
Crumbling Abstract Machines

Beniamino Accattoli

LIX

Inria & École Polytechnique

France

beniamino.accattoli@inria.fr

Andrea Condoluci

Department of Computer Science and Engineering

University of Bologna

Italy

andrea.condoluci@unibo.it

Giulio Guerrieri

Department of Computer Science

University of Bath

United Kingdom

g.guerrieri@bath.ac.uk

Claudio Sacerdoti Coen

Department of Computer Science and Engineering

University of Bologna

Italy

claudio.sacerdoticoen@unibo.it

ABSTRACT
Extending the λ-calculus with a construct for sharing, such as let
expressions, enables a special representation of terms: iterated appli-

cations are decomposed by introducing sharing points in between

any two of them, reducing to the case where applications have only

values as immediate subterms.

This work studies how such a crumbled representation of terms

impacts on the design and the efficiency of abstract machines for

call-by-value evaluation. About the design, it removes the need

for data structures encoding the evaluation context, such as the

applicative stack and the dump, that get encoded in the environment.

About efficiency, we show that there is no slowdown, clarifying in

particular a point raised by Kennedy, about the potential inefficiency

of such a representation.

Moreover, we prove that everything smoothly scales up to the

delicate case of open terms, needed to implement proof assistants.

Along the way, we also point out that continuation-passing style

transformations—that may be alternatives to our representation—

do not scale up to the open case.

KEYWORDS
abstract machine, complexity, explicit substitution, lambda-calculus

ACM Reference Format:
Beniamino Accattoli, Andrea Condoluci, Giulio Guerrieri, and Claudio Sac-

erdoti Coen. 2019. Crumbling
Abstract Machines. In Proceedings of ACM

Conference (Conference’17). ACM, New York, NY, USA, 35 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
This paper is about the extension of λ-calculus with explicit con-

structors for sharing. The simplest such construct is a let x = u in t

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

expression, standing for t where x will be substituted by u, that we
also write more concisely as t[x�u] and call ES (for explicit sharing,
or explicit subsitution1). Thanks to ES, β-reduction can be decom-

posed into more atomic steps. The simplest decomposition splits

β-reduction as (λx .t)u →βES t[x�u] →ES t{x�u} where t{x�u}
is the meta-level substitution of u for the free occurrences of x in t .

It is well-known that ES are somewhat redundant, as they can

always be removed, by simply coding them as β-redexes. They
are however more than syntactic sugar, as they provide a simple

and yet remarkably effective tool to understand, implement, and

program with λ-calculi and functional programming languages.

From a logical point of view, ES are the proof terms corre-

sponding to the extension of natural deduction with a cut rule,

and the cut rule is the rule representing computation, according

to Curry-Howard. From an operational semantics point of view,

they allow elegant formulations of subtle strategies such as call-

by-need evaluation—various presentations of call-by-need use ES

[12, 22, 24, 25, 31, 32] and a particularly simple one is in Accat-

toli et al. [3]. From a programming point of view, they are part

of most functional languages we are aware of. From a rewriting

point of view, they enable proof techniques not available within

the λ-calculus (e.g. reducing a global rewriting properties such as

standardization to a local form, see Accattoli [1]). Finally, sharing

is used in all implementations of tools based on the λ-calculus to
circumvent size explosion, the degenerate behavior for which the

size of λ-terms may grow exponentially with the number of β-steps.

Crumbled forms. Once sharing is added to the λ-calculus, it en-
ables a representation of terms where a sharing point is associated

with every constructor of the term. Such a special form, roughly,

is obtained by (recursively) decomposing iterated applications by

introducing an ES in between any two of them. For instance, the

representation of the term (((λx .x(xx))y)((λz.z)y))y is

(w ′′y)[w ′′�w ′w][w ′�(λx .(xx ′)[x ′�xx])y][w�(λz.z)y]

Note that the transformation involves also function bodies (i.e.
λx .x(xx) turns into λx .(xx ′)[x ′�xx]), that ES are grouped together

1let expressions and explicit substitutions usually come with different operational

semantics: let expressions substitute in just one step, while explicit substitutions

substitute in many micro steps, percolating through the term structure. They follow

however the same typing principles. Moreover, explicit substitutions have many differ-

ent formulations. In this paper we see let expressions as yet another form of explicit

substitutions, and thus conflate the two terminologies.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

unless forbidden by abstractions, and that ES are flattened out, i.e.

they are not nested unless nesting is forced by abstractions.

This work studies such a representation, called crumbled as it

crumbles a term by means of ES. Our crumbling translation closely

resembles—while not being exactly the same—the transformation

into a(dministrative) normal form (shortened to ANF) introduced by

Flanagan et al. [17], building on work by Sabry and Felleisen [30],

itself a variant of the continuation-passing style (CPS) translation.
A delicate point is to preserve crumbled forms during evalua-

tion. ES often come together with commutation rules to move them

around the term structure. These rules are often used to unveil

redexes during evaluation or to preserve specific syntactic forms.

They may introduce significant overhead that, if not handled care-

fully, can even lead to asymptotic slowdowns as shown by Kennedy

[21]. One of the contributions of this work is to show that crumbled

forms can be evaluated and preserved with no need of commutation

rules, therefore avoiding Kennedy’s potential slowdown.

This paper. Our focus is on the impact of crumbled forms on the

design and asymptotic overhead of abstract machines with weak
evaluation (i.e. out of abstractions) on closed terms, and the scala-

bility to (possibly) open terms. Bounding the overhead of abstract

machines is a new trend, according to which the machine overhead

has to be proved polynomial or even linear in the number of β-
steps [2–5, 8, 10]. Open terms—that are not needed to implement

functional languages—are used to implement the more general and

subtle case of proof assistants. The two topics actually motivate

each other: the naive handling of open terms with the techniques

for functional languages gives abstract machines with exponential

overhead [8, 10], which pushes to develop more efficient machines.

We anticipate here the main results of the paper: crumbled forms

induce abstract machines for weak evaluation with less data struc-

tures and the transformation does not introduce any asymptotic

overhead. Moreover, these facts smoothly scale up to open terms.

Why study crumbled forms. Our interest in studying crumbled

forms comes precisely from the fact that they remove some data

structures from the design of abstract machines. The relevance of

this fact becomes evident when one tries to design abstract ma-

chines for strong evaluation (that is, evaluating under abstraction).

The study of such machines is extremely technical (see also section

Sect. 8) because they havemore data structures andmore transitions

than in the closed and open cases. The many additional transitions

are in particular due to the handling of the various data structures.

In call-by-name, the situation is still manageable [2, 4, 13, 18], but

in call-by-value/need the situation becomes quickly desperate—it

is not by chance that there is not a single strong abstract machine

for call-by-value/need in the literature.

This work is then preliminary to a detailed study of strong ab-

stract machines for call-by-value and call-by-need. The aim is to

explore the subtleties in frameworks that are well understood, such

as the closed and open call-by-value cases, and show that there are

no slowdowns in turning to a crumbled representation.

The next sub-sections continue the introduction with a lengthy

overview of the role of environments, the content of the paper,

the relationship with the ANF, the asymptotic study of abstract

machines, and related work.

1.1 Environments
ES are often grouped together instead of being scattered all over the

term, in finite sequences called environments. Abstract machines

typically rely on environments. Crumbled forms also rely on pack-

ing ES together, as pointed out before, but depart from the ordinary

case as environments may appear also under abstractions.

Crumbled Environments. The notion of environment induced by

crumbled forms, named here crumbled environments, is peculiar.
Crumbled environments indeed play a double role: they both store

delayed substitutions, as also do ordinary environments, and encode
evaluation contexts. In ordinary abstract machines, the evaluation

context is usually stored in data structures such as the applicative
stack or the dump. Roughly, they implement the search for the redex

in the ordinary applicative structure of terms. For crumbled forms,

the evaluation context is encoded in the crumbled environment,

and so the other structures disappear.

Operations on Crumbled Environments. There are two subtle im-

plementative aspects of crumbled environments, that set them apart

from ordinary ones. Ordinary environments are presented with a

sequential structure but they are only accessed randomly (that is,

not sequentially)—in other words, their sequential structure does

not play a role. Crumbled environments, as the ordinary ones, are

accessed randomly, to retrieve delayed substitutions, but they are

also explored sequentially—since they encode evaluation contexts—

in order to search for redexes. Therefore, their implementation has

to reflect the sequential structure.

The second subtlety is that crumbled machines also have to

concatenate environments, that is an operation never performed

by ordinary machines, and that has to be concretely implemented

as efficiently as possible, i.e. in constant time. That this point is

subtle is proved by the fact that Kennedy’s slowdown [21] amounts

to a quadratic overhead in evaluating terms in ANF due to the

concatenation of environments.

To address these points, we provide a prototype OCaml imple-

mentation of crumbled environments in in the appendix of [?], to
be compared with the one of global environments in Accattoli and

Barras [5], that does not concretely implement the sequential struc-

ture. In particular, our implementation concatenates environments

in constant time and does not suffer from Kennedy’s slowdown.

Essentially, Kennedy’s slowdown amounts to the fact that his im-

plementation concatenates ANF environments in linear rather than

constant time (see Section 9).

1.2 Content of the Paper
The Closed Case. First, we define crumbled forms and an abstract

machine evaluating them, the Crumble GLAM, and show that it

implements Plotkin’s closed small-step call-by-value (CbV for short)

λ-calculus (extended with conditionals, see below). Moreover, we

study the overhead of the machine, and show that it is linear in

the number of β-steps and in the size of the initial term, exactly

as the best machines for CbV executing ordinary terms. Therefore,

the crumbling transformation does not introduce any asymptotic

overhead. The study is detailed and based on a careful and delicate

spelling of the invariants of the machine. In particular, our approach

does not suffer from Kennedy’s potential slowdown.

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

Open Terms. The second ingredient of the new trend of abstract

machines [2–5, 8, 10]—the first being complexity analyses—is study-

ing evaluation in presence of (possibly) open terms or even strong

evaluation (i.e. under abstraction), which is required in order to im-

plement proof assistants. Apart from few exceptions—Crégut [13],

Grégoire and Leroy [19], and García-Pérez et al. [18]—the literature

before the new wave mostly neglected these subtle cases, and none

of those three papers addressed complexity.

The open case, in which evaluation is weak but terms are possibly

open is strictly harder than the closed one, and close in spirit to the

strong case, but easier to study—it is for instance the one studied

by Grégoire and Leroy [19] when modeling (an old version of) the

abstract machine of the kernel of Coq.

Open Call-by-Value. Open evaluation for CbV—shortened Open

CbV—is particularly subtle because, as it is well-known, Plotkin’s

operational semantics is not adequate when dealing with open

terms—see Accattoli and Guerrieri [7, 9]. Open CbV has been stud-

ied deeply by Accattoli and Guerrieri [7, 8, 9], Accattoli and Sacer-

doti Coen [10], exploring different presentations, their rewriting,

cost models, abstract machines, and denotational semantics. One

of the motivations of this work is to add a new piece to the puzzle,

by lifting the crumbling technique to the open case.

Our second contribution is to show that the crumbling technique

smoothly scales up to Open CbV. We provide an abstract machine,

the Open Crumble GLAM, and we show that it implements the
fireball calculus—the simplest presentation of Open CbV—and that,

as in the closed case, it only has a linear overhead. Two aspects of

this study are worth pointing out. First, the technical development

follows almost identically the one for the closed case, once the

subtler invariants of the new machine have been found. Second,

the substitution of abstractions on demand, a technical optimizations

typical of open/strong cases (introduced in Accattoli and Dal Lago

[6] and further studied in Accattoli and Guerrieri [8], Accattoli and

Sacerdoti Coen [10]), becomes superfluous as it is subsumed by the

crumbling transformation.

1.3 The Relationship with ANF
As long as one sticks to the untyped λ-calculus, crumbled forms

coincide with ANF. The ANF, we said, is a variant of the CPS trans-

formation. Roughly, the difference is that the ANF does not change

the type, when terms are typed (here we work without types).

Kennedy [21] pointed out two problems with the ANF. One is

the already discussed quadratic overhead, that does not affect our

approach. The second one is the fact that the ANF does not smoothly

scale up when the λ-calculus is extended to further constructs such
as conditionals or pattern matching. Essentially, the ANF requires

conditionals and pattern matching to be out of ES, that is, to never

have an expression such as s[x�(ifv then t elseu)]. Unfortunately,
these configurations can be created during evaluation. To preserve

the ANF, one is led to add so-called commuting conversions such as:

s[x�(ifv then t elseu)] → ifv then (s[x�t]) else (s[x�u]) (CC)

Clearly, there is an efficiency issue: the commutation causes the

duplication of the subterm s . A way out is to use a continuation-like

technique, which makes Kennedy conclude that then there is no

point in preferring ANF to CPS.

This is where our crumble representation departs from the ANF,

as we do not require conditionals and pattern matching to be out of

ES. Kennedy only studies the closed case. Our interest in open and

strong evaluation is to explore the theory of implementation needed

for proof assistants. In these settings, commutations of conditionals

and pattern matching such as those hinted at by Kennedy are not

valid: they are not validated by dependent type systems like those of

Coq or Agda. For example, the CC rule above when the conditional

is dependently typed breaks the property of subject reduction, as
typed terms reduce to ill-typed terms. Consider the term:

(x + 1)[x : (if true then nat else bool)�if true then 0 else false] : nat

that has type nat because the type of x is convertible to nat. By
applying rule CC, we obtain:

if true then ((x + 1)[x�0]) else ((x + 1)[x�false])

which is clearly ill-typed (in the underlined part).

The problem in the open case is actually more general, as not

even the CPS would work: its properties do not scale up to open

terms. In Section 9, indeed, we provide a counter-example to the

simulation property in the open case.
2

To sum up, neither commuting conversions nor the CPS trans-

formation can be used in our framework. Therefore, we accept that

conditionals and pattern matching may appear in ES (in contrast

to Kennedy) and so depart from the ANF.

In the paper we treat the cases of the closed and open CbV

calculi extended with conditionals. The essence of the study is

the crumbling of β-reduction, not the conditionals. Conditionals
are included only to stress the difference with respect to the ANF

(pattern matching can be handled analogously), but they do not

require a special treatment.

1.4 The Complexity of Abstract Machines
Asymptotic Bounds vs Benchmarking. The study of asymptotic

bounds for abstract machines is meant to complement the use of

benchmarking, by covering all possible cases, that certainly cannot

be covered via benchmarking.

The relevance of such a study is evident when one considers

open terms or strong evaluation. For strong evaluation, for instance,

for more than 25 years in the literature there has been only Cregut’s

abstract machines [13], which on size exploding families of terms

actually has exponential overhead (in the number of β-steps and
the size of the initial term). A polynomial machine, developed via a

careful asymptotic study, is in Accattoli [2]. Similarly, the abstract

machine for open terms described in Grégoire and Leroy [19] suffers

of exponential overhead on size exploding families (even if the

authors then in practice implement a slightly different machine

with polynomial overhead). The asymptotic study of this case is in

Accattoli and Guerrieri [8], Accattoli and Sacerdoti Coen [10].

Abstract machines vs compilation. Abstract machines and compi-

lation to machine language are two distinct techniques to execute a

program. Compilation is typically more efficient, but it only handles

the case where terms are closed and evaluation is weak, that is,

the one of functional languages. Strong evaluation is sometimes

2
Danvy and Filinski [16] claim that the CPS transformation scales up to open terms

(their Theorem 2). However, as we discuss in Section 9, they consider only Plotkin’s

operational semantics, which is not adequate for open terms.

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

employed during compilation to optimize the compiled code, but

typically only on linear redexes where size and time explosions are

not an issue. Abstract machines are the only execution technique

implemented in interactive theorem provers based on dependent

types, that need strong evaluation.

