily p(m/+matle'tes) 4. pr

app

where I' .= I'1 W15 and m :=m' +my + 1 and e := ¢’ + e3. By i.h. applied
to ¥y, there is a derivation ¥ bey, I Flmuen g [N — M] where

e my:=m +1ande; :=¢ if r=mgy,

e my:=m;and e; =€ +1if r = egpy.
Thus, we have the derivation @

Ubepy 1L HM) 50 [N — M| Wobayy Ih M2 4 N

app
nwr, (mitmatleites) ¢. 0
where
emi+me+l=m'+14+meg+1l=m+1ande; +es =¢ +ey =ceif
= Mcpy,
emi+met+l=m'+me+1l=mande +ea=¢+1+ey=e+11if
I = €ecphy-

Application right, i.e. t == us —us’ =t with s —,s" and r € {mcpy, €cby }-
So, @' has the form

Uy ey T Fm0) 4 [N —o M) Wobayy, [ HM) N
Iy W Iy it lente’) 4 pp

app

where I := I W Iy and m :==mq; +m' + 1 and e := e; + €. By i.h. applied
to db, there is a derivation ¥ bepy 15 F(m2.e2) ¢. N where

e mo:=m' +1and ey := ¢ if r = mgpy,

o mo:=m and ey :=¢€' +1if r = ecpy.
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Thus, we have the derivation @

Uy bepy Ty M) 4 [N — M| Wiy Th Hm2e2) 5: N

app
Ny, |_(m1+m2+1;€1+62) t-M
where
emi+me+l=m+m+1+1=m+1lande +es=¢e; +e =eif
= Mchy,
emi+me+l=m;+m +1=mande +eg=e;+e +1=e+11if
I = €cphy-

Left explicit substitution, i.e. t :== s[z+u] — s'[z+u] = t' with s —,s" and
r € {mchv, €cbv }. S0, ¢’ has the form

Uiy T2 N D &M Wb, I FM202) i N
Iy W Iy B/ masetea) 4o pp

ES

where I' .= I W I and m := m’ + ms and e := €’ + e5. By i.h. applied to
¥y, there is a derivation ¥ >epy 1, 2: N F(mie1) oo M where

e my:=m' +1ande; :=¢ if r=mgy,

e my:=m and ey =¢ +1if r = egpy.
Thus, we have the derivation @

Ubgy [, z:NEMLe) oo M Wy, Th Fm2e2) 0 N
Ny, F(mitma.eites) ¢. pf

ES

where
emit+ma=m'+1+me=m+1land e +e3 =¢ +ey =ceif r =muy,
emi+mo=m'+me=mande; +exs =€ +1+e3=e+1if r =eq,.
Right explicit substitution, i.e. t == s[x+u] —, s[x+u'] =t/ with u — u’ and
r € {mchv, €cbv }- S0, @' has the form

Uy Doy [, N F0e) 5o M Wy, T FOV) W/ o N
Iy W Iy Flmatmlente’) 4o pp

ES

where I' .= I'1 W I3 and m := m1 +m’ and e := e; + €. By 4.h. applied to
W,, there is a derivation ¥ bcpy Ih F("2:¢2) 42 M where

e my=m' +1and ey =€ if r = mg,y,

e mo:=m' and ey ;=€ + 1 if r = ecpy-
Thus, we have the derivation @

Uy bepy Th, N EMLe) go M Wi, Th Fm2e2) 0 N
Iy @ Iy Fmitmeeates) ¢ Af

ES

where
emi+me=mi+m'+1=m+1lande +e3=¢e; +€ =eif r =muy,
e mi+me=mi+m' =mande;+es=e;+e'+1=c+1lifr=eq. O



Types by Need (Extended Version) 55

Theorem 11 (CbV tight completeness). Lett be a closed term. Ifd:t —7%, s
with normaleby (8), then there is a tight derivation @ depy Fdlmldle)s . g,

Proof. By induction on the length k = |d| of the evaluation d: t —}, s.
If £ = 0 then t = s and normalcyy (¢). Proposition 8 gives the existence of a tight
derivation @ >,y 00y, 0, that satisfies the statement because |d|, = |d|e = 0.
If k>0thend:t = u —>f,;,1 s. Let d’ be the evaluation u —>’§b_vl s. Thus, if
t =g, uthen |dly = |d'|[s+1 and |d|e = |d'|¢; otherwise t —,  wu then |d|, = |d'|s

Mcbhv
and |d|. = |d'|e + 1 By i.h., there exists a tight derivation ¥ bepy R4 hld"e)y, . .
By quantitative subject expansion (Proposition 9), there exists a derivation
By, FUU=Id)y 0, in particular & is tight and with indices (|d|g, |d]e)- O

D Types by Need (Sect. 6)

D.1 CbNeed Correctness

Lemma 17 (Basic properties of derivations in CbNeed). Let &> cpneed
'8 ¢ M be a derivation. Then,

1. if x ¢ £v(t) then x ¢ dom(I'),

2. ift=E{x)) and M # 0 then x € dom(I").

Proof. 1. We prove that dom(I") C fv(¢) by induction on &:
— Rules ax and normal satisfy the statement, as can be observed by a simple
analysis of the typing rules.
— Rules app, app,. and many satisfy the statement by a trivial application
of the i.h..
— Rule fun: By é.h., 2 Udom(I") C £v(t), and so dom(I") = dom(x : M; ")\
{z} Cfv(t) \ {z} = fv(Az.t).
— Rule ES: We first apply i.h. on the left-hand side premise to obtain that
dom(z : M;I") C fv(t), which in turn implies that dom(I") C fv(¢) \ {z}.
We then apply i.h. on the right-hand side premise to obtain that dom(II) C
fv(s). Hence, dom(I") Udom(IT) C (fv(t) \ {z}) Ufv(s) = fv(t[z<s]).
— Rule ES,.: By i.h., dom(I") C fv(t). But « ¢ dom(I"), and so dom(I") =
dom(I") \ {z} C £v(¢) \ {z} C (£v(¢¥) \ {z}) U fv(s) = fv(t[z+s]).
2. By induction on the construction of E:
— Let E = (-). Then ¢t = z and so @ is of the form

ax
x: M B oo g

Clearly, if M # 0 then x € dom(I").
— If £ = Eys, then t = E1((z))s. Then @ can only have either app or app,,.
as the last typing rule.
e Let @ be of the form
Q)E1(<w>> >obNeed 11 '—(m/"el) Er <<1‘>> : [N —o0 M] A I_(m”,e”) s: N

Iy AR tm e ") B (g s M

app
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Then by application of i.h. on @, () we obtain that z € dom(IT),
finally obtaining = € dom(IT W A).
e If  has app, as its last typing rule instead, then z € dom(I") simply
by i.h..
— If E = Fyly+s], then t = E{z)) = E1{x)[y+s], with z # y. Then ¢
can only have either ES or ES,. as the last typing rule.
e Let @ be of the form

@El ) >CbNeed Y - N; I F(m',e') E1 <<£E>> M A F(m”,e”) s:N

"o

Ty AR e +e") B (e [yes]: M

ES

Then by application of 4.h. on @, (,y we obtain that 2 € dom(y : N; IT),
which implies that « € dom(I7) and so = € dom(IT W A).

o If & has ES,. as its last typing rule instead, then = € dom(I") simply
by i.h..