Kennedy [21] argues that CPS-based translations are superior

to ANF also because the CPS makes join points explicit as contin-

uations, so that invocation of the continuation can be compiled

efficiently using jumps. The argument is only valid for compilation

and it does not affect abstract machines.

Garbage collection. We study abstract machines, which on pur-

pose ignore many details of concrete implementations such as

garbage collection, which is an orthogonal topic. In particular,

garbage collection is always at most polynomial, if not linear, so

its omission does not hide harmful blowups. As far as we know,

no abstract machine implemented in interactive theorem provers

performs garbage collection.

1.5 Related Work
Environments. In a recent work, Accattoli and Barras [5] com-

pare various kinds of environments, namely, global, local, and split,
from implementative and complexity points of view. The crumbling

transformation can be studied with respect to every style of envi-

ronment. Here we focus on crumbled global environments because

they are simpler and because we also consider the open case, where

all kinds of environment induce the same complexity.

Administrative Normal Forms. The literature on ANF is scarce.

Beyond the already cited original papers, Danvy has also studied

them and their relationship to CPS, but usually calling themmonadic
normal forms [14, 15, 20] because of their relationship with Moggi’s

monadic λ-calculus [26]. That terminology however sometimes

describes a more liberal notion of terms, for instance in Kennedy

[21], which is also another relevant piece in the literature on ANF.

All proofs and some supplementary material of our paper are in

the Appendix of [?], the long version of this paper.

2 THE PIF CALCULUS
The grammars and the small-step operational semantics of the Pif
calculus λifPlot, that is, Plotkin’s calculus λPlot [28] for Closed CbV

evaluation extended with booleans and an if-then-else construct,
plus error handling for clashing constructs, are in Fig. 1.

A term is either an application of two terms, an if-then-else, or
a value, which is in turn either a variable, a (λ-)abstraction, true,
false, or an error err. We distinguish values that are not variables,

notedv¬x and called practical values, following Accattoli and Sacer-
doti Coen [11]. The body of an abstraction λx .t is t and the bodies of
a conditional if t thenu else s are its two branchesu and s . Terms are

always identified up to α-equivalence and the set of free variables

of a term t is denoted by fv(t); t is closed if fv(t) = ∅, open other-

wise. We use t{x�u} for the term obtained by the capture-avoiding

substitution of u for each free occurrence of x in t .

Contexts. In general, contexts are denoted by C and are terms

with exactly one occurrence of a special constant ⟨·⟩ called the
hole, that is a placeholder for a removed subterm. In the paper we

Terms t,u, s F v | tu | if t thenu else s
Values v F x | v¬x

Practical values v¬x F λx .t | true | false | err
Right v-context R F ⟨·⟩ | tR | Rv | if R thenu else s

Reduction Rules at Top Level

(λx .t)v 7→βv t{x�v}

if true then t elseu 7→ift t
if false then t elseu 7→iff u

if t thenu else s 7→ife err if t = λx .u or t = err
tu 7→@e err if t ∈ {true, false, err}

Contextual closure

R⟨t⟩ →a R⟨u⟩ if t 7→a u for a ∈ {βv , ift, iff, ife,@e}
→pif B →βv ∪ →ift ∪ →iff ∪ →ife ∪ →@e

Figure 1: Pif calculus λifPlot.

use various notions of contexts in different calculi—for λifPlot the
relevant notion is right (evaluation) v-context R (see Fig. 1). The

basic operation on (whatever notion of) contexts is the plugging
C ⟨t⟩ of a term t for the hole ⟨·⟩ in C: simply the hole is removed

and replaced by t , possibly capturing variables.

Evaluation. According to the definition of right v-context, CbV

evaluation →pif in λifPlot is weak, i.e. it does not reduce under λ-
abstractions and in the branches of an if-then-else. CbV evaluation

is defined for any (possibly open) term. But it is well-known that

this operational semantics is adequate only for closed terms, as first

noticed by Paolini and Ronchi Della Rocca [29], see also Accattoli

and Guerrieri [7, 9], ?] and ?]. When restricted to closed terms,

λifPlot is called Closed (Conditional) CbV : in this setting, evaluation

can fire a β-redex (λx .t)u only if the argument u is a closed value,

i.e. a closed λ-abstraction, a boolean, or err; and in the production

Rv for the definition of right v-contexts, v is always a closed value.

Note that we work with right-to-left evaluation—this is forced by

the production Rv in the definition of right evaluation v-contexts. In

the closed case one could as well work with left-to-right evaluation,

the choice is inessential.

The error constant err is generated during evaluation by the two

cases of construct clashes: when the condition for an if-then-else
is an abstraction and when a boolean is applied to a term. Both

cases would be excluded by typing, but in our untyped setting

they are possible, and handled via errors. Similarly, errors are also

propagated when they appear as conditions for if-then-else and as

left terms of an application. These cases are handled by rules →ife
and→@e. Note that errors do not propagate when they occur as

arguments of applications: if the left sub-term of the application be-

comes an abstraction that erases the error then the error is handled
and it is not observable.

A key property of Plotkin’s Closed CbV is harmony: a closed

term is βv -normal if and only if it is a (closed) value i.e. a (closed)
λ-abstraction. Therefore, every closed term either diverges or it

evaluates to a (closed) λ-abstraction. Harmony extends to λifPlot.
Proof

p. 16Proposition 2.1 (Pif harmony). Let t be a closed term. t is→pif-
normal if and only if t is a value.

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

3 CRUMBLED EVALUATION, INFORMALLY
Decomposing applications. The idea is to forbid the nesting of

non-value constructs such as applications and if-then-else without
losing expressive power. To ease the explanation, we focus on

nested applications and forget about if-then-else—they do not pose
any difficulty. Terms such as (tu)s or t(us) are then represented

as (λx .(xs))(tu) and (λx .(tx))(us) where x is a fresh variable. It is

usually preferred to use let expressions rather than introducing

β-redexes, so that one would rather write let x = tu in (xs) and
let x = us in (tx), or, with ES (aka environment entries),

(xs)[x�tu] and (tx)[x�us].

If the crumbling transformation · is applied to the whole term—

recursively on t , u and s in our examples—all applications have the

form vv ′
, i.e. they only involve values. If moreover CbV evaluation

is adopted, then such a crumbled form is stable by evaluation (re-

duction steps are naturally defined so that a crumbled form reduces

to a crumbled form), as variables can only be replaced by values.

Simulation and no evaluation contexts. Let us now have a look

at a slightly bigger example and discuss the recursive part of the

crumbling transformation. Let I = λx .x be the identity and consider

the term t B ((λy.yy)I)((I I)I) whose right-to-left evaluation is

t →βv ((λy.yy)I)(I I) →βv ((λy.yy)I)I

→βv (I I)I →βv I I →βv I

The crumbling transformation decomposes all applications, tak-

ing special care of grouping all the environment entries together,

flattening them out (that is, avoiding having them nested one into

the other), and reflecting the evaluation order in the arrangement

of the environment. For instance, the crumbled representation t of
the term t above is

t = (wz)[w�(λy.yy)I][z�xI][x�I I]

and evaluation takes always place at the end of the environment:

t →βv (wz)[w�(λy.yy)I][z�xI][x�I]

→[] (wz)[w�(λy.yy)I][z�I I]
→βv (wz)[w�(λy.yy)I][z�I]

→[] (wI)[w�(λy.yy)I] →βv (wI)[w�I I]

→βv (wI)[w�I] →[] I I →βv I

where the→βv steps correspond exactly to steps in the ordinary

evaluation of t and →[] steps simply eliminate the explicit substi-

tution when its content is a value. Note how the transformation

makes the redex always appear at the end of the environment,

so that the need for searching for it—together with the notion of

evaluation context—disappears.

Let us also introduce some terminology. Values and applications

of values are bites. The transformation, called crumbling translation,
turns a term into a pair, called crumble, of a bite and an environment.

Turning to micro-step evaluation. The previous example covers

what happens when the crumbling transformation is paired with

small-step evaluation. Abstract machines, however, employ a finer

mechanism that we like to call micro-step evaluation, where the

substitutions due to β-redexes are delayed and represented as new

environment entries, and moreover substitution is decomposed

as to act on one variable occurrence at a time. In particular, such

a more parsimonious evaluation never removes environment en-

tries because they might be useful later on—garbage collection is

assumed to be an orthogonal and independent process. To give

an idea of how micro steps work, let’s focus on the evaluation of

the subterm (wz)[w�(λy.yy)I] of our example (because micro-step

evaluations are long and tedious), that proceeds as follows:

(wz)[w�(λy .yy)I] →βv (wz)[w�yy][y�I] →[]

(wz)[w�yI][y�I] →[] (wz)[w�I I][y�I] →βv
(wz)[w�x][x�I][y�I] →[] (wz)[w�I][x�I][y�I] →[]

(I z)[w�I][x�I][y�I]

where →βv steps now introduce new environment entries. Now

the redex is not always at the end of the environment, but it is

always followed on the right by an environment whose entries

are all abstractions, so that the search for the next redex becomes

a straightforward visit from right to left of the environment—the

evaluation context has been coded inside the sequential structure

of the environment.

Abstraction bodies and the concatenation of environments. There
is a last point to explain. We adopt weak evaluation—that only

evaluates out of abstractions—but the crumbling transformation

also transforms the bodies of abstractions and the branches of

if-then-else into crumbles. Let us see another example. The crum-

bled representation of u B (λx .((xx)(xx)))(I I) then is

u = ((λx .((yz)[y�xx][z�xx]))w)[w�I I]

Micro-step evaluation goes as follows:

u →βv ((λx .((yz)[y�xx][z�xx]))w)[w�w ′][w ′�I]

→[] ((λx .((yz)[y�xx][z�xx]))w)[w�I][w ′�I]
→[] ((λx .((yz)[y�xx][z�xx]))I)[w�I][w ′�I].

At this point, the reduction of the β-redex (involving λx) has to
combine the crumble of the redex itself with the one of the body of

the abstraction, by concatenating the environment of the former

(here [w�I][w ′�I]) at the end of the environment of the latter

([y�xx][z�xx]), interposing the entry created by the redex itself

([x�I]), thus producing the new crumble:

(yz)[y�xx][z�xx][x�I][w�I][w ′�I].

The key conclusion is that evaluation needs to concatenate crum-

bled environments, which is an operation that ordinary abstract

machines instead never perform.

Note that transforming abstraction bodies may produce nested

ES, if the abstraction occurs in an ES. This is the only kind of nesting

of ES that is allowed.

4 THE CRUMBLING TRANSFORMATION
In this section we formally define the language of crumbled forms

and the crumbling transformation.

Crumbled forms. Terms are replaced by crumbles, which are

formed by a bite and an environment, where in turn

• a bite is either a crumbled value (i.e. a variable, a boolean,
an error, or an abstraction over a crumble), an application

of crumbled values, or a if-then-else on a crumbled value

whose alternatives are crumbles, and

• an environment is a finite sequence of explicit substitutions
of bites for variables.

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

Formally, the definition is by mutual induction:

Bites b,b ′ F v | vw | ifv then c elsed

Crumbled values v,w F x | λx .c | true | false | err

Environments e, e ′ F ϵ | e[x�b]

Crumbles c,d F (b, e)

Bodies: the bodies of abstractions and if-then-else are them-

selves crumbles—the forthcoming crumbling transformation

is indeed strong, as it also transforms bodies.

Crumbles are not closures: the definition of crumbles may

remind one of closures in abstract machines with local envi-

ronments, but the two concepts are different. The environ-

ment e of a crumble (b, e), indeed, does not in general bind

all the free variables of the bite b.

We freely consider environments as lists extendable on both ends,

and whose concatenation is obtained by simple juxtaposition. Given

a crumble (b, e) and an environment e ′ the appending of e ′ to (b, e)
is (b, e) @ e ′ B (b, ee ′).

Free variables, α -renaming, and all that. All syntactic expressions
are not considered up to α-equivalence. Free variables are defined as
expected for bites. For environments and crumbles they are defined

as follows (via the auxiliary notion of domain of environments; this

is because global environments are used here):

dom(e[x�b]) B dom(e) ∪ {x} dom(ϵ) B ∅

dom((b, e)) B dom(e) fv(ϵ) B ∅

fv(e[x�b]) B (fv(e)∖ {x}) ∪ fv(b)

fv((b, e)) B (fv(b)∖ dom(e)) ∪ fv(e).

Let e = [x1�b1] . . . [xk�bk] be an environment: we denote the

lookup of xi in e by e(xi) B bi . We say that a crumble c or an

environment e are well-named if all the variables occurring on the

lhs of ES outside abstractions in c or e are pairwise distinct.

The crumbling translation. A term is turned into a crumble via

the following crumbling translation · , which uses an auxiliary

translation · from values into crumbled values.

x B x λx .t B λx .t true B true false B false err B err

v B (v, ϵ) vv ′ B (vv ′, ϵ)

tv B (xv, [x�b]e) (∗)

ut B ux @ ([x�b]e) (∗)

ifv thenu else s B (ifv thenu else s, ϵ)

if t thenu else s B (if x thenu else s, [x�b]e) (∗)

(∗) if t is not a value and t = (b, e), and x is fresh.

According to the definition, if u and t are not values, ut =
(yx, [y�b ′]e ′[x�e]) with t = (b, e), u = (b ′, e ′) and x,y fresh.

Example 4.1. Let δ B λx .xx and I B λx .x : thus, I = λx .x =

λx .(x, ϵ) and δ = λx .xx = λx .(xx, ϵ) (since xx = (xx, ϵ)) and
δδ = (¯δ ¯δ , ϵ). Therefore,

δδ I = (zI , [z� ¯δ ¯δ])

= (zλx .(x, ϵ), [z�(λx .(xx, ϵ))λx .(xx, ϵ)])

δδ (xx) = (zw, [z� ¯δ ¯δ][w�xx])

= (zw, [z�(λx .(xx, ϵ))λx .(xx, ϵ)][w�xx]).

The crumbling translation · is not surjective: the crumble c B
(xx, [x�y]) is such that t , c for any term t .

Read back. There is a left inverse for the crumbling translation,

called read-back and defined by:

x↓ B x (λx .c)↓ B λx .c↓

true↓ B true false↓ B false

err↓ B err (vw)↓ B v↓w↓

(ifv then c elsed)↓ B ifv↓ then c↓ elsed↓
(b, e[x�b ′])↓ B (b, e)↓{x�b ′

↓
} (b, ϵ)↓ B b↓

Proof

p. 17Proposition 4.2 (Read-back and the crumbling transla-

tion). For every term t and every valuev , one has t ↓ = t andv↓ = v .

Remark 4.1 (Crumbling translation, free variables).

(1) For any term t and any value v , one has fv(t) = fv(t) and
fv(v) = fv(v); in particular, t is closed if and only if t is so.

(2) For any biteb and crumble c , fv(b↓) = fv(b) and fv(c↓) = fv(c).
(3) The crumbling translation commutes with the renaming of

free variables.

(4) The crumbling translation and the read-back map values to

values.

Crumbled contexts. For crumbled forms, we need contexts both
for environments and crumbles:

Environment contexts E B e[x�⟨·⟩]

Crumble contexts C B ⟨·⟩ | (b, E) .

Crumbles can be plugged into both notions of contexts. Let us point

out that the following definition of plugging is slightly unusual

as it does a little bit more than just replacing the hole, because

simply replacing would not provide a well-formed syntactic ob-

ject: plugging indeed extracts the environment from the plugged

crumble and concatenates it with the environment of the context.

Such an unusual operation—that may seem ad-hoc—is actually one

of the key technical points in order to obtain a clean proof of the

implementation theorem (see Section 5.2).

Definition 4.3 (Plugging in crumbled contexts). Let E = e[x�⟨·⟩]

be an environment context,C be a crumble context, and c = (b ′, e ′)
be a crumble. The plugging E⟨c⟩ of c in E and the plugging C ⟨c⟩ of
c in C are defined by

(e[x�⟨·⟩])⟨(b ′, e ′)⟩ B e[x�b ′]e ′ ⟨·⟩⟨c⟩ B c (b, E)⟨c⟩ B (b, E⟨c⟩)

Example 4.4. In Example 4.1 we have seen that δδ I =

(zλx .xϵ , [z�(λx .(xx)ϵ)λx .(xx)ϵ]), where we set bϵ B (b, ϵ) for
any bite b. We have that δδ I = C ⟨c⟩ with C B (zλx .xϵ , [z�⟨·⟩])

and c B ((λx .(xx)ϵ)λx .(xx)ϵ , ϵ).

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

The notions of well-named, fv(·), and dom(·) can be naturally ex-

tended to crumble contexts. The definition of read back is extended

to crumble contexts by setting ⟨·⟩↓ B ⟨·⟩ and (b, e[x�⟨·⟩])↓ B
(b, e)↓{x�⟨·⟩}. Note however that the unfolding of a crumble con-

text is not necessarily a context, because the hole can be duplicated

or erased by the unfolding. For instance, let C B (x x, [x�⟨·⟩]).

Then C↓ = ⟨·⟩⟨·⟩ is not a context.

Lemma 4.5 provides the properties of the translation needed to

prove the invariants of machines in the next sections.

Proof

p. 18 Lemma 4.5 (Properties of crumbling). For every term t :

(1) Freshness: t is well-named.
(2) Closure: if t is closed, then fv(t) = ∅.
(3) Disjointedness: dom(C) ∩ fv(b) = ∅ if t = C ⟨(b, e)⟩.
(4) Bodies: every body in t is the translation of a term.
(5) Contextual decoding: if t = C ⟨c⟩, thenC↓ is a right v-context.

5 THE CLOSED CASE
Here we show how to evaluate crumbled forms with a micro-step

operational semantics. We builds over the work of Accattoli and

co-authors, who employ the following terminology:

• Calculus: for a small-step semantics where both substitution

and search for the redex are meta-level operations;

• Linear calculus: for a micro-step semantics where substi-

tution is decomposed—the calculus has ES and possibly a

notion of environment if the ES are grouped together—but

the search for the redex is still meta-level and expressed via

evaluation contexts;

• Abstract machine: for a micro-step semantics where both

substitution and search for the redex are decomposed. The

search for redexes is handled via one or more stacks called

applicative stack, dump, frame, and so on; the management

of names is also explicit, i.e. not up-to α-equivalence.

The crumbling transformation blurs the distinction between a lin-

ear calculus and an abstract machine because it allows using the

sequential structure of the environment as the only stack needed

to search for redexes.

The operational semantics for crumbled forms we present next

is in the style of a linear calculus, because spelling out the straight-

forward search for redexes is not really informative. Nonetheless,

we do call it an abstract machine, because of the blurred distinction

in the crumble case and because we manage names explicitly. In

Section 7 we sketch the actual abstract machine (details are in [?]).

5.1 The Crumble GLAM
Transitions. To introduce the Crumble GLAM (GLAM stands for

Global Leroy Abstract Machine) we need some definitions. First,

environments and crumbles made out of practical values only are

defined and noted as follows:

v-environments ev F ϵ | ev [x�v¬x]

v-crumbles cv F (v¬x , ev)

Essentially, a v-environment stands for the already evaluated coda

of the environment described in the paragraph about micro-steps

in Sect. 3, while v-crumbles are fully evaluated crumbles (i.e. final
states of the machine), as we show below.

Second, given a crumble c we use cα for a crumble obtained by

α-renaming the names in the domain of c with fresh ones so that

cα is well-named.

The transitions act on crumbles whose environments are v-
environments. The top level transitions are:

((λx .c)v, ev) 7→βv (c @ [x�v])α @ ev

(if true then c elsed, ev) 7→ift c @ ev

(if false then c elsed, ev) 7→iff d @ ev

(ifv then c elsed, ev) 7→ife (err, ev) (1)

(vw, ev) 7→@e (err, ev) (2)

(x, ev) 7→subvar (ev (x), ev) (3)

(xv, ev) 7→subl (ev (x)v, ev) (3)

(if x then c elsed, ev) 7→subif (if ev (x) then c elsed, ev) (3)

(1) if v = λx .e or v = err
(2) if v ∈ {true, false, err}
(3) if x ∈ dom(ev)

Transitions are then closed by crumble contexts: for every a ∈

{βv , ift, iff, ife,@e, subvar , subl , subif} defineC ⟨c⟩ →a C ⟨d⟩ if c 7→a
d . The transition relation →Cr of the Crumble GLAM is defined as

the union of all these rules. Let us explain each transition:

• →βv : (forget about the α-renaming for the moment—see the

next paragraph) the rule removes a β-redex and introduces

an ES [x�v] instead of performing the meta-level substitu-

tion. Moreover, the environment of the body c of the abstrac-
tion and the external environment ev are concatenated (via

the appending operation @) interposing [x�v].
• Conditional and error transitions→ift,→iff,→ife,→@e: these

transitions simply mimics the analogous rules on the Pif

calculus, with no surprises.

• Substitution transitions →subl ,→suby ,→subif : the variable x

is substituted by the corresponding crumbled value in the

environment ev , if any. In the closed case, a forthcoming

invariant guarantees that ev (x) is always defined so that

side-condition (3) is actually always satisfied. There are no

rules to substitute on the right of an application (see below).

According to the definitions of plugging and top level transi-

tions, the transition relation follows right-to-left evaluation, as the
environment on the right of a redex is a v-environment (made of

practical values only), which means that it has already been eval-

uated (see the harmony property for Crumble GLAM in Prop. 5.3

below). Adopting right-to-left evaluation implies that the Crumble

GLAMdoes not need a rule→subr symmetrical to→subl , whose top

level shape would be (vx, ev) 7→er (v ev (x), ev) with x ∈ dom(ev):
indeed, if v is a variable then →subl applies to the same redex

(vx, ev), otherwise v is an abstraction and →βv applies to (vx, ev).

The cost and the place of α-renaming. Abstract machines with

global environments have to α-rename at some point, this is stan-

dard
3
. In our implementation, renaming is implemented as a copy

function. And the cost of renaming is under control because of

forthcoming invariants of the machine. This is all standard [5].

3
Local environments do allow to avoid renamings, but the simplification is an illusion,

as the price is payed elsewhere—see Accattoli and Barras [5]—there is no real way out.

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

Often the burden of renaming/copying is put on the substitution

rules. It is less standard to put it on the βv -transition, as we do

here, but nothing changes. Last, a technical remark: in rule →βv
the α-renaming at top level has to pick names that are fresh also

with respect to the crumble context enclosing it. This point may

seem odd but it is necessary to avoid name clashes, and it is trivially

obtained in our concrete implementation, where variable names are

memory locations and picking a fresh name amounts to allocating

a new location, that is of course new globally.

Definition 5.1 (Reachable crumble). A crumble is reachable (by
the Crumble GLAM) if it is obtained by a sequence of transitions

starting from the translation t of a closed term t .

Unchaining abstractions. The substitution performed by the rule

→subvar may seem an unneeded optimization; quite the opposite,

it fixes an issue causing quadratic overhead in the machine. The

culprits are malicious chains of renamings, i.e. environments of the

form [x1�x2][x2�x3] · · · [xn�λy.c] substituting variables for vari-

ables and finally leading to an abstraction. Accattoli and Sacerdoti

Coen [10] showed that the key to linear overhead is to perform

substitution steps while going through the chain from right to left.

Example 5.2. Consider the crumble δδ = (δ δ , ϵ), where δ =
λx .(xx, ϵ); then:

δδ →βv (xx, [x�δ]) →subl (δ x, [x�δ])

→βv (yy, [y�x][x�δ]) →subvar (yy, [y�δ][x�δ]) →subl . . .

In Ex. 4.1 we introduced the crumble δδ I = (z I , [z�δ δ]) where

I = (λx .(x, ϵ)); in accordance with the crumble decomposition

shown in Ex. 4.4, we have:

δδ I →βv (z I , [z�xx][x�δ]) →subl (z I , [z�δ x][x�δ])

→βv (z I , [z�yy][y�x][x�δ])

→subl (z I , [z�yy][y�δ][x�δ]) →subl . . .

Consider now the open crumble

c B δδ (xx) = (zw, [z�δ δ][w�xx]).

The crumble c is normal because its only possible decomposition of

the formC ⟨(b, ev)⟩ is for ev = ϵ (as xx is not a practical value), and

no transitions apply to the rightmost entry [w�xx] since x is free.

The Crumble GLAM satisfies a harmony property.

Proof

p. 19 Proposition 5.3 (Harmony for the Crumble GLAM). A closed
crumble c is normal if and only if it is a v-crumble.

5.2 The Implementation Theorem
To show that the Crumble GLAM correctly implements the Pif

calculus, we apply an abstract approach introduced by Accattoli

and Guerrieri [8], which we reuse as well in the following sections

for other crumble abstract machines and other evaluation strategies

of the λ-calculus.

The implementation theorem, abstractly. In Accattoli and Guerri-

eri [8] it is proven that, given

• a generic abstract machine M, which is a transitions relation
{M over a set of states that splits into

– principal transitions {p, that corresponds to the evalua-

tion steps on the calculus, and

– overhead transitions {o, that are specific of the machine,

• an evaluation strategy→ in the λ-calculus, and
• a decoding (·)↓ of states ofM into terms,

M correctly implements→ via (·)↓ whenever (M,→, (·)↓) forms an

implementation system, i.e. whenever the following conditions are
fulfilled (where s and s ′ stand for generic states ofM):

(1) Initialization: there is an encoding · of terms such that t ↓ = t ;

(2) Principal projection: s {p s
′
implies s↓ → s ′

↓
;

(3) Overhead transparency: s {o s
′
implies s↓ = s

′
↓
;

(4) Determinism:{M is deterministic;

(5) Halt:M final states (to which no transition applies) decode

to→-normal terms;

(6) Overhead Termination:{o terminates.

Our notion of implementation, tuned towards complexity analy-

ses, requires a perfect match between the number of steps of the

strategy and the number of principal transitions of the execution.

Theorem 5.4 (Machine implementation, [8]). If a machine M,
a strategy→ on λ-terms and a decoding ·↓ form an implementation
system then:

(1) Executions to derivations: for any M-execution ρ : t {∗
M s

there is a→-derivation d : t →∗ s↓.
(2) Derivations to executions: for every →-derivation d : t →∗ u

there is anM-execution ρ : t {∗
M s such that s↓ = u.

(3) Principal matching: in both previous points the number |ρ |p
of principal transitions in ρ is exactly the length |d | of the
derivation d , i.e. |d | = |ρ |p.

The crumbling implementation system. The states of the Crum-

ble GLAM are crumbles. Its principal transitions are those labeled

with {βv , ift, iff, ife,@e}, while the overhead transitions are those

labeled with {subvar , subl , subif}. We can now show that the Crum-

ble GLAM, Pif evaluation→pif and the read-back (·)↓ form an im-

plementation system, that is, that the Crumble GLAM implements

the Pif calculus.

We are going to provide five of the six sufficient conditions

required by the implementation theorem (Thm. 5.4); the sixth one,

the termination of overhead transitions, is subsumed by the finer

complexity analysis in Subsect. 5.3.

The sufficient conditions, as usual, are proved by means of a few

invariants of the machine, given by Lemma 5.5 below. These invari-

ants are essentially the properties of the translation in Lemma 4.5

extended to all reachable crumbles. One of them—namely contex-
tual decoding—however, is weaker because reachable crumbles do

not necessarily have the same nice structure as the initial crumbles

obtained by translation of a term, as the next remark explains.

Remark 5.1. Even though not all crumble contexts unfold to con-

texts, crumble contexts obtained by decomposing crumbles given

by the translation of terms do (Lemma 4.5.5)—this is the contextual

decoding property. Unfortunately, it is not preserved by evaluation.

Consider the crumble c B (λx .x(xx)) I = ((λx .(xy, [y�xx]))I , ϵ)

with I = λz.(z, ϵ). Clearly, c = ⟨(λx .x(xx)) I ⟩ where ⟨·⟩↓ =

⟨·⟩ is a context. After one βv step, the crumble c reaches

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

(xy, [y�xx][x�I]) = C ⟨(I , ϵ)⟩ for C B (xy, [y�xx][x�⟨·⟩]). But

C unfolds to C↓ = ⟨·⟩(⟨·⟩⟨·⟩), which is not a λ-context.

Proof

p. 19 Lemma 5.5 (Invariants for the Crumble GLAM). For every
reachable crumble c in the Crumble GLAM:

(1) Freshness: c is well-named.
(2) Closure: fv(c) = ∅.
(3) Bodies: every body occurring in c is a subterm (up to renaming)

of the initial crumble.
(4) Weak contextual decoding: for every decompositionC ⟨(b, ev)⟩

where b is not a crumbled value, ifC ′′ is a prefix ofC thenC ′′
↓

is a right v-context.

Freshness and closure are invariants needed to ensure the basic

functioning of the machine. The bodies invariant corresponds to

what is often called subterm invariant: it is the key invariant for

complexity analyses, as it allows to bound the size of duplicated

subterms (that are always abstractions) using the size of the initial

term. Usually, it is only needed for complexity analyses, while here

it is needed for the implementation theorem too (namely, only for

the proof of the weak contextual decoding invariant). The weak

contextual decoding invariant is crucial to show that principal tran-

sitions of the Crumble GLAM project on evaluation steps in λifPlot.

Proof

p. 21 Theorem 5.6 (Implementation). Let c be a crumble reachable
by the Crumble GLAM.

(1) Initialization: t ↓ = t for every term t .
(2) Principal projection: if c →a d then c↓ →a d↓, for any rule

a ∈ {βv , ift, iff, ife,@e}.
(3) Overhead transparency: if c →a d then c↓ = d↓ for any rule

a ∈ {subvar , subl , subif}.
(4) Determinism: the transition →Cr is deterministic.
(5) Halt: if c is→Cr-normal then c↓ is→pif-normal.
(6) Overhead termination: →a terminates, for any rule a ∈

{subvar , subl , subif}.

Therefore, the Crumble GLAM, Pif evaluation →pif , and the read-
back (·)↓ form an implementation system.

5.3 Complexity for the closed case
To estimate the cost of the Crumble GLAM, we provide first an

upper bound on the number of overhead transitions—namely the

substitution ones subvar , subl , and subif—in an execution ρ as a

function of the number |ρ |p of principal transitions. Thenwe discuss
the cost of implementing single transitions. Last, by composing the

two analyses we obtain the total cost, that is linear in the number

of principal transitions and in the size of the initial term/crumble,

that is, the machine is bilinear.

Number of transitions: non-renaming substitutions. Let ρ : c0 →∗
Cr

c be an execution (i.e. a sequence of transitions) in the Crumble

GLAM and let |ρ |p, |ρ |subvar , |ρ |subl , |ρ |subif be the number of prin-

cipal, subvar , subl , and subif transitions in ρ, respectively. Clearly,
a subl transition can only be immediately followed by a βv or

a @e transition (since →Cr is deterministic), and so |ρ |subl ≤

|ρ |βv +|ρ |@e+1. Similarly, a subif transition is immediately followed

by a ift, a iff or a ife transition. Therefore, |ρ |subl + |ρ |subif ≤ |ρ |p+1.

Number of transitions: renaming steps. The analysis for |ρ |subvar
is subtler. A variable crumble is a crumble of the form (x, e). The
number of subvar transitions is bounded by the number of variable

crumbles out of bodies appearing in evaluation position along an

execution ρ : c0 →∗
Cr c . These can be due to the following reasons:

(1) Static: variable crumbles out of bodies in the initial state c0;

(2) Dynamic: variable crumbles obtained dynamically. In turn,

these are divided into (see also the discussion after Prop. 5.7):

(a) Copy: variable crumbles occurring in the bodies of abstrac-

tions and if-then-else (and thus frozen) that become active

because the construct is evaluated and the body exposed;

(b) Creation: variable crumbles that cannot be traced back to

variable crumbles appearing in prefixes of the execution.