— Let E = E1{(y)[y+E>], and so t = E{x)) = E1{y) [y« E2{z)], with
x # y because x is a free variable of ¢t while y is a bound variable of ¢,
and we are working up to a-equivalence. Suppose now that ES,. was the
last typing rule of @. This means that @ is of the form

®E1 Ky» >CbNeed r |_(m,e) El <<y>> M Yy ¢ dom(F)
I =me) By (y) [y« Ea (@) : M

However, by applying i.h. on ®g, (,y we obtain that y € dom(I"), which
is in contradiction with the constraint of rule ESg..
Hence, @ can only have ES as the last typing rule. Thus, @ is of the form

y: Ny ITE™) By(y): M P,y bobNeed AR Ey(a): N N #£0

’ 1" ’ 1" ES
Iy AR HmTe+e™) B (yW [y B (z)] : M

We can then apply i.h. on @p,(,) to obtain that z € dom(A) and so
x € dom(II W A). O

Lemma 18 (Splitting of multi-sets with respect to derivations). Let v
be a value and P> cpneeq I F™) v: M be a derivation such that |M| > 2. Then,
for every splitting M = N WO such that |N|,|O| > 1 there are type contexts
I'y and I'o and derivations ®n >cpneed In FNEN) 02N and B0 >cpNeed
I'o Hmo-€0) 4.0 such that

- I'=I'nWlp,

—m=my + mop, and

—e=enN +eo.

Proof. By a simple observation of the typing rules with an abstraction as the
term of the final type judgement, we note that @ can only be of the form
(Fz F(mi’ei) v Li)ie[

many
Wier i H& e mi2iered p: [Lilier
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We then appropriately define J ={i € I : L; e Ntand K ={i€1:L; € O};
i.e., [Ljlje; = N, [Lglkex = O, and making sure that J N K = 0. Note that
J, K # (), since N, O # 0. Thus, we obtain &y as

(Fj F(mj’ej) ’UZLj)jeJ

Wyes Iy FGierm2er ) o2 (L] e,

many

and @p as
(Fk E(mier) o Lk)keK

Wher Do Hrer ™o Xnex ) v [Lyliek

where LﬂjeJFj = Iy, &JkeKFk = Io, (ZjeijaZjeJej) = (mNaeN)a and
(D ker Mk Xoper €k) = (Mo, eo). O

many

Lemma 19 (CbNeed linear substitution). Let @,y bneea 2 M; 1 - (m.e)
E{(x)): O be a derivation and v a value such that O # 0 and E does not capture
the free variables of v. Then there exists a splitting M = My W My, with My # 0,
such that for every derivation W >peeq 11 F(m"e’) 4. M there exists a derivation
Py Preed T2 Moy I' W IT I ete’=1) Bl - O.

Proof. We prove this by induction on N:
— Empty context, i.e. N = (-). Then I' = (), O = M, and @,y is of the form

ax
x: M EOD 4 M
Therefore, by defining M7 = M and M, = 0, the statement holds for every
¥ >bopNeed 1 FOmhe) o My by taking @E«U» := ¥. In particular, note that
(m+m/je+e —1)=0+m/,14+¢€ —1)=(m',¢).
— Left of an application, i.e. N = Nis. There are two possible last rules in
P (x)), namely app,, or app,,.
o Let ¢E<<ZD>> be of the form

z: Ma; AFmaea) Ni(z): [0 — O] z: My; X Hm=en) 5.0/
z: (MaW My); (AW X)) Fimatmetleates) B (1)s: 0

appy

where I' = AW X, A(z) = X¥(z) =0 and M = Ma W Ms,.

By applying the i.h. on the left-hand side premise we obtain that there
exists a splitting Ma = Ma 1 W Ma o, with Ma 1 # 0, such that for
every derivation ¥ > cpNeed ! Fmhe) 4 M A,1 there exists a derivation
P, vy PCbNeed T2 Mao; AWIT Fmatmieate =1 g ) :[0" — O).
We can then construct @,y for such a ¥ as follows

T Mao; AWIT F(mat+m’eate’~1) Ei{v):[0) - 0] x: Ms; X F(ms.es) . O
T: MpaoWMs; AW Il W X Fmatm'smetleate'~1tes) @ (y)s: 0

appy

Note that @p,y is as desired by splitting M into M; = Ma; and
My = MAQ&JME.
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e Let ¢E<<ZL’>> be of the form

D, (o) PCbNeed @2 M3 I H"19) Ey{(z)) 1[0 — O]

apP,.
x: M;T ) By (z)s:0

By applying the i.h. on @p, () we obtain that there exists a split-
ting M = M; W Ms, with My # 0, such that for every derivation
¥ >opNeed 1L Hm"e) 4. M, there exists a derivation PR, (v) PCbNeed

x: My; I IT H(m=1tmlete’=1) B (4))) : [0 — O]. We can then construct
Pp vy for such a ¥ as follows
x: Moy I IT (m=1tmlete’=1) B (4))) : [0 — O]
x: My; W IT Hmtmiete’=1) B () s: O

PPy,

— Left of a substitution; i.e. E = FEj[y«s]. Note that z # y, because the
hypothesis E{(x)) impies that E does not capture x. There are two possible
last rules in @y, namely ES and ESge.

o Let @,y be of the form

x: Ma; AFEMaea) Br{z):0 x: My; £ FMm=e2) s: A(y) A(y) #0
z: (MaWMs); (AN y) W X Fmatmseates) B ((x)[ys]: O

where M = MaW My and I' = (A\ y) W X.

By applying the 4.h. on the leftmost premise we obtain a splitting
Ma = Mag W Maa, with May # 0, such that for every derivation
¥ >opNeed 11 F(m"e) 4. Ma there exists a derivation Dp, {v)) PCbNeed
x: Mpag; AW IT F(matm’eate’-1) p {v) : 0. Note however that if y €
dom(IT), then Lemma 17 applied on ¥ would imply that y € £v(v), which
contradicts the hypothesis that F does not capture the free variables of
v; d.e., y ¢ dom(II), and so (IT W A)(y) = A(y). We can then construct
Pp vy for such a ¥ as follows

i Ma o AwIT Fmatmeate’ =1 gy .0 z: Myg; DM 51 A(y) A(y) £ 0

@i Mapw Mg (AW )\ y) o T Hmatm/tmseate 1tes) g (o) [yes]: 0

by splitting M into My = Ma 1 and My := Ma sWMsx. Since y ¢ dom(IT),
then (AWIN\y) WX =(A\y) W WX =TWwII.
o Let @,y be of the form

z: M; I Hme) B (z):0 I'(y) =0
x: M;T ) By {a)[y+s]: O

gc

By applying i.h. on the premise we obtain a splitting M = M; & Mo,
with M, # 0, such that for every derivation ¥ bapNeea 1T H¢) v: My
there exists a derivation @, () >cbNeed 2: Mo; ' IT p(mtm’ete’~1)

ES

ES
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E;{(v):O. Note that y ¢ dom(IT), because applying Lemma 17 on ¥
would otherwise imply that y € £v(v), which contradicts the hypothesis
that E does not capture the free variables of v. Hence, we can then
construct @ g,y for such a ¥ as follows

x: Moy I IT Hmtmbete’ =) gy .0 (PwII)(y) =I'(y) =0
x: My; I'w IT Fmtmiete’=1) B (W [ye—s] : O

ESge

— Let E = E1(y))|[y«E>]. We can safely assume that x # y, since we are
working up to a-equivalence. Lemma 17 implies y € dom(xz: M; "), and so
P gy can only have ES as the final type judgement and be of the form

z: Mpa; AFMaea) Bi{y):0 x: My; X Fm=es) By(a)): Aly) A(y) #0
v (MawMz); (A\ y) @ 2 matmecates) gy (y) [y« B {(z)]: O
where M = MaW My, I' = (A\\ y)W X, and (m,e) = (ma +mx,ea+ex).

We can then apply the i.h. on the premise in the middle to obtain a split-
ting My = Mx 1 W My o, with My # 0, such that for every derivation

v D>CbNeed I '_(m',e') U:MZJ there exists a derivation Qng(('u» >CbNeed

T2 My o; X [T Fmstmieste'=1) By () : A(y). We can then construct
P gy for such ¥ as follows

ES

o Ma; AFMACA) Bi((y):0 @i Mso; $w I Emstmeste'=D py)  A(y)  A(y) #0 E

S
z: (Ma W My 2); (A\ y) W S 1T Fmatmstmleateste’ =D g (y)[ye By (u)]: 0

where we take My := Mx; and My := Ma W Mx 5. O

Proposition 23 (Quantitative subject reduction for CbNeed). Let
D peeq I H™9) t: M be a derivation such that M £ 0.
— Multiplicative: if t —, s then m > 1 and there is a deriation D' >reed
I Em=1e) ¢ 0.
— Exponential: if t enoedS then e > 1 and there exists a derivation ?' >peed
rme=b M.

Proof. By induction on the reduction relation — .4, with =y and 7 —,
as the base cases, and the closure by CbNeed contexts of +—y ., U e, .., as the
inductive one.
— Root step for —, . Let us assume that t = S(Az.u)r =y S{u[zr]) = s,
and proceed by induction on S:

e Let S = (). Then t = (Azx.u)r and so the last rule of @ is either app, or
app,,; because they are the only rules whose term in the conclusion type
judgement is an application.

* If app, is the last rule of @, then the latter is of the form

IT '€ e M
I\ 2 Fm) X IT(2) — M
’ ’ many 1" "
I\ x ™) Agou: [IT(z) — M] AR o T (2) H(xzig;O
’ " ’ " b
(IT\\ z) ) A O mTHLe'+e™) (Xg ). M

fun
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Therefore, m > 1. Since II(x) # 0, then we can construct ¢’ as
follows:

™) oM AR ") r: 1 (x) IH(x)#0 E

(IT\z)HA - (m/+m" e’ +e”) ulzer]: M

S

Note that (m' +m”, e +¢€') = (m — 1,e).
* If app,, is the las typing rule of @, then the latter is of the form

I D)y M
IT M) \gy:0 — M
I M) Xgu: [0 —o M]
IT EO 1) (g M

fun
many

app,

with (m,e) = (m’ + 1,¢’) and I' = IT \\ z. Note that = ¢ dom(IT),
because u is typed with M and Ax.u is typed with 0 — M, so we
can construct @’ as follows:

IEM) M II(z)=0
I7 (e’ u[zr]: M

ESg

o Let S = S'[y+q|. Thent = S(Az.u)r = ((S"(Ax.w))[y<q])r —u (S (u[zr]))[y<q] =

S{(u[z<+r]) = s. Since we are working up to a-equivalence, it is safe to
assume that y ¢ £v(q) and y ¢ £v(r). There are several possible forms of
@, namely:
x If the last rule is app,, and [y<—q| is appended through rule ES,.,
then @ is of the form

D §' ) :[0— N] Iy) =0
I R(m'e) S(Azx.u):[0 — N]
Ia F(m/+1,e’) S(Axu)r :N

ESg

appy.

We then construct the following derivation

I ESED S (\pa) 1 [0 —o N
[ -(m'+1e’) S'(Az.uyr: N

apPgy.

and apply 4.h. on it to obtain m = m’+ 1 > 1. Moreover, the 4.h. also
yields a derivation & >cpNeea I H¢) S’(u[z<r]): N, with which
we can then construct @’ as follows:

P bepNeed I ) S (ufzer]): N I(y) #

0
! ! ESgC
I D) Slu[eer]): N

Finally, note that (m/;e’) = (m — 1,¢).
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* If the last rule is app,, and [y<—q] is appended through rule ES, then
P is
) S" ) [0 — M) AF™) v N II(y) =N #0 S
(I \\ y) J A Fo+m"e ™) §(xg u) : [0 —o M]
aPPg.

(IT\ y) 4y A (m/+m"+1.e'+e") S{z.u)yr: M

We can then construct the following derivation
IT ) S (\zu) : [0 —o M]
IT L) SO uyr: M

apPgy.

Applying i.h. on it yields a derivation &">cpneea 11 F™ ) S (ufaer]) : M
and implies the fact that m =m/ +m/ +1 > m’ +1 > 1. Finally, we
construct @’ as follows:

" bonea 1 H) S/ ufwerl) M AR 1N () = N £0

! " ’ 1 ES
(I \y) YA e Slufaer]):

Note that (m' +m”, e +¢€”) = (m —1,e).
s If the last rule is app, and [y<—q] is appended through rule ES,, then
D is
I ) §"\zu) : [M — N]  II(y) =0 B
-0 S(a) : [M —o N] AR MM #0
Ty AR +m L' +e") §ixg o) N

We are now able to give the following derivation
I7 (' e") S'(Axu)y:[M — N| A Fm"e) o M
Ty AR m +he ) G ixg u)r: N

app

on which application of i.h. gives that m = m’ +m” +1 > 1, and
yields a derivation @ bopneed [T W A M Fm e +e™) G/ (ylper]) N,
thus allowing us to construct @’ as follows:

@” >CbNeed VIR A l_(m’—&-m”,e’—&-e”) S’(u[x(—r]) N (H (] A)(y) =0

!’ 1" !/ " ESgC
P >bNeed 11 WA MM+ Gly[per]): N

Note that y ¢ fv(q) and so via Lemma 17 we know that A(y) = 0;

hence, the use of rule ESy in @' is correct. Moreover, note that

(m'+m" e +e') = (m,e).
x If the last rule is app and [y<—¢| is appended through rule ES, then