We now show that the crumbling translation does not produce

any variable crumbles out of bodies, but one, if the original term is

itself a variable. Therefore, the contribution of point 1 is at most

1. We need a measure, counting variable crumbles out of bodies.

Note that a variable crumble (x, e) appearing in a crumble contextC
rather takes the form [y�x]e , which is why the following measure

counts the substitutions containing only a variable.

|b |var B 0 if b is not a variable

|x |var B 1 |(b, e)|var B |b |var + |e |var

|ϵ |var B 0 |e[x�b]|var B |e |var + |b |var .
Proof

p. 21Proposition 5.7. Let t be a term and v a value. Then:
(1) |t |var ≤ 1; and |t |var = 1 if and only if t is a variable;
(2) |v |var ≤ 1; and |v |var = 1 if and only if v is a variable.

Let us now discuss the variable crumbles of point 2.a (dynamic

copy). By the bodies invariant (Lemma 5.5.3), these pairs appear in a

body of the initial crumble. By the bodies property of the crumbling

translation (Lemma 4.5.4), all these bodies are the translation of a

term, and—by using Prop. 5.7 again—we obtain that each such body

contributes at most with one variable crumble. Since each body is

exposed by one→βv or→ift or→iff transition, we have that the

variable crumbles of point 2.a are bounded by |ρ |p.
Last, we bound the number of variable crumbles at point 2.b

(dynamic creation). There is only one rule that can create a new

variable crumble (and exactly one), namely →βv when the argu-

ment of the β-redex is a variable. For instance,

((λx .(xx, ϵ))y, [y�λz.z]) →βv (xx, [x�y][y�λz.z])

where the created variable crumble is (y, [y�λz.z]). Then the num-

ber of variable crumbles at point 2.b is bounded by the number of

→βv transitions, itself bounded by |ρ |p.
The following lemma sums up the previous discussions

Lemma 5.8. Let ρ : c0 →∗
Cr c be a Crumble GLAM execution.

(1) Linear number of non-renamings substitutions: |ρ |subl +
|ρ |subif ≤ |ρ |p + 1.

(2) Linear number of renamings: |ρ |subvar ≤ 2|ρ |p + 1.
(3) Linear number of substitutions: |ρ |subl + |ρ |subvar + |ρ |subif ≤

3|ρ |p + 2.

Cost of single transitions. Performing a single transition → in

the Crumble GLAM consists of four operations:

(1) Search: locating the next redex;

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

(2) Unplugging: splitting the crumble to be reduced into a crum-

ble contextC and the crumble c that is the redex at top level;

(3) Rewriting: applying a rewriting rule to the crumble c , obtain-
ing a new crumble d ;

(4) Plugging: putting the new crumble back into the crumble

context obtaining C ⟨d⟩.

The search for redexes is embedded into the definition of the

rules, via the contextual closure. The technical definition of plug-

ging and unplugging of crumbles into a crumble context is quite

involved and, if implemented literally, is not constant time.

To ease the reasoning, in this section we assume that search

and (un)plugging have negligible cost and show that the total cost

of rewriting is bilinear. In Section 7 we sketch a slight variant

of the Crumble GLAM, the Pointed Crumble GLAM, that adds a

transition for searching redexes and removes the need for plugging

and unplugging (details are in [?]). A further analysis of the Pointed

Crumble GLAM shows that the total cost of search and (un)plugging

is bilinear and thus negligible, justifying the results of this section.

Cost of single transitions: βv transitions. We denote by |t |, |c |,
|e | and |b | the size of terms, crumbles, environments and bites,

respectively, defined as follows:

|x | B 1 |tu | B |t | + |u | + 1

|true| = |false| B 1 |λx .t | B |t | + 1

|if t thenu else s | B |t | + |u | + |s | + 1 |err| B 1

|ϵ | B 0 |e[x�b]| B |e | + |b |

|(b, e)| B |b | + |e |.

The cost of each βv transition (that needs to perform a copy of the

crumble in the abstraction in order α-rename it) is bound by the

size of the copied crumble. By the bodies invariant (Lemma 5.5.3)

the abstraction is the α-renaming of one the abstractions already

present in the initial crumble. Therefore the cost of a βv transition is

bound by the size of the initial crumble. The next lemma shows that

the size of the initial crumble is linear in the size of the initial term

translating to the crumble. Therefore, the cost of a βv transition is

linear by the size of the initial term.

Proof

p. 21 Lemma 5.9 (Size of translated terms). Let t be a term and v a
value. Then |t | ≤ 5|t | and |v | ≤ 5|v |.

Cost of single transitions: substitutions. The cost of subl , subvar ,
and subif transitions depends on the choice of data structures for

implementing the machine. Following the literature on global en-

vironment machines [5], we assume the global environment to be

implemented as a store and variable occurrences to be implemented

as pointers into the store, so that lookup in the environment can be

performed in constant time on a Random Access Machine (RAM).

As for the cost of actually performing the replacement of x with

ev (x) in the subvar , subl and subif rules, it can be done in constant

time by copying the pointer to ev (x). This is possible because the
actual copy, corresponding to α-renaming, is done in the βv step.

Thus, single substitution transitions have constant cost.

Cost of single transitions: conditionals and errors. It is immediate

that—if one excludes plugging and unplugging—these transitions

have constant cost.

Terms t,u F . . . (as in λifPlot, see Figure 1)

Values v F . . . (as in λifPlot, see Figure 1)

Fireballs f F v | i
Inert terms i F x f | i f | if x then t elseu

| if i then t elseu
Right f-context R F ⟨·⟩ | tR | Rf | if R thenu else s

Reduction Rules at Top Level

(λx .t)i 7→βi t{x�i} 7→βv , 7→ift, 7→iff, 7→ife, 7→@e as in λifPlot

Contextual closure

R⟨t⟩ →a R⟨u⟩ if t 7→a u for a ∈ {βv , βi , ift, iff, ife,@e}

→βf B →βv ∪ →βi →cβf B
⋃
a∈{βf ,ift,iff,ife,@e} →a

Figure 2: The conditional fireball calculus λiffire.

Cost of executions. Summing up all the analyses in this section

we obtain the following theorem.

Proof

p. 22Theorem 5.10 (The Crumble GLAM is bilinear up to search

and (un)plugging). For any closed term t and any Crumble GLAM
execution ρ : t →∗

Cr c , the cost of implementing ρ on a RAM is
O((|ρ |p + 1) · |t |) plus the cost of plugging and unplugging.

OCaml implementation. In Section 7we sketch the Pointed Crum-

ble GLAM, a refinement of the Crumble GLAM making explicit

the search for redexes and removing the need for (un)plugging,

and having the same complexity: the cost for searching redexes and
(un)plugging is negligible. More details and an implementation in

OCaml of the Pointed Crumble GLAM can be found in the appen-

dix of [?], together with the code that implements the crumbling

translation. There we also discuss a parsimonious choice of data

structures for the implementation of pointed environments.

6 THE OPEN CASE
6.1 The Fireball Calculus
In this section we recall the fireball calculus λfire, the simplest

presentation of Open CbV, and extend it with conditionals. The

extension is completely modular. For the issues of Plotkin’s setting

with respect to open terms and for alternative presentations of

Open CbV, we refer the reader to Accattoli and Guerrieri [7, 9].

The fireball calculus was introduced without a name and studied

first by Paolini and Ronchi Della Rocca [27], Ronchi Della Rocca

and Paolini [29]. It has then been rediscovered by Grégoire and

Leroy [19] to improve the implementation of Coq, and later by

Accattoli and Sacerdoti Coen [10] to study cost models, where it

was also named. We present it following Accattoli and Sacerdoti

Coen [10], changing only inessential, cosmetic details.

The fireball calculus. The conditional fireball calculus λiffire is

defined in Fig. 2. The conditional part is exactly as in the closed

case. The idea is that the values of the Pif calculus are generalized

to fireballs, by adding inert terms. Fireballs (noted f) and inert

terms (noted i) are defined by mutual induction (in Fig. 2). For

instance, x and λx .y are fireballs as values, while y(λx .x), xy, and
(z(λx .x))(zz)(λy.(zy)) are fireballs as inert terms.

The main feature of inert terms is that they are open, normal, and

that when plugged in a context they cannot create a redex, hence

the name “inert”. Essentially, they are the neutral terms of Open

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

CbV. In Grégoire and Leroy’s presentation [19], inert terms are

called accumulators and fireballs are simply called values. Variables

are, morally, both values and inert terms. In Accattoli and Sacerdoti

Coen [10] theywere considered as inert terms, while here, for minor

technical reasons we prefer to consider them as values and not as

inert terms—the change is inessential.

Evaluation rules. First, CbV β-reduction is replaced by call-by-
fireball β-reduction→βf : the β-rule can fire, lighting the argument,

only if the argument is a fireball (fireball is a catchier version of

fire-able term). We actually distinguish two sub-rules: the usual

one that lights values, noted →βv , and a new one that lights inert
terms, noted→βi (see Fig. 2). Second, we include all the rules about

conditionals and errors, exactly as before, obtaining the evaluation

relation→cβf . Note that evaluation is weak: it does not reduce in
abstraction nor if-then-else bodies.

We endow the calculus with the (deterministic) right-to-left eval-

uation strategy, defined via right f-contexts R—note the production
Rf , forcing the right-to-left order. A more general calculus (without

conditionals) is defined in Accattoli and Guerrieri [7], for which

the right-to-left strategy is shown to be complete. We omit details

about the rewriting theory of the fireball calculus because our focus

here is on implementations.

Example 6.1. Wehave (λz.z(yz))(λx .x) →βf (λx .x)(y (λx .x)) →βf
y (λx .x), where the final term y (λx .x) is a fireball (and βf -normal).

Properties. As discussed in Sect. 5, Closed CbV enjoys harmony

(Prop. 2.1). The fireball calculus λfire satisfies an analogous property

in the open setting by replacing abstractions with fireballs; we

here further extend it to conditionals (Prop. 6.2.1 below). The key

property of inert terms is summarized by Prop. 6.2.2: substitution

of inert terms does not create or erase cβf -redexes, and hence can

always be avoided. It plays a role in the design of the open abstract

machine of the next section.

Proof

p. 25

Proposition 6.2 (Properties of λiffire). Let t,u be terms.

(1) Open harmony: t is cβf -normal if and only if t is a fireball.
(2) Inert substitutions and evaluation commute: Let i be an inert

term. Then t →cβf u if and only if t{x�i} →cβf u{x�i}.

6.2 The Open Crumble GLAM
Here we extend the Crumble GLAM defined in Sect. 5 to the case of

open terms, implementing Open (Conditional) CbV, i.e. the condi-
tional fireball calculus λiffire: in this way we obtain theOpen Crumble
GLAM. The extension impacts on the core λ-calculus, while condi-
tionals are essentially orthogonal to the issues of open terms.

Evaluated environments. First, we need to discuss the environ-

ments under which evaluation takes place. In the open case, v-
crumbles and v-environments generalize to f -crumbles and f -
environments, and are denoted as follows:

f -crumbles: cf f -environments: ef

Recall that in the Crumble GLAM the already evaluated coda of

the environment is made out only of practical values. Unfortunately,

a syntactic characterization of f -environments (and f -crumbles) is

more involved than the simple definition of v-environments.

In the Crumble GLAM, to check whether a bite b is in nor-

mal form with respect to a v-environment ev , it suffices to check

whether b is a practical value. In the open case, looking at the syn-

tactic structure of the term is not enough: some applications are

now normal, for example the bite y x is normal with respect to

the environment e B [x�I], but not all of them are normal, for

instance (x y, [x�I]) →subl (I y, [x�I]) as in the closed case (exact

definitions are given below). Because of this additional complica-

tion, we are going to define f -environments directly in terms of

their ’semantics’, i.e. of their read-back to terms. Intuitively, fully

evaluated f -environments should correspond to substitutions of

fully evaluated terms in λiffire. And since by harmony normal forms

in λiffire are simply fireballs, it suffices to request that the read-back

of every entry in a f -environment is a fireball.

Let us now define f -environments formally: ef is a f -environment
(resp. cf is a f -crumble) if for any environment context E (resp. any

crumble context C) and any crumble c such that ef = E⟨c⟩ (resp.
cf = C ⟨c⟩) the following two conditions hold:

(1) Read-back to fireballs: c↓ is a fireball, and
(2) Unchaining practical values: if c↓ is a practical value, then

c = (v, e) for some practical value v and some e .

The second requirement forbids v to be a variable and is crucial

for capturing the correct behavior of the substitution rule →subvar ,

which removes the malicious chains of substitutions (of variables

for variables) discussed in Sect. 5.

Transitions. The transitions of the Open Crumble GLAM:

((λx .c)v, ef) 7→βf (c @ [x�v])α @ ef

(if true then c elsed, ef) 7→ift c @ ef

(if false then c elsed, ef) 7→iff d @ ef

(ifv then c elsed, ef) 7→ife (err, ef) (1)

(vw, ef) 7→@e (err, ef) (2)

(x, ef) 7→subvar (ef (x), ef) (3)

(xv, ef) 7→subl (ef (x)v, ef) (3)

(if x then c elsed, ef) 7→subif (if ef (x) then c elsed, ef) (3)

(1) if v = λx .e or v = err
(2) if v ∈ {true, false, err}
(3) if x ∈ dom(ef)

Top level transitions are then closed by crumble con-

texts by setting C ⟨c⟩ →a C ⟨d⟩ if c 7→a d for a ∈

{βv , subvar , subl , subif, ift, iff, ife,@e}. The transition rela-

tion→oCr of the Open Crumble GLAM is defined as the union of

all these rules. A principal transition of the Open Crumble GLAM

is a transition→a for any rule a ∈ {βf , ift, iff, ife,@e}.
There are only two differences with the transitions of the Crum-

ble GLAM. First,→βv is now noted 7→βf and yet it is identical to

the one in the closed case (the comments about α-renaming given

in Sect. 5 still hold). This is because there is a subtle difference: the

argument of the β-redex may be a variable (which is a value) sub-

stituted by a inert term in the environment, thus becoming a→βi
step (and not a →βv step) when read-back in λiffire. Second, there is
a slightly different side condition for the substitution transitions: it

requires not only that a variable is defined in ef (like in the closed

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

case), but also that the corresponding term in the environment is a

practical value (and not an inert term nor a variable).

Note that the substitution transitions substitute values only. The

environment ef may contain also bites that are variables or appli-

cations, but these bites are not substituted: this choice is justified

by the property of λiffire stated in Prop. 6.2.2. Besides, avoiding the

substitution of inert terms is a prerequisite for efficiency of the

machine, that would otherwise be subjected to an exponential over-

head due to size explosion, see for example Accattoli and Guerrieri

[8], Accattoli and Sacerdoti Coen [10].

The harmony between evaluation rules and the syntactic defini-

tion of normal forms is witnessed by the following property.

Proof

p. 27 Proposition 6.3 (Harmony for the Open Crumble GLAM).

A crumble c is oCr-normal if and only if it is a f -crumble.

Example 6.4. Recall that δ = (λx .xx, ϵ). In Example 5.2 we noted

that the (open) crumble δδ (xx) was stuck in the Crumble GLAM.

Now instead it correctly reduces, never reaching a normal form:

δδ (xx) = (zw, [z�δ δ][w�xx])

→βv (zw, [z�yy][y�δ][w�xx])

→subl (zw, [z�δ y][y�δ][w�xx]) → · · ·

Implementation Theorem. The proof of the implementation theo-

rem for the Open Crumble GLAM follows the same structure as for

the Crumble GLAM in Subsect. 5.2, relying on similar but subtler

invariants that can be found in the appendix of [?].
Proof

p. 29 Theorem 6.5 (Implementation). Let c be a crumble that is reach-
able by the Open Crumble GLAM.

(1) Initialization: t ↓ = t

(2) Principal projection: if c →a d then c↓ →a d↓ for a ∈

{βf , ift, iff, ife,@e}.
(3) Overhead transparency: if c →a d then c↓ = d↓ for any rule

a ∈ {subvar , subl , subif}.
(4) Determinism: the transition →oCr is deterministic.
(5) Halt: if c is→oCr-normal then c↓ is →cβf -normal.
(6) Overhead termination: →a terminates, for any rule a ∈

{subvar , subl , subif}.
Therefore, the Open Crumble GLAM, the right-to-left conditional fire-
ball evaluation→cβf and the read-back (·)↓ form an implementation
system.

Complexity. The complexity analysis is identical to the one

in Subsect. 5.3. Indeed, once the search for the next redex and

(un)plugging are neglected, the two machines only differ by the

additional O(1) side condition for the substitution transitions.

Theorem 6.6 (The Open Crumble GLAM is bilinear up to

search and (un)plugging). For any term t and any Open Crumble
GLAM execution d : t →∗

oCr c , the cost of implementing ρ on a RAM
is O((|ρ |p + 1) · |t |) plus the cost of plugging and unplugging.

OCaml implementation. Following the same pattern of the closed

case, in Section 7 we introduce a machine making explicit the search

for redexes and removing the need of (un)plugging, so as to show

that their cost is negligible. The OCaml code implementing this

further machine is in the appendix of [?], along with a detailed

discussion of the adopted data structures. The code for the open and

closed machines is identical but for five lines: three implement the

additional check for practical values in the substitution transitions,

the others consider also inert terms in the search transition.

7 THE (OPEN) POINTED CRUMBLE GLAM
In the abstract machines considered so far the search for the next re-
dex is implicit in definition of the evaluation rules, as it corresponds

to applying rules to crumbles with already evaluated environments

and to factoring out the crumble context.

Here we sketch how to make the search explicit by introducing

a variant of the Crumble GLAM called Pointed Crumble GLAM.

The new search transitions have constant cost and the machine is

bilinear—the detailed study is in the appendix of [?].

Pointed crumbles and pointed environments. The key idea behind

the Pointed Crumble GLAM is to avoid (un)plugging in the rules

by letting them act on pointed crumbles, i.e. on crumbles where

a pointer marks explicitly the dividing point between the evalu-

ated coda and the crumbled term of the currently active crum-

ble. A pointed crumble (b, e[x�b ′] ¦ ev) represents the crumble

C ⟨(b ′, ev)⟩, whereC = (b, e[x�⟨·⟩]) is the crumble context, (b ′, ev)
is the active crumble, and ev is the evaluated coda. If (b ′, ev) is
a Crumble GLAM a-redex (for rule a ∈ {βv , subvar , subl }), the
Pointed Crumble GLAM shall reduce according to the correspond-

ing a-transition that also takes care of setting (in O(1)) the pointer
to the rightmost unevaluated crumble. Otherwise, by harmony

(Prop. 5.3), b ′ must be a crumbled value v and therefore the pointer

is moved (in O(1)) one step to the left, looking for the next redex,

via the search transition (b, e[x�v]¦ev) →sea (b, e ¦ [x�v]ev).
Unfortunately, there is an annoying technical issue. Not all

pointed configurations are of the form (b, [x�b ′] ¦ ev): the con-

figurations (b,¦ ev) must be also taken into account and reduced

if b is not a crumbled value. However, there is no simple way to

describe transitions that act uniformly on configurations (b,¦ev)
and (b, e[x�b ′]¦ev) without duplicating the rules or without re-

introducing a notion of contextual closure. To solve the issue, we

abandon pointed crumbles and adopt pointed environments instead.

A pointed environment ([x�b]e ¦ev) is just a representation of

a pointed crumble (b, e ¦ev). The leftmost variable x in a pointed

environment can be understood as the name given to the machine

output. It plays a role similar to the outermost λ-abstraction intro-

duced by CPS translations, that binds the continuation that is fed

with the output of the evaluation. In particular, a normal pointed

environment (¦ [x�v]ev) represents the normal crumble (v, ev).

Formal definition of pointed environments and transitions. Pointed
environments are defined as e¦B e ¦e ′ for any non-pointed envi-

ronments e and e ′ where at least one among e or e ′ is non-empty.

The translation ι(·) embeds crumbles into pointed environments:

ι(b, e) B [x�b]e¦ϵ , where x is any variable fresh in b and e .
The transition rules of the Pointed Crumble GLAM are:

e[x�(λy.c)v]¦ev →βv e[x�b]e ′[z�v]¦ev (i)

e[y�x]¦ev →subvar e[y�ev (x)]¦ev (ii)

e[y�xv]¦ev →subl e[y�ev (x)v]¦ev (ii)

e[x�b]¦ev →sea e ¦ [x�b]ev (iii)

where (we omitted the rules for conditionals, for the sake of brevity)

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

i. λz.(b, e ′) B (λy.c)α with (e[x�b]e ′[z�v]¦ev) well-named;

ii. if x ∈ dom(ev);
iii. if none of the other rules is applicable, i.e. when b is an abstrac-

tion or when b is x or xv but x is not defined in ev .

In the appendix of [?], we prove that the Pointed Crumble GLAM

simulates the Crumble GLAM following exactly the same schema

already used in the paper, namely they form an implementation

system. We also provide the complexity analysis, and smoothly lift

everything to the open case, by studying the Open Pointed Crumble
GLAM (which simulates the Open Crumble GLAM and whose tran-

sition function is noted→poCr). We obtain the following result, that

sums up the study in this paper (Point 2 is a corollary of Point 1).

Theorem 7.1 (TheOpen (Pointed) Crumble GLAM is bilinear).

Let t be a term.

(1) for any Open Pointed Crumble GLAM execution ρ : ι(t) →∗
poCr

e¦, the cost of implementing ρ on a RAM is O((|ρ |p + 1) · |t |).
(2) for any Open Crumble GLAM execution ρ : t →∗

oCr c , the cost
of implementing ρ on a RAM is O((|ρ |p + 1) · |t |).

8 EXTENSIONS
Left-to-right CbV. The (right-to-left) Crumble GLAM can also

implement a left-to-right strategy for the Pif calculus. The only

change concerns the crumbling transformation, that on applications

has to put the environment coming from the (transformation of the)

left subterm on the right of the one coming from the right subterm.

Call-by-need. The crumbling technique applies also to call-by-

need machines. There are however a few differences. First, the

machine does no longer explore sequentially the environment from

right-to-left, it rather starts on the left and then jumps back and

forth, by need. Then the definition of evaluation contexts is trickier,

especially in the open case.

Strong CbV. Simply designing an abstract machine for strong

reduction is relatively easy. However the easy machines are not

bilinear, and not even polynomial.

The needed optimizations to make them reasonable (i.e. polyno-

mial or bilinear) are clear, they are the same at work in the open

case (or in the call-by-name case):

(1) substitute only abstraction and not inert terms, and

(2) do not substitute abstractions on variable occurrences that

are not applied.

These principles however have different consequences in different

settings. In particular, (2) implies that some abstraction are kept

shared forever, and a strong CbV approach has to evaluate them

(while the open setting does not) and only once, thus it has to

evaluate them while they are shared, adding a call-by-need flavor.

There are two difficulties. First, the specification of the search

for redexes, that becomes involved and requires many machine

transitions—the crumbling technique is meant to help here. Second,

the proof of correctness of the machine.

All proofs of correctness in the literature (including those in

this paper) are simulations up to sharing based on a bijection of

β-redexes (or principal steps) between the abstract machine and

the λ-calculus strategy (one half of the bijection is the principal

projection property of implementation systems in Section 5.2, the

other half is implied by the other properties).

The evaluation under shared abstraction required by CbV strong

evaluation breaks the usual bijection of β-redexes (as one β-
transition of themachine is mapped tomany β-steps on the calculus,
and not necessarily those of a standard strategy), thus forbidding

to employ the standard technique for proving correctness.

The new proof technique for correctness for reasonable strong

CbV and the intricacies of the search for redexes in the strong case,

do deserve to be studied carefully, and are thus left to future work.

9 COMMENTS ON RELATEDWORKS
Here we discuss Kennedy’s potential slowdown and provide a coun-

terexample to the scalability of the CPS translation to open terms.

Kennedy. Kennedy [21] compares three different calculi: a

monadic calculus, which has ES, a calculus of administrative nor-

mal forms (ANFs) and the image of a CPS transformation. In the

monadic calculus βv -redexes can be hidden by ES which need to

be commuted to reveal the βv -redex. Kennedy shows an example

(see Fig. 3) where the number of commutations is not bounded

linearly by the number of βv -steps and blames the inefficiency of

his compiler on that. In his example, the number of commutations

is quadratic in the number of βv -steps, since the ith βv -step is

immediately followed by i commutation steps.

ANFs are just canonical shapes of monadic terms where the top-

most term and the body of each abstraction is a crumble, i.e. a term
together with a list of ES that map variables to terms (instead of

crumbles). Kennedy rightly observes that ANFs are not preserved

by standard βv -reduction, and thus, after each βv -step, some com-

mutative steps are required to reach the ANF shape. Kennedy too

hastily concludes that the quadratic blowup also affects the ANF

calculus, since its quadratic example stands in the ANF fragment.

However, Kennedy misses the fact that the ES in ANFs form a

list and that the commutations steps altogether just implement the

append of two lists. Since append can be implemented in constant

time, the complexity of evaluation in the ANF calculus is just linear

(and not quadratic) in the number of βv -steps. This is the same

complexity we achieved for the Crumble and Open Crumble GLAM.

Danvy and Filinski. In Danvy and Filinski [16] the CPS trans-

formation is shown to scale up to open terms (their Theorem 2).

On open terms, however, they consider Plotkin’s CbV operational

semantics λPlot, which is not adequate (it is adequate only for closed
terms, see Accattoli and Guerrieri [7, 9] and ?]). When one consid-

ers one of the equivalent adequate CbV semantics in Accattoli and

Guerrieri [7, 9] for the open case, for instance the fireball calculus

λfire, then the properties of the CPS no longer hold, in particular

it does not commute with evaluation, as the following example

shows. Take the following open term t B (λx .λy.y)(zz)v , where
v is a value, say a distinguished variable. In λPlot the term t is
βv -normal, but in λfire we have:

t B (λx .λy.y)(zz)v →βf (λy.y)v →βf v

Now, consider the CPS translation cps(t) of t , according to the

definition in Danvy and Filinski [16]. We use λ for standard (“dy-

namic”, in Danvy’s terminology) abstraction, and Λ and @ for

“static” abstraction and “static” prefix application, respectively. If a

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

t B (z1x0)[z1�λx1.by1[y1�z2x1]][z2�λx2.by2[y2�z3x2]] . . . [zn�λxn .byn [yn�bxn]]

(→βv →
let
) (→βv→

2

let
) · · · (→βv→

i
let
)

(z1x0)[z1�λx1.by1[y1�z2x1]][z2�λx2.by2[y2�z3x2]] . . .

. . . [zn−i−1�λxn−i−1.byn−i−1[yn−i−1�zn−ixn−i−1]][zn−i�λxn−i .byn−i [yn−i�byn−i+1][yn−i+1�byn−i+2] . . . [yn�bxn−i]]

→βv
(z1x0)[z1�λx1.by1[y1�z2x1]][z2�λx2.by2[y2�z3x2]] . . .

. . . [zn−i−1�λxn−i−1.byn−i−1[yn−i−1�byn−i [yn−i�byn−i+1][yn−i+1�byn−i+2] . . . [yn�bxn−i−1]]]

→i+1

let

(z1x0)[z1�λx1.by1[y1�z2x1]][z2�λx2.by2[y2�z3x2]] . . .

. . . [zn−i−1�λxn−i−1.byn−i−1[yn−i−1�byn−i][yn−i�byn−i+1] . . . [yn�bxn−i−1]]

Figure 3: Kennedy’s example of evaluation in the monadic calculus where the number of commutation steps is quadratic in
the number of βv -steps (→i stands for the composition of i →-steps). The ith βv -step (which can reduce under abstractions)
is immediately followed by i commutation steps →let that just append two lists of substitutions moving one substitution at
a time. Thus, to reach a normal form one needs n βv -steps and n(n + 1)/2 let-steps. In the Crumble and Open Crumble GLAM
instead, the commutation steps are integrated in the βv -rule simply by appending the two lists in constant time.

generalized version of Theorem 2 in Danvy and Filinski [16] held in

the open case, one would expect that @(cps(t))I (where I B λz.z)
evaluates to v , as v is a value. But, even using an unrestricted β-
reduction that goes under abstraction as evaluation, we obtain (we

reduce all static redexes first, followed by all dynamic redexes):

@(cps(t))I

= (Λk .@(Λx .@(Λy.@y(λw .λa.@(Λb .@b(λc .λd .@(Λe .@ec)(Λe .de)))

(Λb .ab)))(Λy.@(Λj .@(Λa.@az)(Λa.@(Λb .@bz)(Λb .(ab)(λc .@jc))))

(Λw .(yw)(λa.@xa))))(Λx .@(Λy.@yv)(Λy.(xy)(λw .@Kw))))I

→∗
β (zz)(λx .((λy.λw .w(λa.λb .ba))x)(λy.yv(λw .Iw)))

→∗
β (zz)(λx .v)

where (zz)(λx .v) is not even β-equivalent tov . The CPS translation—
like Plotkin’s calculus—gets stuck trying to evaluate zz, whereas
the term reduces to v in the fireball calculus.

Summing up, we are not claiming that Theorem 2 in Danvy and

Filinski [16] is false, but just that it does not mean that their CPS

transformation scales up to open terms: to prove scalability, one

should use an adequate CbV evaluation for open terms (such as the

one of the fireball calculus), instead of Plotkin’s one. Our counter-

example shows that Danvy’s and Filinski’s CPS does not scale up to

open terms with an adequate CbV operational semantics for them.

This problem affects also other CPS translations, such as the

ones defined by Plotkin [28] or by Lassen [23]. Likely, this is the

reason why Lassen [23] states his Theorem 4.6 (the analogous of

Theorem 2 in Danvy and Filinski [16]) only for closed terms.

10 CONCLUSIONS
This paper studies abstract machines working on crumbled forms

with respect to design, efficiency, scalability, and implementations,

putting emphasis on the role played by environments and provid-

ing a detailed technical development. In particular, we study the

crumble setting on top of global environments—in future work we

would like to explore the more technical case of local environments.

At the level of design, switching to crumbled forms removes the

need for machine data structures such as the applicative stack or

the dump, as they are encoded in crumbled environments.

At the level of efficiency, the evaluation of crumbled forms does

not require any overhead: crumble abstract machines are linear in

the number of steps of the calculus and in the size of the initial term,

exactly as ordinary abstract machines with global environments.

At the level of scalability, everything—including the complexity—

smoothly scales up from the closed case, relevant for programming

languages, to the more delicate case of open terms, needed to imple-

ment proof assistants. As shown in Section 9, CPS translations do

not smoothly scale up to the open case (contrary to what claimed

by Danvy and Filinski [16]), so that our work shows an advantage

of the crumbling transformation in this setting.

At the level of implementations, we stress the different opera-

tions on crumbled environments (sequential access and concate-

nation) and provide a concrete implementation, which does not

suffer from the potential slowdown of crumbled forms pointed out

by Kennedy [21] (see Section 9).

In future work we plan to apply our results to the design of

abstract machines for strong call-by-value and call-by-need eval-

uation. Preliminary results suggest that the simplification to the

code noticed in the open case is preserved and even amplified in

the harder case of strong evaluation.