P is

ITHMED) 8/ () : [M — N] AR g [T(y)  II(y) #0 e

(IT\\ y) & A O/ +m”e+e") §(xz ) : [M —o N] DGRy U

’ " " ’ " 1"’ app
((IT\\ y) W A) @ X 4mDtmT (e +e™) g\ g u)r: N
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Since y ¢ fv(r) U fv(q) then we know through Lemma 17 that
y ¢ dom(A) and y ¢ dom(X). Now, applying i.h. on the following
derivation

1" ///)

) S gy : [M —o N 5 1=(m" e
Iy 5 ' mhe ™) G xp )r - N

r:M
app

"ot 11

vields a derivation @ >cpNeeq 11 W X Hm +m”e'+e) L'{u[z+r]): N
and implies m = (m' +m”) +m"" +1 > m’ + m"” + 1 > 1. Finally,
given that (IT W X)(y) = II(y), we can finally construct @ as follows:

"ot 1" "o

@ bopNeed T W X Hm +m” e +e’) S (u[z+r]): N A p(m".e™) q:II(y) II(y)#0
((H &J 2) \\ y) &J A '_((m,+m,//)+mll7(Cl+e,,/)+el,) S<u|:x%7q]> :N

ES

Note that ((m' +m™”) +m”, (' +€¢")+¢e") = (m —1,e), and that
since y ¢ dom(X) then (HWX)\y)WA=(IT\y)WA) WX
All other typing rules are not possible as the final rule in @. In particular,
rule many is not possible because the term in its final judgement has to
be an abstraction, not an application term.
— Root step for —,. Let t = E{(a)[z+S{v)] —e S(E{v)[x+v]). We can infer
from Lemma 17 that @ can only have ES as its last typing rule, and so can
only be of the form

"o

B ((a) PobNeed T: O3 [T HE) Ba): M Bgy bobneea A S(0):0 0 #0 .
ITw AR Am"e'+e™) plah zeS(v)]: M

Note that = ¢ dom(A), because otherwise Lemma 17 would imply = € £v(S(v))
and this cannot be the case, given that we are working up to a-equivalence.
We now proceed to prove by induction on S that whenever we have @,y and

"o

B,y we can derive & bopNeed 11 A HF =1 GUB (V) [wev]) : M.
e Let S := (). First of all, applying Lemma 6 on @,y yields a splitting

"o

O = 071 W O3 such that for every derivation ¥ bopNeed 2 Fm™e™) 4 0y
there exists a derivation x: Og; IT|f X Fm +m™ e+ =1 pia) . M. Tn
particular, if Oy = 0, then we can construct the desired derivation @’ as

follows

x: O; 11 - (m'se") E{x):M ARm"e) 9 0
N, Lemma 6
Iy A R FmTete™=1 Blo): M

"o

T AR +m™e+e" =1 By aeo]: M

gc

On the other hand, if Oy # 0, we can then apply Lemma 18 on ®g,)
to yield derivations @Ol >CbNeed Aol }_(mlél ,8/(;1) v:01 and @02 >CbNeed
Ao, Fm02902) 41 0, such that A = Ap, W Ao, and (m”,e") = (md, +
meo,, €] + ep,). Thus, we are now able to combine all these derivations
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to construct @ as follows
z: O; I F) Bla): M Ao, FMer0r) v: 0, L
x: Og;IT1H Ag, (' m el el 1) E{v):M . Ao, - (m05,€0,) S(UEZSOQ
Y Ao, | Ao, HIHm01 02 €460, 7100 Bl [we—]: M

o Let S = S§’[y«t]. There are two possible final typing rules in @g,,
namely ES and ES,..
* Let g,y be of the form

"o

A R(m”e") S'(v):0 A(y)=0
AR )0

ESg

Note that since we are working up to a-equivalence we can safely

assume that y ¢ fv(E{x))), and so via Lemma 17 we have that

y ¢ dom(IT). We can then construct ¢’ by application of the i.h. as
follows

x: O 11 - (m'.e") E{x):M A - (m"e") S’ (v):0

I\ A Hm'+m™ e +e™) o/ (R ) [av]) : M

"ot

YA Fme+e") §(B (o) [zev]): M

ih.
FSge

* Let @,y be of the form

y: Py Ay E0e) §1(0) 0 Ay Fmaed) P P £ 0

"o

Ayl Ay i tmeeiter) §) . O

where A = Ay [ Ay and (m”,e”) = (mY + mY, el + €3). Note that
y ¢ fv(E{z))), and so via Lemma 17 we have that y ¢ dom(IT).

We can then construct @’ by application of the i.h. and a rearranging
of @ as follows

z: O IT Hm'e) E{x):M y: P;A (et S'(v):0

"o "o

’ " i.h.
y: P;ITIY Ay FOmtmie'+ei=1) §H( B (o) [x]) : M Ay F(m3z ez )EzlfS:P
ITH Ayl Ay FFmitmsie'tel=1+es) §(B((v)[zev]): M

— Contextual closure. We proceed by induction on the derivation of ¢ =
E<t1> _>ndE<t2> = S

o If £ = (), then t +, s or t ¢ s, and the statement holds as we have
just proved.

e Let £ = Fju. This implies that the last typing rule in @ is either appg,
or app,. We will only cover the case where E(t1) —,E(t2) and & ends in
rule app,, leaving the rest of the (analogous) cases to the reader.

Now, @ is of the form

"o

I7 =(m'.e") Bi{t1): [N — M] AF™ED) 4 N
HL_HA |_(m’+m”+1,e/+e”) E1<t1>U1M

appy
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Then we apply i.h. on the left premise of the last rule, obtaining a type
derivation whose final judgement is IT F™'=1¢) B (ty) : [N —o M], thus
allowing us to construct @' as folows:

ITE 1) By ty) ([N — M] AR gy N
7 1" ’7 " appb
T A Fme'+e™) By (t))u: M

Note that (m' +m” e +¢€") = (m —1,e).

Let E = Ej[z+u]. This implies that the last typing rule in @ is either
ESgc or ES. We will only cover the case where E(t1) —,E(t2) and & ends
in rule ES, leaving the rest of the (analogous) cases to the reader.