Acknowledgments. This work has been partially funded by the

ANR JCJC grant COCA HOLA (ANR-16-CE40-004-01) and by the

EPSRC grant EP/R029121/1 “Typed Lambda-Calculi with Sharing

and Unsharing”.

REFERENCES
[1] Beniamino Accattoli. 2012. An Abstract Factorization Theorem for Explicit Substi-

tutions. In 23rd International Conference on Rewriting Techniques and Applications,
RTA 2012 (LIPIcs), Vol. 15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

6–21. https://doi.org/10.4230/LIPIcs.RTA.2012.6

[2] Beniamino Accattoli. 2016. The Useful MAM, a Reasonable Implementation

of the Strong λ-Calculus. In Logic, Language, Information, and Computation -

https://doi.org/10.4230/LIPIcs.RTA.2012.6

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

23rd International Workshop, WoLLIC 2016 (Lecture Notes in Computer Science),
Vol. 9803. Springer, 1–21. https://doi.org/10.1007/978-3-662-52921-8_1

[3] Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. 2014. Distilling

abstract machines. In 19th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2014. ACM, 363–376. https://doi.org/10.1145/2628136.2628154

[4] Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. 2015. A Strong

Distillery. In Programming Languages and Systems - 13th Asian Symposium,
APLAS 2015 (Lecture Notes in Computer Science), Vol. 9458. Springer, 231–250.
https://doi.org/10.1007/978-3-319-26529-2_13

[5] Beniamino Accattoli and Bruno Barras. 2017. Environments and the Complexity

of Abstract Machines. In 19th International Symposium on Principles and Practice
of Declarative Programming, PPDP 2017. ACM, 4–16. https://doi.org/10.1145/

3131851.3131855

[6] Beniamino Accattoli and Ugo Dal Lago. 2016. (Leftmost-Outermost) Beta Re-

duction is Invariant, Indeed. Logical Methods in Computer Science 12, 1 (2016).
https://doi.org/10.2168/LMCS-12(1:4)2016

[7] Beniamino Accattoli and Giulio Guerrieri. 2016. Open Call-by-Value. In Program-
ming Languages and Systems - 14th Asian Symposium, APLAS 2016 (Lecture Notes
in Computer Science), Vol. 10017. Springer, 206–226. https://doi.org/10.1007/978-

3-319-47958-3_12

[8] Beniamino Accattoli and Giulio Guerrieri. 2017. Implementing Open Call-by-

Value. In Fundamentals of Software Engineering - 7th International Conference,
FSEN 2017 (Lecture Notes in Computer Science), Vol. 10522. Springer, 1–19. https:

//doi.org/10.1007/978-3-319-68972-2_1

[9] Beniamino Accattoli and Giulio Guerrieri. 2018. Types of Fireballs. In Program-
ming Languages and Systems - 16th Asian Symposium, APLAS 2018 (Lecture Notes
in Computer Science), Vol. 11275. Springer, 45–66. https://doi.org/10.1007/978-3-

030-02768-1_3

[10] Beniamino Accattoli and Claudio Sacerdoti Coen. 2015. On the Relative Use-

fulness of Fireballs. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015. IEEE Computer Society, 141–155. https://doi.org/10.1109/

LICS.2015.23

[11] Beniamino Accattoli and Claudio Sacerdoti Coen. 2017. On the value of variables.

Information and Computation 255 (2017), 224–242. https://doi.org/10.1016/j.ic.

2017.01.003

[12] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip

Wadler. 1995. The Call-by-Need Lambda Calculus. In 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL’95. ACM Press, 233–

246. https://doi.org/10.1145/199448.199507

[13] Pierre Crégut. 1990. An Abstract Machine for Lambda-Terms Normalization. In

LISP and Functional Programming. 333–340. https://doi.org/10.1145/91556.91681

[14] Olivier Danvy. 1994. Back to Direct Style. Science of Computer Programming 22,

3 (1994), 183–195. https://doi.org/10.1016/0167-6423(94)00003-4

[15] Olivier Danvy. 2003. A New One-Pass Transformation into Monadic Normal

Form. In Compiler Construction, 12th International Conference, CC 2003 (Lecture
Notes in Computer Science), Vol. 2622. Springer, 77–89. https://doi.org/10.1007/3-

540-36579-6_6

[16] Olivier Danvy and Andrzej Filinski. 1992. Representing Control: A Study of the

CPS Transformation. Mathematical Structures in Computer Science 2, 4 (1992),
361–391. https://doi.org/10.1017/S0960129500001535

[17] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The

essence of compiling with continuations (with retrospective). In 20 Years of the
ACM SIGPLAN Conference on Programming Language Design and Implementation
1979-1999, A Selection, PLDI 1993. ACM, 502–514. https://doi.org/10.1145/989393.

989443

[18] Álvaro García-Pérez, Pablo Nogueira, and Juan JoséMoreno-Navarro. 2013. Deriv-

ing the full-reducing Krivine machine from the small-step operational semantics

of normal order. In 15th International Symposium on Principles and Practice of
Declarative Programming, PPDP’13. ACM, 85–96. https://doi.org/10.1145/2505879.

2505887

[19] Benjamin Grégoire and Xavier Leroy. 2002. A compiled implementation of strong

reduction. In Proceedings of the Seventh ACM SIGPLAN International Conference
on Functional Programming, ICFP ’02. ACM, 235–246. https://doi.org/10.1145/

581478.581501

[20] John Hatcliff and Olivier Danvy. 1994. A Generic Account of Continuation-

Passing Styles. In 21st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1994. ACM Press, 458–471. https://doi.org/10.1145/

174675.178053

[21] Andrew Kennedy. 2007. Compiling with continuations, continued. In Proceedings
of the 12th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2007. ACM, 177–190. https://doi.org/10.1145/1291151.1291179

[22] Arne Kutzner and Manfred Schmidt-Schauß. 1998. A Non-Deterministic Call-

by-Need Lambda Calculus. In Third ACM SIGPLAN International Conference on
Functional Programming, ICFP 1998. ACM, 324–335. https://doi.org/10.1145/

289423.289462

[23] Søren B. Lassen. 2005. Eager Normal Form Bisimulation. In 20th IEEE Symposium
on Logic in Computer Scienc, LICS 2005. IEEE Computer Society, 345–354. https:

//doi.org/10.1109/LICS.2005.15

[24] John Launchbury. 1993. A Natural Semantics for Lazy Evaluation. In Twentieth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1993. ACM Press, 144–154. https://doi.org/10.1145/158511.158618

[25] JohnMaraist, Martin Odersky, and PhilipWadler. 1998. The Call-by-Need Lambda

Calculus. Journal of Functional Programming 8, 3 (1998), 275–317.

[26] Eugenio Moggi. 1991. Notions of Computation and Monads. Information and
Computation 93, 1 (1991), 55–92. https://doi.org/10.1016/0890-5401(91)90052-4

[27] Luca Paolini and Simona Ronchi Della Rocca. 1999. Call-by-value Solvability.

ITA 33, 6 (1999), 507–534. https://doi.org/10.1051/ita:1999130

[28] Gordon D. Plotkin. 1975. Call-by-Name, Call-by-Value and the lambda-Calculus.

Theoretical Computer Science 1, 2 (1975), 125–159. https://doi.org/10.1016/0304-

3975(75)90017-1

[29] Simona Ronchi Della Rocca and Luca Paolini. 2004. The Parametric λ-Calculus – A
Metamodel for Computation. Springer. https://doi.org/10.1007/978-3-662-10394-4

[30] Amr Sabry and Matthias Felleisen. 1993. Reasoning about Programs in

Continuation-Passing Style. Lisp and Symbolic Computation 6, 3-4 (1993), 289–

360.

[31] Peter Sestoft. 1997. Deriving a Lazy Abstract Machine. Journal of Functional
Programming 7, 3 (1997), 231–264.

[32] Christopher P.Wadsworth. 1971. Semantics and pragmatics of the lambda-calculus.
PhD Thesis. Oxford. Chapter 4.

https://doi.org/10.1007/978-3-662-52921-8_1
https://doi.org/10.1145/2628136.2628154
https://doi.org/10.1007/978-3-319-26529-2_13
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-319-68972-2_1
https://doi.org/10.1007/978-3-319-68972-2_1
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1109/LICS.2015.23
https://doi.org/10.1109/LICS.2015.23
https://doi.org/10.1016/j.ic.2017.01.003
https://doi.org/10.1016/j.ic.2017.01.003
https://doi.org/10.1145/199448.199507
https://doi.org/10.1145/91556.91681
https://doi.org/10.1016/0167-6423(94)00003-4
https://doi.org/10.1007/3-540-36579-6_6
https://doi.org/10.1007/3-540-36579-6_6
https://doi.org/10.1017/S0960129500001535
https://doi.org/10.1145/989393.989443
https://doi.org/10.1145/989393.989443
https://doi.org/10.1145/2505879.2505887
https://doi.org/10.1145/2505879.2505887
https://doi.org/10.1145/581478.581501
https://doi.org/10.1145/581478.581501
https://doi.org/10.1145/174675.178053
https://doi.org/10.1145/174675.178053
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1145/289423.289462
https://doi.org/10.1145/289423.289462
https://doi.org/10.1109/LICS.2005.15
https://doi.org/10.1109/LICS.2005.15
https://doi.org/10.1145/158511.158618
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1007/978-3-662-10394-4

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

TECHNICAL APPENDIX
A PROOFS OF SECT. 2 (PIF CALCULUS)

Proof of (Prop. 2.1). Let t be a closed term. t is→pif-normal if
and only if t is a value.

Proof.

(⇒) Proof by induction on the structure of t .
• Case t value: trivial.
• Case t = us for some terms u and s: we show that this

case is not possible by deriving a contradiction. Since t is
→pifnormal, then s is→pifnormal, and hence by i.h. s is a
value. Since t is→pifnormal and s is a value, then also u
must be →pifnormal, and hence a value. We proceed by

cases on u, showing that no case is possible. u cannot be a

variable, because t is closed; it cannot be an abstraction

(because otherwise the rule →βv may be applied, contra-

dicting the hypothesis that t is →pifnormal); it cannot be

a boolean or err (because otherwise the rule→@e may be

applied).

• Case t = if u then s else r for some terms u, s, r : we show
that this case is not possible by deriving a contradiction.

Since t is →pifnormal, then u is →pifnormal, and hence

by i.h. u is a value. We proceed by cases on u, showing
that no case is possible. u cannot be a variable, because

t is closed; it cannot be an abstraction or err (because
otherwise the rule→ife may be applied, contradicting the

hypothesis that t is→pifnormal); it cannot be a boolean

(because otherwise one of the rules→ift or→iff may be

applied).

(⇐) By hypothesis, t is a value. We proceed by cases on t . t
cannot be a variable, because by hypothesis t is closed. If t
is an abstraction, then it is →pifnormal since →pif does not

reduce under λ’s. Otherwise t is a either a boolean or err,
which clearly are→pifnormal.

□

Lemma A.1 (Composition of right v-contexts). Let R and R′

be right v-contexts. Then their composition R⟨R′⟩ is a right v-context.

Proof. By induction on the right v-context R. Cases:

• Hole, i.e. R B ⟨·⟩: then, R⟨R′⟩ = R′
is a right v-context by

hypothesis.

• Right, i.e. R B tR′′
: then, R⟨R′⟩ = tR′′⟨R′⟩ is a right v-

context because R′′⟨R′⟩ is a right v-context by i.h.
• Left, i.e.R B R′′v : then,R⟨R′⟩ = R′′⟨R′⟩v is a right v-context

because R′′⟨R′⟩ is a right v-context by i.h.
• if-then-else, i.e. R B (if R′′ then t elseu): then, R⟨R′⟩ =

(if R′′⟨R′⟩ then t elseu) is a right v-context because R′′⟨R′⟩

is a right v-context by i.h. □

B PROOFS OF SECT. 4 (PRELIMINARIES)
Lemma B.1. Let e B [x1�b1] . . . [xn�bn] a well-named environ-

ment. If fv(ti) ∩ {x1, . . . , xi } = ∅ for all 1 ≤ i ≤ n, then fv(e) =⋃n
i=1

fv(bi)∖ dom(e) and fv((b, e)) = (fv(b) ∪ fv(e))∖ dom(e).

Definition B.2 (Disjointedness). Let P and P ′ be two crumbles

or environments: P and P ′ are disjoint (noted P # P ′) if fv(P) ∩
dom(P ′) = ∅.

Definition B.3 (Composition of crumble contexts). It is also possible
to plug a crumble context C ′

into another crumble context C , as
follows:

C ⟨C ′⟩ B

C if C ′ = ⟨·⟩

C ′
if C = ⟨·⟩

(b, e[x�b ′]e ′[y�⟨·⟩]) if C = (b, e[x�⟨·⟩]) and C ′ = (b ′, e ′[y�⟨·⟩])

The appending of an environment context E to a crumble (b, e ′)
is defined as (b, e ′) @ E B (b, e ′E).

The notions of fv(·) and dom(·) are extended to crumble contexts

by:

fv(⟨·⟩) B ∅ fv((b, e[x�⟨·⟩])) B fv((b, e))∖ {x}

dom(⟨·⟩) B ∅ dom((b, e[x�⟨·⟩])) B dom(e) ∪ {x}

An environment context E is well-named if E⟨x⟩ is well-named

(for x fresh) and a crumble context C is well-named if C B ⟨·⟩ or

C B (b, E) and E is well-named.

Lemma B.4 (Decomposition of read back, auxiliary). Let e
be an environment, and x be a variable such that x < dom(e) ∪ fv(e).
Then (c @ [x�b]e)↓ = (c @ e)↓{x�(b, e)↓} for every crumble c and
bite b.

Proof. Let c = (b ′, e ′). We proceed by structural induction on

e:

• If e = ϵ , then (b, e)↓ = b↓ and hence (b ′, e ′[x�b]e)↓ =
(b ′, e ′[x�b])↓ = (b ′, e ′)↓{x�b↓} = (b ′, e ′e)↓[x�(b, e)↓].

• Otherwise e = e ′′[z�b ′′] and then (b, e)↓ = (b, e ′′)↓{z�b ′′
↓
},

so

(b ′, e ′[x�b ′]e)↓ = (b ′, e ′[x�b ′]e ′′[z�b ′′])↓

= (b ′, e ′[x�b ′]e ′′)↓{z�b ′′
↓
}

= (b ′, e ′e ′′)↓{x�(b ′, e ′′)↓}{z�b ′′
↓
} by i.h.

= (b ′, e ′e ′′)↓{z�b ′′
↓
}{x�(b ′, e ′′)↓{z�b ′′

↓
}} as x < fv(b ′′

↓
)

= (b ′, e ′e)↓{x�(b ′, e)↓}

where x < fv(b ′′
↓
) = fv(b ′′) by Remark 4.1 and the hypothesis

that x < fv(e). □

Lemma B.5 (Read-back vs. disjointedness). For every crumble
c and environment e : if c # e , then (c @ e)↓ = c↓.

Proof. By structural induction on e:

• If e B ϵ then c @ e = c and hence (c @ e)↓ = c↓.
• Otherwise e B e ′[x�b]. By i.h. (which can be applied

since c # e implies c # e ′, because dom(e ′) ⊆ dom(e)),
(c @ e ′)↓ = c↓. From c # e it follows that x < fv(c) = fv(c↓)
(by Remark 4.1), so c↓{x�b↓} = c↓. Therefore, (c @ e)↓ =
c @ e ′↓{x�b↓} = c↓{x�b↓} = c↓. □

Lemma B.6 (Decomposition of read back). Let c be a crumble
and e be an environment such that c # e . Then (c @ [x�b]e)↓ =
c↓{x�(b, e)↓} for every bite b.