Now, @ is of the form

T EE) Byt M AR 0T (2)  I(x) #0 -
(IT\ z) | A Fm/+m”e'+e") B4 V[ae—u] : M

Applying i.h. on the left premise of the last rule yields a derivation whose
final judgement is 17 H™'—1.¢) B, (t2) : M, thus allowing us to construct
@' as follows:

"o

=) Bty M ARy T (x) I (z) #£0

7 2 ’ 1" ES
(IT\ z) W A ' —1tmTe'+e™) B (o) [we—u] : M

Note that (m' — 1+ m”, e +€") = (m —1,e)
Let E = Ey{(x))[z<E>]. We will only consider the case where
By (@) [z E2(t)] —nbr (@) [z Ea(t2)]
leaving the other (analogous) case to the reader.
First of all, Lemma 17 implies that the last rule in @ is ES; i.e., @ is of
the form

"o

I By M AR By () [1(z)  II(z) # 0 S
(IT\ z) & A FFEm" ) By (@) oo ()] : M

Applying now the i.h. on the premise in the middle of the last rule yields
a derivation with conclusion A F™"=1¢") F,(t,): IT(x), thus allowing
us to construct @ as follows

D Bya) s M AT Bylty) s (@) 1) £0
(11 2) & A FOV T =L B () e By (ta)]: M

verifying that (m’ +m” —1,¢' +€”) = (m — 1,e). O

Proposition 24 ([normal] typings for normal forms for CbNeed). Let
D >peea I F9) t:[normal] be a derivation, with normal(t). Then I is empty,
and so @ is tight, and m = e = 0.
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Proof. By induction on normal(t).
— If normal(t) because t = A\z.s then @ can only be of the form

normal

0,0 .
+(0.0) \z.s: normal many

F©0.0) \g.s: [normal]

— If normal(t) because t = s[y<u] and normal(s) then, in principle, there are
two possible last typing rules to @, namely ES and ES,.. If we assume that
it is ES, then @ is of the form

y: O; I F™0e1) s [normal]  IT, F™2¢2) 4: O O #0

Ty W IT Hmitma.eites) glyey) : [normall

ES

with IT = II1 W IT; and (m/,¢e') = (m] + mj, e} + e5). However, application
of the i.h. on the left-hand side premise gives that y : O; I1; is empty, in turn
implying that O = 0, which is in contradiction with the constraints of the
ES typing rule.

Therefore, ES could not be the last typing rule of @, and so the latter can
only be of the form

IT =€) s [normal]  y ¢ dom(IT)
IT F¢) s[y<—u] : [normal]

ESg

Finally, it suffices to apply 4.h. on the premise to obtain that IT is empty and
m =€ =0. ad

Theorem 12 (CbNeed tight correctness). Lett be a closed term. If @>peeq
F(mse) 2 M then there is s such that d: t —%_ 45, normal(s), |dln < m, |d|. < e.
Moreover, if @ is tight then |d|n, = m and |d|. = e.

Proof. By induction on m + e and case analysis on whether ¢ reduces or not. If ¢
isin — .q-normal form, then we only have to prove the moreover part, which
states that if @ is tight then m = e = 0, which follows from Proposition 11.
Otherwise, there are 2 cases:
1. Multiplicative steps: If t —
CbNeed (Proposition 10) there exists a typing derivation ¥>cpNeed I - (m—1.e)
w: M. By i.h. there exist s and d’ such that normal(s), d' : u =% 48, |d'|m <
m — 1, and |d'|. < e. Just note that ¢ —, _ u and so, since d’ is preceeded
by such a step, then we have |d|,, = |d'|;, + 1 < m and |d|. = |d'| < e.
If @ is tight then so is ¥. Then by i.h. |d'|,, = m — 1 and |d’|. = e, which
finally implies that |d|,, = |d'|» + 1 =m and |d|. = |d'|. = e.
2. Ezponential steps: If t —, _ u, then by Quantitative Subject Reduction

u, then by Quantitative Subject Reduction For

Mneed

(Proposition 10) there exists a typing derivation ¥ bepneed I F¢~D w: M.
By i.h. there exists s and d’ such that normal(s), d’ : u =% _4s, |d'|m < m,
and [d'|c < e— 1. Just note that ¢t —,  w and so, since d’ is preceeded by
such a step, we have |d|,, = |d|;, < m and |d|. = |d'|c +1 <e.

If @ is tight then so is ¥. Then by i.h. |d'|,;, = m and |d’'|c = e — 1, which
finally implies that |d|,, = |d'|,, = m and |d|. = |d'|. + 1 =e. O
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D.2 CbNeed Completeness

Proposition 25 (Normal forms are tightly typable for CbNeed). Lett
be such that normal(t). Then there is a tight derivation ® bneeq ) t: [normal].

Proof. We can easily prove by induction on normal() that if normal(t) then t =
S{A\x.s), for some abstraction Az.s and substitution context S = (-)[z1¢t1]...[Tn1n],
with n > 0.

Therefore, we can derive @ as follows

normal
many

ESge

ES,
(0,0 . (ESgC
F Ax.s[x14t1][xn4ty,] : [normal]

F(0.0) Ax.s:normal
F(0:0) X2..s : [normal]

FO9 \g.s[x1 1] : [normal]

a

Lemma 20 (Merging of multi-sets with respect to derivations). Given
a value v, for any two derivations PN >cpNeed I N Fimnen) 4 N and Do >cbNeed
I'o Hmow€0) 4y O, there is a derwation D Nwo>cpNeed I n W [o FMNTmo.enteo)
v:NWO.

Proof. Among the different rules that type abstractions (namely normal, fun and
many), only rule many types them with a multi type. Thus, by properly defining
J and K such that N = [L;]jes and O = [Ly]kek, we have that §y is of the
form

(Fj F(mj’ej) v Lj)jGJ

Wyes Iy FGierm2er ) o2 (L] ey

many

and @o is of the form

(Fk F(miser) o Lk)keK
Weex D FErex moZner ) v [Li]rek

many

Therefore, we define I = J U K and finally obtain @ ywo as follows

(I FOme) v Ly e
Wier L H&iermoXier o) v: [Lylicr

many

O

Lemma 21 (Linear removal for CbNeed). Let ®byeeq I ™) E((v): O
be a deriwation, with O # 0 and x ¢ £v(v). Then there exist

— a multi type M,

— a derivation @y Preeq Ly FMvev) o M, and

— a derivation Pg(zy Pneea I W{z: M} p(m’.e) E{x):0
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such that
— Type contexts: I' = I W I,.
— Indices: (m,e) = (m' + my, e + e, —1).

Proof. We prove this by induction on the context E:

— Let E = (). Note that O # 0, a fact that is verifiable simply by checking
the typing rules for abstractions. Now, by taking I, :=I", I :== 0, M := O,
(Mmy,e,) = (m,e), and (m',¢’) := (0,1), we can then take @, = & and
construct @,y as follows:

ax

z: MFOD 2 M
verifying that (m,e) = (my,e,) = (0+my, 146, —1) = (M +my, e’ +e, —1)
and ' =0T =I"YTI,.