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

Note that Lemma B.6 does not hold without the hypothesis c # e .
Indeed, take c B (y, ϵ) and e B [y�zz] with x , y: for any term b,
one has (c @ [x�b]e)↓ = zz , y = c↓{x�(b, e)↓}.

Proof. According to Lemma B.4,

(c @ [x�b]e)↓ = (c @ e)↓{x�(b, e)↓} = c↓{x�(b, e)↓}

where the last equality holds by Lemma B.5, since c # e . □

Proof of (Prop. 4.2). For every term t and every value v , one has
t ↓ = t and v↓ = v .

Proof. Bymutual induction on the term t and the valuev . Cases:

• Variable, i.e. t B x C v; then, t = (x, ϵ) and v = x , thus
t ↓ = x = t and v↓ = x = v .

• Error or Boolean: similar to the case Variable above.
• Abstraction, i.e. t B λx .u C v; then, t = (λx .u, ϵ) and
v = λx .u; by i.h., u↓ = u, hence t ↓ = λx .u↓ = t and v↓ =

λx .u↓ = v .

• Conditional, case t B (ifv thenu else s). Then t =

(ifv thenu else s, ϵ). Since t ↓ = (ifv↓ thenu↓ else s↓), we
can conclude by using the i.h.

• Conditional, case t B (if u then s else r) with u not a value.

Then t = (if x then s else r , ϵ) @ [x�q]e where u = (q, e).
By i.h., s↓ = s and r ↓ = r . We can suppose that ({x} ∪

fv(s) ∪ fv(r)) ∩ dom(e) = ∅ by the freshness condition in the

definition of the transformation, and hence we can apply

Lemma B.6 so that t ↓ = (if x then s↓ else r ↓){x�u↓} = t .

• Application of two values, i.e. t = vv ′
; then, t = (vv ′, ϵ); by

i.h., v↓ = v and v ′
↓ = v

′
, so t ↓ = v↓v

′
↓ = t .

• Application of a non-value to a value, i.e. t B uv where u
is not a value; then, t = (xv, [x�s]e) = (xv, ϵ) @ [x�s]e
where u = (s, e); we can suppose without loss of generality

that (fv(v)∪{x})∩dom(e) = ∅. By i.h.,u↓ = u andv↓ = v . By

the freshness condition for x , we can apply Lemmas B.4 and

B.5 so that t ↓ = (xv @ e)↓{x�(s, e)↓} = xv↓{x�u↓} = t .

• Application of a term to a non-value, i.e. t B us where

s is not a value; then, t = ux @ ([x�r]e) where s =
(r , e) and ux = (yx, [y�q]e ′) = (yx, ϵ) @ ([y�q]e ′) with
u = (q, e ′); we can suppose without loss of generality that

(fv(u) ∪ {x}) ∩ dom(e) = ∅ and {x,y} ∩ dom(e ′) = ∅.

By i.h., u↓ = u and s↓ = s . By the freshness condition

for x and y, we can apply Lemmas B.4 and B.5 so that

ux ↓ = (yx @ e ′)↓{y�(q, e ′)↓} = yx{y�u↓} = ux and t ↓ =

(ux @ e)↓{x�(r , e)↓} = ux ↓{x�s↓} = ux{x�s} = t . □

Lemma B.7. Let c,d be crumbles, and e be an environment. If
c↓ = d↓, then (c @ e)↓ = (d @ e)↓.

Proof. By induction on e:

• if e B ϵ , then we conclude because c @ e = c and d @ e = d ;
• if e B e ′[x�b], by i.h. (c @ e ′)↓ = (d @ e ′)↓, and we con-

clude because (c @ e)↓ = (c @ e ′)↓{x�b↓} and (d @ e)↓ =
(d @ e ′)↓{x�b↓}. □

Proposition B.8. Let e be a crumbled environment. Then:
(1) (x v, e)↓ = (x, e)↓(v, e)↓ for every variable x and crumbled

value v .

(2) (if x then c elsed, e)↓ = if (x, e)↓ then (c @ e)↓ else (d @ e)↓
for every variable x and crumbles c,d .

Proof. By induction on e:

• Case e = ϵ :
(1) (x v, ϵ)↓ = (x v)↓ = x↓v↓ = (x, ϵ)↓(v, ϵ)↓.
(2) (if x then c elsed, ϵ)↓ =

(if x then c elsed)↓ = (if x↓ then c↓ elsed↓) =

(if ((x, ϵ))↓ then ((c @ ϵ))↓ else ((d @ ϵ))↓).
• Case e = e ′[y�b] for some e ′,y,b:
(1) By the definition of (·)↓, (x v, e ′[y�b])↓ =

(x v, e ′)↓{y�b↓}. By i.h. (x v, e ′)↓{y�b↓} =

((x, e ′)↓(v, e
′)↓){y�b↓}. By the definition

of substitution, ((x, e ′)↓(v, e
′)↓){y�b↓} =

((x, e ′)↓{y�b↓})((v, e
′)↓{y�b↓}). Again by the definition

of (·)↓, ((x, e
′)↓{y�b↓})((v, e

′)↓{y�b↓}) = (x, e)↓(v, e)↓
and we conclude.

(2) By the definition of (·)↓, (if x then c elsed, e
′[y�b])↓ =

(if x then c elsed, e ′)↓{y�b↓}. By

i.h. (if x then c elsed, e ′)↓{y�b↓} =

(if (x, e ′)↓ then (c @ e ′)↓ else (d @ e ′)↓){y�b↓}.
By the definition of substitution,

(if (x, e ′)↓ then (c @ e ′)↓ else (d @ e ′)↓){y�b↓} =

(if (x, e ′)↓{y�b↓} then (c @ e ′)↓{y�b↓} else (d @ e ′)↓{y�b↓}).
Again by the definition of (·)↓,

(if (x, e ′)↓{y�b↓} then (c @ e ′)↓{y�b↓} else (d @ e ′)↓{y�b↓}) =
if (x, e)↓ then (c @ e)↓ else (d @ e)↓ and we conclude. □

Lemma B.9. Let e be an environment such that x < dom(e). Then
(x, e[x�b]e ′)↓ = (b, e ′)↓ for every b, e ′.

Proof. By Lemma B.5, (x, e)↓ = (x, ϵ)↓ because x < dom(e). By
Lemma B.7, (x, e[x�b])↓ = (x, [x�b])↓ = x{x�b↓} = b↓ = (b, ϵ)↓.
Again by Lemma B.7, (x, e[x�b]e ′)↓ = (b, e ′)↓. □

Lemma B.10. For all crumble context C , crumble c , and environ-
ment e , one has C ⟨c⟩ @ e = C ⟨c @ e⟩.

Proof. By cases according to the definition of the crumble con-

text C .
If C B ⟨·⟩, then C ⟨c⟩ @ e = c @ e = C ⟨c @ e⟩.
Otherwise C B (b, e ′[x�⟨·⟩]); let c B (b ′, e ′′); then,

c @ e = (b ′, e ′′e) and hence C ⟨c⟩ @ e = (b, e ′[x�b ′]e ′′) @ e =
(b, e ′[x�b ′]e ′′e) = (b, e ′[x�b ′]) @ e ′′e = C ⟨c @ e⟩. □

Corollary B.11 (Read back vs. crumble contexts). Let c be
a crumble and C,C ′ be crumble contexts.

(1) Plugging: If C # c and C↓ is a λ-context and C ⟨c⟩ is well-
named, then C ⟨c⟩↓ = C↓⟨c↓⟩.

(2) Composition: If C # C ′ and C ⟨C ′⟩ is well-named, where C↓

andC ′
↓
are contexts, thenC ⟨C ′⟩↓ = C↓⟨C

′
↓
⟩, which is a context.

Proof. (1) If C B ⟨·⟩, then C↓ = ⟨·⟩ and so C ⟨c⟩↓ = c↓ =
C↓⟨c↓⟩. Otherwise C B (b, e[x�⟨·⟩]) with c = (b ′, e ′); since
C ⟨c⟩ = (b, e[x�b ′]e ′) is well-named, then x < dom(e ′);
therefore, from C # c it follows that (b, e) # e ′; we have

C ⟨c⟩↓ = (b, e)↓{x�(b ′, e ′)↓} = C↓⟨c↓⟩ by Lemma B.6 and

because by hypothesis C unfolds to a context.

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

(2) The composition of two contexts is a context, thus C↓⟨C
′
↓
⟩

is a context since C↓ and C
′
↓
are so.

If C B ⟨·⟩, then C↓ = ⟨·⟩ and C ⟨C ′⟩ = C ′
, thus C ⟨C ′⟩↓ =

C ′
↓
= C↓⟨C

′
↓
⟩.

If C ′ B ⟨·⟩, then C ′
↓
= ⟨·⟩ and C ⟨C ′⟩ = C , so C ⟨C ′⟩↓ = C↓ =

C↓⟨C
′
↓
⟩.

Finally, if C B (b, e[x�⟨·⟩]) and C ′ = (b ′, e ′[y�⟨·⟩]), then

C ⟨C ′⟩ = (b, e[x�b ′]e ′[y�⟨·⟩]) and so

C ⟨C ′⟩↓ = (b, e[x�b ′]e ′)↓{y�⟨·⟩}

= (b, e)↓{x�(b ′, e ′)↓}{y�⟨·⟩} by Lemma B.6

= (b, e)↓{x�(b ′, e ′)↓{y�⟨·⟩}} as y < fv((b, e)↓)

= C↓⟨C
′
↓
⟩

where Lemma B.6 can be applied because (b, e) # e ′, since
C # C ′

and x < dom(e ′) (as C ⟨C ′⟩ is well-named); and y <
fv((b, e)↓) because C # C ′

. □

Lemma B.12. Let c = C ⟨(b, e)⟩ be a crumble. Then fv(b), fv(C) ⊆
dom(e) ∪ fv(c).

Proof. By cases according to the definition of the crumble con-

text C .
If C B ⟨·⟩ then fv(C) = ∅ ⊆ dom(e) ∪ fv(c) and c = (b, e), so

fv(c) = (fv(b)∖ dom(e)) ∪ fv(e) and hence fv(b) ⊆ (fv(c)∖ fv(e)) ∪
dom(e) ⊆ fv(c) ∪ dom(e).

Otherwise C B (b, e ′[x�⟨·⟩]) and then fv(C) = fv(b ′) ∪

(dom(e ′) ∖ {x}) and c = (u, e ′[x�b]e); therefore, fv(c) = fv(C) ∪
(fv(b) ∖ dom(e)) ∪ fv(e) and hence fv(C) ⊆ dom(e) ∪ fv(c) and
fv(b) ⊆ dom(e) ∪ fv(c). □

Remark B.1. For every crumble c , one has c @ [x�⟨·⟩]↓ =

c↓{x�⟨·⟩}. Indeed, let c B (b, e): then, (b, e) @ [x�⟨·⟩]↓ =

(b, e[x�⟨·⟩])↓ = (b, e)↓{x�⟨·⟩}.

Proof of (Lemma 4.5). For every term t :
(1) Freshness: t is well-named.
(2) Closure: if t is closed, then fv(t) = ∅.
(3) Disjointedness: dom(C) ∩ fv(b) = ∅ if t = C ⟨(b, e)⟩.
(4) Bodies: every body in t is the translation of a term.
(5) Contextual decoding: if t = C ⟨c⟩, thenC↓ is a right v-context.
Proof.

(1) It follows immediately from the freshness condition in the

definition of translation.

(2) By Remark 4.1.

(3) It follows immediately from the freshness condition in the

definition of translation.

(4) By induction on t and by cases on the rules defining the

translation.

(5) By induction on the size of t . Cases:
• λ-Value, i.e. t = v . Then t = (v, ϵ) and so the only possible

crumble context C such that t = C ⟨c⟩ for some crumble c
is C = ⟨·⟩ and so C↓ = ⟨·⟩, which is a right v-context.

• λ-Value applied to value, i.e. t = vv ′
. As in the previous

case.

• Application applied to a value, i.e. t = uv with u not a

λ-value. Then, t = (xv, [x�s]e) with u = (s, e) and x fresh.

Cases for C:

– Empty, i.e. C = ⟨·⟩: as for values (see above).

– Non-empty, i.e. C = (xv, [x�⟨·⟩])⟨C ′⟩ where C ′
is a

crumble context of u, i.e. u = C ′⟨c⟩. The read-back

of the crumble context C ′′ B (xv, [x�⟨·⟩]) is C ′′
↓
=

xv↓{x�⟨·⟩} = ⟨·⟩v↓, which is a right v-context because

v↓ is a λ-value by Remark 4.1val-to-val. By i.h., C ′
↓
is

a right v-context. By the freshness conditions in the

definition of translation, C ′′
C ′

; according to Corol-

lary B.11.2, C↓ = C ′′⟨C ′⟩↓ = C ′′
↓
⟨C ′

↓
⟩, which is a right

v-context since the composition of right v-context is a

right v-context (Lemma A.1).

• λ-Term applied to application, i.e. t = us with s not a λ-
value. Then, t = ux @ [x�b]e where s = (b, e) and x is

fresh. Cases for C:
– C is a crumble context of ux , i.e. ux = C ⟨c⟩, thenC↓ is a

right v-context by i.h. (the size of the term ux is strictly

less than the size of us because s is not a value).
– C = C ′′⟨C ′⟩ where C ′′ B ux @ [x�⟨·⟩] and C ′

is a

crumble context of s i.e. s = C ′⟨c⟩. By the freshness

condition in the definition of translation and according

to Remark B.1, C ′′
↓
= ux ↓{x�⟨·⟩} = u↓⟨·⟩, which is

a right v-context. By i.h., C ′
↓
is a right v-context. Ac-

cording to Corollary B.11.2, C↓ = C ′′⟨C ′⟩↓ = C ′′
↓
⟨C ′

↓
⟩,

which is a right v-context since the composition of right

v-contexts is a right v-context (Lemma A.1).

• Conditional, case t B (ifv thenu else s). Then t =
(ifv thenu else s, ϵ). Necessarily C = ⟨·⟩, and hence C↓

is a right v-context.

• Conditional, case t B (if u then s else r) with u not a value.

Then t = (if x then s else r , [x�q]e) where u C (q, e). We

proceed by cases on C:
– Case C = ⟨·⟩. Then clearly C↓ is a right v-context.

– Case C = C ′′⟨C ′⟩, where C ′′ B
(if x then s else r , [x�⟨·⟩]) and C ′

is a crum-

ble context of u. By the freshness condition

in the definition of translation and accord-

ing to Remark B.1, C ′′
↓

= (if ⟨·⟩ then s else r),
which is a right v-context. By i.h., C ′

↓
is a

right v-context. According to Corollary B.11.2,

C↓ = C ′′⟨C ′⟩↓ = C ′′
↓
⟨C ′

↓
⟩ = (ifC ′

↓
then s else r), which

is a right v-context. □

C PROOFS OF SECT. 5 (CLOSED CASE)
C.1 Proofs of Subsect. 5.1

Lemma C.1 (Closure under substitution). Let v and v ′ be
values. Then v{x�v ′} is a value. If moreover v is a λ-abstraction,
then v{x�v ′} is so.

Proof. By cases on the definition of value:

• Variable, i.e. either v B x and then v{x�v ′} = v ′
which is

a value by hypothesis; or v B y , x and then v{x�v ′} = y
which is a value.

• Abstraction, i.e. v B λy.u and we can suppose without loss

of generality that y < fv(v) ∪ {x}; therefore, v{x�v ′} =

λy.(u{x�v ′}) which is a λ-abstraction and hence a value.

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

• Booleans and errors, i.e. v ∈ {true, false, err}. Trivial since
v{x�v ′} = v . □

Lemma C.2 (Read-back to value). For every crumbled value v
and v-environment ev , one has that (v, ev)↓ is a value. If moreover v
is an abstraction, then (v, ev)↓ is a λ-abstraction.