— Let E = Eqt, and so E{(v)) = E1{(v))t. There are two possible last rules in &,
namely app, or app,,.
Let us assume @ is of the form
P, (o) PCbNeed 1T FMem) By ((v) :[07 — O] ARMmaca) t:0" O #0

MY A Fmotmatientea) g (p)t:0

appy

Then we can apply the i.h. on g, () to obtain a type M and typing
derivations
va >CbNeed H’U l_(mu,ev) v: M

and

P, () PovNeed ' H{w: MY E"D By (@) 1[0 — O]
such that IT = II' Y I1, and (mp,err) = (m” +my, e’ +e, — 1).
Thus, we are able to construct @,y as follows

"o

D, oy PCoNeed ' W{a: MY EOD) B ((2)):[0" — O] AFmaca)t:0" 0" #0
IT'W{x: M} ARM tmatle’tea) B (z)t:0

appy
and, by taking I'" == II' J A, I, == II,,, and (m/, €') :== (m"+ma+1,e"+en),
then we verify that

r= HH—JA :H’L—levL-ijA = F’L—ljl“v
and
(mye) = (mpg+ma+1l,eg+en) = (M’ +my+ma+1,e’+e,—1+en) = (m'+m,, €' +e,—1)
Now, let us assume @ is of the form

D, vy PebNeed 1M1 E((v) : [0 — O]
I =me) B (v)t:0

apPy,



68

Accattoli, Guerrieri, and Leberle

We then apply the i.h. on @, () to obtain type M and typing derivations
By bepNeed Ly ) v M

and

"o

PN, (z) PCbNeed F’tl—J{x: M} EMED Ny (2)) 1 [0 —o O]

such that ' =T"H T, and (m —1,e) = (m” + m,,e” + e, — 1).
Thus, we are able to construct @ g,y as follows

"o

P, (@) PobNeed T W{x: MY ) By (2)) : [0 — O]
I {a: MY 41 B (@)t O

apPy.

and, by taking (m',e’) = (m” + 1,¢"), then verify that
(mye) = (m" +my, +1,¢" +e, —1) = (m +my, e +e, —1)

Finally, if @ is tight

Let E = F[y+t], and so E{v)) = E;{v))|y+t]. Note that we can safely
assume that = # y, since we are working up to a-equivalence and y has a
binding occurrence in E while x represents a free variable. Moreover, note
that y ¢ £v(v), since otherwise E{(v)) would not be well-defined.

There are two possible last rules in @, namely ES or ES,..

Let @ be of the form

P, (o) PCbNeea 1T HMmem) By (v) 10 ARmaea) ¢ [1(y) II(y) # 0
(I \ y) ) A F(mutmasentea) By () [y«t]: O

ES

where I' = (IT \ y) H 4, (m,e) = (mg +ma,eg +ean).
Then we can apply the i.h. on @, () to obtain type M and typing derivations

gzjv >CbNeed Hv l_(m,u,ev) v:M

and

P, o) Powneea T {s MY B0
such that IT = II' Y I1,, and (mp,err) = (m” +my, e’ + e, — 1).
Moreover, since y # = and y ¢ dom(Il,) (otherwise Lemma 17 would
imply that y € fv(v), which we already know not to be the case), then
(I"\J{z: M})(y) = II(y) and so we are able to construct @ g,y as follows

"o

QSEl((:c)) >CbNeed I E—J{x M} |_(m €”) E1<<££>> :0 A |_(m4,eA) t:H(y) H(y) 7é 0
(" W{x: MY)\ y) Y A R Fmac™ea) By (@) [yt] : O

Now, by taking I'" := (II'\y) ¥ A, I, == II,,, and (m/,e’) .= (m”" +ma, e’ +
ea), we can verify that

r=u\yla=yJuo)\yya=uw\ywyga=riyr
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and
(mye) = (mpg+ma,engten) = (m"+my)+ma, (" +e,—1)+en) = (m'+my, ' +e,)
If @ is instead of the form

P, oy PebNeed 1) Bi{(v):0 I'(y) =0
I Fme) By (o) [y«t]: O

ESqgc

then we can apply the i.h. on @g, (. to obtain a type M and typing deriva-
tions
Dy >CbNeed Iy F(mv,ev) v: M

and
@El {z)) PCbNeed I L—H{x M} }—(m <) FE4 <<:E>> :0

such that I' = "¢ I, and (m,e) = (m' + m,, e’ + e, — 1). Note that this
type context and these indices are exactly as desired, and so we can finally
construct @,y as follows:
B, (ay PCbNeed T W{a: M} ) By () : O
I’ J{z: M} Hm'e) By {x)[y«t]: O

ES,

Let E = E1{{y))[y+F2], and so E{(v)) = E1{(y)[y+ F2{v))]. Once again, we
will assume = # y. Lemma 17 implies there is only one possible form of @,
namely:

I Emmen) By ((y) : O @,y PobNeea A HMaa) Byl i T1(y) II(y) #0
(IT \ y) Y A Flmmtmaentea) By (y) [y Es (v)] : O

ES

where I' = (IT \ y) H 4, (m,e) = (mg +ma,eg +eaq).
Then we can apply the i.h. on @, () to obtain type M and typing derivations

Qv >CbNeed Av F(mv,ev) v: M

and

"o

B, () PobNeea A [H{z: MY ) By (@) T (y)

such that A = A'|J A, and (ma,ea) = (m” + my, e’ + e, —1).
We can then construct @p .,y as follows

"o

11 Emmen) By () : O @, oy PobNeea A W{z: MY EOD) Ey(a)) - I (y) 1I(y) #0
(IT\\ y) W A" pmatm™en+e™) By (y) [y« By (x))] : O

ES

and, by taking I'" := (II\y) W A', I, = A,, (m',¢') = (mg +m” e +e¢"),
then verify that

r=\yla=u\yHaa)=ryr
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and
(m,e) = (mpg+ma,eqtea) = (mp+(m”’+m,), eg+(e"+e,—1)) = (m'+m,, e'+e,—1)

O

Proposition 26 (Quantitative subject expansion for CbNeed). Let
D >poea I'H™) s: M be a derivation such that M # 0. Then,
— Multiplicative: ift —, s then there is a derivation D' >peed I FTLE) ¢ M
— Exponential: if t —, s then there is a derivation D Bpeea I FmetD) ¢ M

Proof. By induction on the derivation ¢t —_4s, with the root rules —, and — as
the base case, and the closure by CbNeed contexts of —p4 as the inductive one.
— Root step for —,. Let t = S(Az.u)r —y, S{ulz+r]) = s, and proceed by
induction on S:
o Let S = (:). Then t = (Az.u)r and s = u[z<r], and so @ has either ES
or ES,. as its last typing rule.
* If @ is of the form

rEme) y: M I'z)=0
I H(me) u[zer]: M

ESge

then we can construct @’ as follows

reEmuM
L E™9) \gy:0 — M |
I'Em9) A\gy:[0 — M]

apPy,
I EmtLe) (\gu)r: M

un

* Let @ be of the form

z: O I M) g M AFMSE) 0 040
I A F e +e™) g r) . M

ES

where I' = IT|{ A and (m,e) = (m' +m”, e’ +¢").
We can then construct @ as follows
x: O; 11 Fm"e) gy M
— fun
M) \pu:0— M
) Apw: [0 — M) AFME) 0
! 1" ! 1" appb
I\ A R AmThel+e™) (Ng ) M

o Let S := S'[y<—q]. Then ¢t = (' (Az.u)[y<—q])r and s = S (u[x+r])[y<+q].
Note that since we are working up to a-equivalence, y ¢ £v(r). There are
two possible last typing rules of ¢, namely ES and ES,..
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* Let @ be of the form

y: O; IT ¢ S (ufzer)): M AFM) g:0 O #0

myA p(m'+m” e’ +e") S {(ulzr))y+q]: M

ES

where I' = T[4 A and (m,e) = (m' + m”,e¢’ + ¢€”). We can then

apply the i.h. on the leftmost premise to obtain a typing derivation

@, DObNeed ¥: O; IT HFWHLE) S'(\g )i M. We then analyze the

two possibilities of the last typing rule in @) , , namely app, or appg.
- Let @), be of the form

y: O; II F™0et) S' Az : [P —o M) Iy Hm2¢2) i P P #£0
y: O; I Hm'+1.¢) S'(Ax.u)yr: M

appy

where (m/,e') = (m] + mb,e} +¢}), I = II1 ¥, and y ¢
dom(II3), since otherwise Lemma 17 would imply y € fv(r).
We can then construct ¢’ as follows

y: O; 11, |_(m/1e/1) S/<A$U,> . [P s M] A }_(m//,e”) q:0 o
Al IT, Fmtm™ei+e”) §ixg u) : [P —o M| I, F(m’;;? re P

’ 17 ! 7 1 7 b
AW I, W T matmtmatlentete) §(hgu)yr: M

- Let @/, be of the form

y: O; I F'¢) 6/ (Agu) : [0 — M)
y: O; IT =" +0€) S\ uyr - M

appy.

We can then construct @’ as follows

y: O; 11 - (m’.e) S'(Ax.u)y: [0 — M] A - (m"e) q:0 B
I AR Hm"e ") SNz ) [0 — M
g () 0= M]

T AR+t Le'+e™) g u)r: M

* Let @ be of the form

I =me) S/ y[xe—r]): M T'(y) =0
I Hme) S (ulxr])[y<q]: M

We then apply the i.h. on the leftmost premise to obtain a typing
derivation @ ; >cbNeed I F(m+1.e) §"(Xa.u)r: M for which there are
two possible last typing rules, namely app, and app,,.

- Let @, be of the form

M) SOy : [0 — M] AR r.0 O #0 .
I EmtLe) ' Ogu)r: M

PPy
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where I' = IT'J A and (m,e) = (m' +m”, e +¢€").
We can then construct @’ as follows
1T H) S O\ : [0 — M| -
ITF) Sz.u) : [O —o M]
Tl A R Fm e e g u)r: M

& ARm"e) 0
appy

- Let @/, be of the form

I Eme) §"(\a.u) : [0 — M)
I Emtle) ' Opu)r: M

PPy,

We can then construct @’ as follows
I e §' () : [0 —o M)]
I Eme) Sz : [0 — M]
I Emthe) §(\au)r: M

gc
apPg.

— Root step for —,. Let t = E{z)[x<S(v)] —e S(E{v)[z+v]) = s, and
proceed by induction on S:
o Let S := (-).Then ¢t = E{x)[x+v] —o E{v)[z+v] = s, and so ¢ has
either ES or ES,, as its last typing rule.
* Let @ be of the form

Dy PcbNeed I H™O) E(w): M I'(z)=0
I Blo)[xev]: M

S,

We apply Lemma 7 on @,y to obtain typing derivations @, >cpNeed
FU l—(m”’e“) v:0 and q)E((z)) >CbNeed I’ L—lj{a: O} '_(m’,e') E<<JZ>> M
such that I' = I'" |y I, and (m,e) = (m' + my, e’ + e, —1). We can
then construct @ with such derivations as follows
I"y{z: O} ) B(a)y: M I, Fmees) :0
Iy I, Fmitmee’ten) B reo]: M

ES

In particular, note that (m’ + m,, e +e,) = (m,e+ 1).
* Let @ be of the form

"o

z: O ) Bl : M ARM ) 4.0 040

’ " ’ 1" ES
I AR Hmbe+e™) By zev]: M

We can then apply Lemma 7 on the leftmost premise with respect
to x to obtain a multi type P and typing derivations @, >cpNeed
11, F(mven) 4. P and QjE((ac)) >CbNeed HE((ac)) Lﬂ{l’ P} F(m ey eB(ey)
E{(x)) : M such that x: O;II = I, i) I,y and (m/,e") = (mpay +
My, €E(z) + €y — 1). Note how Lemma 17 implies that = ¢ dom(IT,) -
given that 2 ¢ fv(v)-, and s0 @ ;) can be rewritten as @ g,y >CbNeed
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x: Oy P; H/E«w)} Fmeeyeen) B((x) : M, where gy =x: O; HlE((w
and so IT = Iy, W II,.

Furthermore, we can apply Lemma 20 on A Fm"e") 4O and @, to
obtain a typing derivation @y p >cbNeea AW I, - (mmy e tey)
v:O P.

Finally, we can construct ¢’ as follows
x: O P I, Fmeyeeqn) Bz): M AW I, FOV'Tmee’+e) 0 P
H}E«x» AW I, F(me ey +m" +mu,epay +e’+eu) E{x)[zuv]: M

»

ES

Note that (m gy +m” +my, egay+e’+ey) = (m'+m” e/ +14e") =
(m,e+1).
e Let S := S[y«r]. Then t = E{x)[x+S" (v)[y«r]] —e S/(E{v) [x+v])[y+r] =
s. Note that y ¢ £v(F{(x))), since y is bound in S{v) and we are working
up to a-equivalence. Then, ¢ has either ES or ESg. as its last typing
rule.
x Let @ be of the form

I Eme) SUE(w)ze]): M T'(y)=0
I Fme) SUE () [zev])[yer]: M

gc

We can then apply the i.h. on the premise to obtain a typing derivation

D dobNeea I Fe) B{a) 245 (v)]: M. Moreover, note that

¢, can only have ES as its last typing rule, by application of

Lemma 17. &), is hence of the form

x: Oy I ey ) B(a) : M Pgiiyy obNeea A FMs"@1¢5@) §(p):0 O #0

I et Ba) xS (v)]: M

where IT|§ A = I" and (m,e+1) = (Mpge) +Ms (v), €E() T €5 (v))-
Since I'(y) = 0 then A(y) = 0 and we can construct ¢’ as follows
AR esi) §'(v) 10 Ay) =0
x: O; 1T Fmegeyeey) Bz : M AFMswres o) § () [yer]: O
Il A Fmeey+ms @y en tes o) (g [zeS"(v)[y«r]]: M
* Let @ be of the form
y: O; 11 f(ma.er) S{E{v)x+v]): M A F(mze2) . O
T A Fmitmaseiten) QB () [p]) [yr] : M
where IT|H A = I' and (mq + ma,e1 + e2) = (m,e). We can then
apply the i.h. on the leftmost premise to obtain a typing derivation
D) bobNeed Y: O; IT FMuert ) Bla) xS (v)]: M which has to
have ES as its last typing rule -via Lemma 17-, as follows
x: Py I1 Fmuven) Ba): M y: O; I Fmzenz) §/(y) . P
y: O; ITy | Ty FOmiatmizenatens) plahpe S (v)]: M

ESgc

ES

ES
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where I1; HHQ =11, (m171 +mi2,e1,1 + 6172) = (ml,el + 1). We
then construct @’ as follows

y: O; Il F(m12,e1.2) S'(vy: P A F(mz.e2) . O
z: Py Fmeveny) Ba) M Il A matmaenates) Q1) yer]: P
g HHQ L"JA F(mi1+my 2+ma,er1ter2tez) E<<33>> [x<—S'<U> [y<—7“]] M

ES

Note that I JIls JA =T WA =T and (m11 +mi2+ma,e11 +
e12 +e2) = (my +ma,e1 +e2) = (m,e+1).
— Contextual closure. We proceed by induction on the derivation of ¢t =
E{t'y = 4E(s") = s:

e Let E = (-). Then t +, s or t —, s and in either case the statement
holds, as we have just proved.

e Let E = Eju. Then $>cpneea I' ) Fy(s')u: M and its last typing rule
is either app, or app,.. We will only cover the case where E(t') —,E(s")
and @ ends in rule app,, leaving the rest of the (analogous) cases to the
reader.

Let @ be of the form

@E1<S> >CObNeed 11 F(m',e') E1<S/> : [O —o M] A F(m ) u:O
HL‘!’JA p(m/+m” +1,¢'+e’) E, <S/>U:M

appy

where I'=ITlH A, (m'+m” +1,¢' +¢€”’) = (m,e), and O #£ 0.

We can then apply the i.h. on @g, (5 to obtain a typing derivation
P ) >CbNeed 1T F(mtLle) B (t'): [O — M) with which we construct @'
as follows

"o

I EmFLe) Bty [0 — M] ARMTeD 40
HH’JA R (m/+14+m" +1,e'+e) E, <t’>u:M

appy

Note that (m'+1+m" + 1,/ +1+¢") = (m+1,e).

o Let B = Ej[r+u]. Then @ >opNeed I F®) By (s')[z—u]: M and its
last typing rule is either ES or ES,.. We will only cover the case where
E(t1) —,E(s1) and @ ends in rule ES, leaving the rest of the (analogous)
cases to the reader.

Let @ be of the form

Dp, (s') PCbNeed T: O; 11 p(m'.e) Ey(s'y: M  AFM") 40 g
’ " ’ E
Hb_J A l_(m +m

<) By (s [weu] : M

where ITHA =T, (m'+m”,e' +¢") = (m,e), and O # 0.

We can then apply the i.h. on @, (v to obtain a typing derivation
D DobNeed T: O3 1T F(m'+1.e) py (') : M with which @' goes as follows

"o

x: O I F L) iy M AR 40
I AR Fm™ e e™) B [peu] : M

ES

Note that (m' +1+m” e’ +€") = (m+1,e).
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o Let F = Ey{(z))[x<Es). We will only consider the case where
t=E(t') = Ex{a) e B (t')] —pB1(2) (v Ea(s')] = B(s') = s

leaving the (analogous) case when ¢ — s to the reader.
Therefore, @ is of the form

"o

I Eyf(a) : M @gy e doneea AFMD By(s'): 0

’ 1 ’ 1" ES
Iy A p(m/+m™e'+e") gy () [xFEa(s")]: M

where I A =T, (m'+m”, e’ +¢") = (m,e), and O # 0.
We can then apply the i.h. on @p, sy to obtain a typing derivation

P ) >CbNeed A Hm"+1.e") By (t') : O, with which we can finally construct
¢’ as follows

o) Bia): M AR L) By 0
Y AR L) By (@) o= Ea (1)) : M

Note that (m' +m” +1,¢' +€") = (m+1,e). O

Theorem 13 (CbNeed tight completeness). Let ¢ be a closed term. If
d:t —7%..q8 and normal(s) then there exists a tight derivation @ byeed p-(Idlaldle)

t: [normal].

Proof. By induction on |d|; i.e., on k such that d: t —F__, s.

— If k =0, then ¢ = s and Proposition 1 implies that normal(t). We then obtain
@ as desired via application of Proposition 12.

— Ifk > 0thend: t =, qu—""L s. We can then apply the i.h. on d’: u —F_ 1
s to obtain a tight derivation @; . Ppeed R Tmsld"le) 4y : [normal].
Now, if t —, _ u then Proposition 13 implies that there exists a derivation
as desired, namely ®byeeq H4 L1 ) ¢ [normal], since (|d'|m + 1, |d]) =
(Id|m; [dle)-
If t —, __ u then Proposition 13 implies that there exists a derivation as
desired, namely @ bpeeq FU4 Tl e+ ¢ [normal], since (|d’ |, |d']e + 1) =
(dlms dle)- 0

E A New Fundamental Theorem for Call-by-Need
(Sect. 7)

Corollary 3 (CbV correctness wrt CbNeed). Lett be a closed term and

D >opy F™€)4 . M be a derivation. Then there exists s such that d: t =¥ ed$
and normal(s), with |dly < m and |d|e < e.

Proof. By induction on m 4+ e and case analysis on whether ¢ reduces or not. If
normal(t) then the statement holds with s := ¢ and d the empty evaluation, so
that |d|n = 0 = |d]e.
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Otherwise —normal(t), then ¢t — . u according to the syntactic characteriza-
tion of closed need-normal forms (Proposition 1), since ¢ is closed. As t = qu
means either ¢t —, wort —, wu, by quantitative subject reduction for the
CbV multi type system with respect to CbNeed evaluation (Proposition ??) there
i W ey I F™) u: M with:

-m''=m—1lande =eift =, u,
—m''=mande =e—-1ift =, u.
By i.h. (since m’ + e’ = m+ e — 1), there is a term s such that d’: uv —7_ ;s and
normal(s), with |d'[y < m’ and |d'|s < €. The evaluation d: t —} s obtained
by prefixing d’ with the step t — . qu verifies |d|, < m and |d|. < e because:
—ift =, wthen|d|y =|d'[a +1<m +1=mand |[dle = |d|. <€ =e,
—ift =, uthen |dy = |d'|s <m'=mand |d = |d|.+1<e' +1=e O

Corollary 4 (CbNeed duplicates as wisely as CbV). Let d:t =7 u

cbv
with normalcyy (u). Then there is d': t =7, 4s with normal(s) and |d'|y < |d|n and
|d'le < |d]e.

neecd

Proof. By tight completeness for CbV (Theorem 4), there exists a tight type
derivation ®>u,, F™9%: 0 with |d|ln = m and |d|. = e, because by hypothesis ¢
is CbV normalisable. Correctness of CbV with respect to CbNeed (Corollary 1)
then gives d’': t =% .45 with normal(s), |d'|ls < m =|d|y and |d'|c < e=|dl.. O

nee —
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