Proof. By induction on the length of ev . We proceed by cases

on the shape of v .

• Abstraction: If ev B ϵ , then clearly (v, ev)↓ = v↓ is a λ-
abstraction and hence a value. Otherwise ev B e ′v [x�b]
where b is a crumbled value (and hence b↓ is a value): thus,
(v, ev)↓ = (v, e ′v)↓{x�b↓}; by i.h., (v, e ′v)↓ is a λ-abstraction,
thus (v, ev)↓ is a λ-abstraction (and so a value) by Lemma C.1.

• Booleans and errors: the proof is identical to the previous

case.

• Variable: If v B x < dom(ev), then (v, ev)↓ = x which

is a value; otherwise v B x ∈ dom(ev) with ev B
e ′v [x�λy.c]e ′′v , and then (x, ev)↓ = (λy.c, e ′′v)↓ (since x <
dom(e ′v)) is a value by i.h., according to the previous

point. □

Lemma C.3. Let c = (b, ev) be a well-named closed crumble,
and b have the following property: b is a value, or b is x or xv or
if x then c elsed but x is not defined in ev . Then c is a v-crumble.

Proof. Let c = (b, ev) as above: it suffices to prove that b is a

value. This follows easily from the hypothesis that c is closed, since
the cases where b is x or xv or if x then c elsed but x is not defined

in ev are impossible. □

Corollary C.4. If the well-named closed crumble (b, ev) is nor-
mal, then it is a v-crumble.

Proof of (Prop. 5.3). A closed crumble c is normal if and only if
it is a v-crumble.

Proof.

(⇒) Let c = (b, e) be well-named, closed, and normal. We proceed

by structural induction on e:
– if e = ϵ , then (b, ϵ) is a v-crumble by Cor. C.4;

– if e = [x�b ′]e ′, then also the crumble (b ′, e ′) is normal.

By i.h. (b ′, e ′) is a v-crumble, and therefore e = [x�b ′]e ′

is a v-environment. By Cor. C.4, c = b, e is a v-crumble.

(⇐) Let c = cv , we need to prove that cv is normal. Let cv =
C ⟨(v¬x , ev)⟩ for some C,v¬x , ev . Clearly no reduction rule

is applicable, because v¬x is not a variable or an application.

□

C.2 Proofs of Subsect. 5.2
Proof of (Lemma 5.5). For every reachable crumble c in the Crum-

ble GLAM:
(1) Freshness: c is well-named.
(2) Closure: fv(c) = ∅.
(3) Bodies: every body occurring in c is a subterm (up to renaming)

of the initial crumble.
(4) Weak contextual decoding: for every decompositionC ⟨(b, ev)⟩

where b is not a crumbled value, ifC ′′ is a prefix ofC thenC ′′
↓

is a right v-context.

Proof. By induction on the length of the reduction sequence

leading to the crumble. The base cases hold by Lemma 4.5 (by

noting that for Point 4, Lemma 4.5.5 implies the weaker statement

Lemma 5.5.4). As for the inductive cases, we inspect each transition:

1. The substitution transitions subvar , subl , subif do not change
the set of variables occurring on the lhs of substitutions

outside abstractions because they copy a value that does

not contain any. Hence the claim follows from the i.h.. For
transition βv the claim follows from the side condition. For

the remaining rules ift, iff, ife,@e the claim follows from

the fact that all substitutions outside abstractions in the rhs

alredy occur in the lhs.

2. The substitution transitions subvar , subl , subif do not change
the domain of the crumble and only copy to the left a value

from the environment, and the claim follows from the i.h..
Transition βv copies to the top level and renames the

body of an abstraction. By the properties of α-renaming

fv((c @ [x�v])α) = fv(c @ [x�v]) = fv(λx .c), and

since by i.h. fv(λx .c) ⊆ dom(ev), we can conclude with

fv((c @ [x�v])α) ⊆ dom(ev).
The terms in the rhs of the remaining transitions

ift, iff, ife,@e already occur in the lhs under the same en-

vironment. Therefore the claim follows from the i.h..
3. The rules subvar , subl , subif may copy an abstraction, but the

abstraction was already in the environment, and the claim

follows from the i.h.. The rule βv copies and renames the

body of an abstraction that was already in the environment,

and the claim follows from the i.h. since the translation

commutes with the renaming of free variables (Remark 4.1.3).

All the bodies in the rhs of the remaning rules ift, iff, ife,@e
already occur in the lhs and therefore the claim follows from

the i.h..
4. Let b ′′ →n C ′⟨(b ′, e ′v)⟩ →a C ⟨(b, ev)⟩ (where b is not a

practical value). Cases of the reduction stepC ′⟨(b ′, e ′v)⟩ →a
C ⟨(b, ev)⟩:
– Case βv : C

′⟨((λx .c)v, ev)⟩ →βv C ′⟨cα @ ([xα�v]ev)⟩.
Let C ′′

be a prefix of C . There are two sub-cases:

∗ C ′′ is a prefix of C ′
: by i.h. C ′′

↓
is a right v-context.

∗ C ′ is a prefix ofC ′′
, i.e.C ′′ = C ′⟨C ′′′⟩ and cα = C ′′′⟨c ′⟩.

By Lemma 4.5.4 and Lemma 5.5.3 c is the translation
of a λ-term, by Remark 4.1.3 cα is so, and thus by

Lemma 4.5.5 C ′′′
↓

is a right v-context. By i.h., C ′
↓
is a

right v-context as well. Since C ′′
↓
= C ′

↓
⟨C ′′′

↓
⟩ accord-

ing to Corollary B.11.2, we obtain that C ′′
↓
is a right v-

context as composition of right v-contexts (Lemma A.1).

– Case ift: C ′⟨(if true then c elsed, ev)⟩ →βv C ′⟨c @ ev ⟩.
Let C ′′

be a prefix of C . There are two sub-cases:

∗ C ′′ is a prefix of C ′
: by i.h. C ′′

↓
is a right v-context.

∗ C ′ is a prefix of C ′′
, i.e. C ′′ = C ′⟨C ′′′⟩ and c = C ′′′⟨c ′⟩.

By Lemma 4.5.4 and Lemma 5.5.3 c is the translation
of a λ-term and thus by Lemma 4.5.5 C ′′′

↓
is a right v-

context. By i.h., C ′
↓
is a right v-context as well. Since

C ′′
↓
= C ′

↓
⟨C ′′′

↓
⟩ according to Corollary B.11.2, we obtain

that C ′′
↓
is a right v-context as composition of right

v-contexts (Lemma A.1).

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

– Case iff: identical to the previous case.

– Cases subvar , ife,@e: they follow from the i.h. since C is

necessarily a prefix of C ′
because b is a practical value.

– Cases subl and subif : they follow from the i.h., since e ′v =
ev and C = C ′

. □

Lemma C.5 (Determinism). →Cr is deterministic.

Proof. Assume that there exists a crumble that may be decom-

posed in two ways C ⟨(b, ev)⟩ = C ′⟨b ′, e ′v ⟩ such that they reduce

respectively C ⟨(b, ev)⟩ →a C ⟨c⟩ and C ′⟨(b ′, e ′v)⟩ →b C ′⟨d⟩ with
rules a,b ∈ {βv , ift, iff, ife,@e, subvar , subl , subif}.

We prove that it must necessarily be a = b, C = C ′
, and c = d

(up to alpha). Three cases:

• C strict initial segment of C ′
, i.e. C ′ = C ⟨C ′′⟩ for some

C ′′ , ⟨·⟩. We show that this case is not possible: in fact,

it follows that ev = E⟨(b ′, e ′v)⟩ for some E, thus (b ′, e ′v) is a
v-crumble, and by Prop. 5.3 it must be normal, contradicting

the hypothesis that (b ′, e ′v) and c reduce with rule b.
• C = C ′

. By inspection of the reduction rules, a = b: in fact

the rule βv applies only when b is the application of an

abstraction to a crumbled value, the rule subvar only when b
is a variable, and the rule subl only when b is the application

of a variable to a crumbled value, etc. It remains to show

that c = d (up to alpha): this follows from the determinism

of the lookup in the environment during subvar , subl and
subif reductions.

• C ′
initial segment of C , i.e. C = C ′⟨C ′′⟩. Symmetric to the

first case. □

Lemma C.6. In every reachable crumble C ⟨(b, e)⟩ one has fv(b) ∩
dom(C) = ∅.

Proof. By Lemma B.12 and Lemmas 5.5.1-2. □

Proposition C.7 (Overhead transparency). Let c be a reach-
able crumble, and let a ∈ {subvar , subl , subif}. If c →a d then
c↓ = d↓.

Proof. Let c B C ⟨(b, ev)⟩ →a C ⟨(b ′, ev)⟩ C d , and let e ′v , e
′′
v

such that ev = e ′v [x�ev (x)]e
′′
v , noting that x does not occur in

e ′′v by Lemma 5.5.1 and Lemma C.6. We first prove that (b, ev)↓ =
(b ′, ev)↓:

• Case subvar , i.e. b B x and b ′ = ev (x). By Lemma B.4,

(x, e ′v [x�ev (x)]e
′′
v)↓ = (x, e ′ve

′′
v)↓{x�(ev (x), e

′′
v)↓} =

(ev (x), e
′′
v)↓ as c is well-named (Lemma 5.5.1). By Lemma C.6,

fv(ev (x)) ∩ dom(e ′v [x�ev (x)]) = ∅, therefore (ev (x), e
′′
v)↓ =

(ev (x), ev)↓, and we conclude with (x, ev)↓ = (ev (x), ev)↓.
• Case subl , i.e. b B x v and b ′ = ev (x)v . Since (x v, ev)↓ =
(x, ev)↓(v, ev)↓ (Prop. B.8), we can use the point above to

conclude.

• Case subif , i.e. b B if x then c elsed and b ′ =

if ev (x) then c elsed . Since (if x then c elsed, ev)↓ =

if (x, ev)↓ then (c @ ev)↓ else (d @ ev)↓ (Prop. B.8), we can
use the point above to conclude.

We now prove that C ⟨(b, ev)⟩↓ = C ⟨(b ′, ev)⟩↓ under

the hypothesis that (b, ev)↓ = (b ′, ev)↓. By cases on C:
if C B ⟨·⟩ just use the hypothesis. Otherwise C B

(b ′′, e[x�⟨·⟩]) and so (b ′′, e[x�b]ev)↓ = (b ′′, eev)↓{x�(b, ev)↓} =
(b ′′, eev)↓{x�(b ′, ev)↓} = (b ′′, e[x�b ′]ev)↓ by Lemma B.4. □

Lemma C.8 (Substitution). Let t and u be terms, and v be a
value. If t →pif u then t{x�v} →pif u{x�v}.

Proof. By induction on the definition of t →pif u. Cases:

• Root-step.
– βv -step, i.e. t B (λy.s)v ′ 7→βv s{y�v ′} C u and we

can suppose without loss of generality that y < fv(v) ∪
{x}. According to Lemma C.1, v ′{x�v} is a value. As

a consequence, t{x�v} = (λy.s{x�v})(v ′{x�v}) →βv
s{y�v ′{x�v}} = s{y�v ′}{x�v} = u{x�v}.

– the ift, iff, ife,@e steps are similar to the βv -step.
Lemma C.1 is used in the proof of the ife-step to prove that
a ife-redex where the guard is an abstraction is mapped

to a ife-redex of the same kind.

• Application right, i.e. t B sr →pif sq C u with r →pif
q; by i.h. r {x�v} →pif q{x�v}, and therefore t{x�v} =
s{x�v}(r {x�v}) →pif s{x�v}(q{x�v}) = u{x�v}.

• Application left, i.e. t B sv ′ →pif rv ′ C u with

s →pif r ; by i.h., s{x�v} →pif r {x�v}; according to

Lemma C.1, v ′{x�v} is a value and hence t{x�v} =
s{x�v}(v ′{x�v}) →pif r {x�v}(v ′{x�v}) = u{x�v}.

• If-then-else guard, i.e. t B if r then s elsep →pif
if q then s elsep C u with r →pif q; by

i.h. r {x�v} →pif q{x�v}, and therefore

t{x�v} = if r {x�v} then s{x�v} elsep{x�v} →pif
if q{x�v} then s{x�v} elsep{x�v} = u{x�v}. □

Lemma C.9. Let c,d be crumbles, and let ev be a v-environment.
If c↓ →pif d↓, then (c @ ev)↓ →pif (d @ ev)↓.

Proof. By induction on the length of ev . If ev B ϵ then

(c @ ev)↓ = c↓ →pif d↓ = (d @ ev)↓. Otherwise ev B

e ′v [x�v] where v is a practical value (and hence v↓ is a value);

by i.h., (c @ e ′v)↓ →pif (d @ e ′v)↓ and hence (c @ ev)↓ =

(c @ e ′v)↓{x�v↓} →pif (d @ e ′v)↓{x�v↓} = (d @ ev)↓ according
to Lemma C.8. □

Proposition C.10 (Principal projection). Let c be a reachable
crumble. If c →a d for a ∈ {βv , ift, iff, ife,@e} then c↓ →a d↓.

Proof. Note that for everyb, ev , (b, ev) = (b, ϵ) @ ev . Therefore
all steps can be written in the formC ⟨(b, ev)⟩ →a C ⟨c @ ev ⟩ where
b is not a crumbled value. The crumble contextC unfolds to a right

v-context by Lemma 5.5.4. We need to prove that C ⟨(b, ev)⟩↓ →a
(C ⟨c @ ev ⟩)↓. By Lemma B.10 and Lemma C.9, it suffices to prove

that C ⟨(b, ϵ)⟩↓ →a C ⟨c⟩↓.
We proceed by cases on the rule→a .

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

• Rule βv : we need to prove that C ⟨((λx .c)v, ϵ)⟩↓ →βv
C ⟨e @ [y�v]⟩↓ where e @ [y�v] B (c @ [x�v])α .

C ⟨((λx .c)v, ϵ)⟩↓ = C↓⟨(λx .c↓)v↓⟩ by Corollary B.11.1

=α C↓⟨(λy.e↓)v↓⟩

→βv C↓⟨e↓{y�v↓}⟩

= C↓⟨e @ [y�v]↓⟩

= C ⟨e @ [y�v]⟩↓ by Corollary B.11.1

= C ⟨(c @ [x�v])α ⟩↓.

Note that the second use of Corollary B.11.1 requires thatC #

(e @ [y�v]) i.e. that fv(C) ∩ dom(e @ [y�v]) = ∅, which

follows from the side condition about α-renaming in the βv
rule.

• Rules ift, iff, ife,@e: a quick check by cases over (b, ev) 7→a
c @ ev shows that b↓ →a c↓.
For example, (if true then c elsed, ev) 7→ift c @ ev and

(if true then c elsed)↓ = if true then c↓ elsed↓ →ift c↓. The
other cases are all similar.

Thus

C ⟨(b, ϵ)⟩↓ = C↓⟨b↓⟩ by Corollary B.11.1

→a C↓⟨c↓⟩

= C ⟨c⟩↓ by Corollary B.11.1

Note that the second use of Corollary B.11.1 requires that

C # c . The property holds because all substitutions outside

abstractions in the rhs of the rules →a under consideration

were such in the lhs, and because reachable crumbles are

well-named (Lemma 5.5.1). □

Lemma C.11 (Halt). Let c be a closed crumble. If c is Cr-normal
then c↓ is Pi f -normal.

Proof. By Prop. 5.3, if c is normal then it is a v-crumble i.e.
c = cv . By Lemma C.2, c↓ is a value. By Pif harmony (Prop. 2.1), c↓
is →pif-normal. □

Proof of (Thm. 5.6). Let c be a crumble reachable by the Crumble
GLAM.

(1) Initialization: t ↓ = t for every term t .
(2) Principal projection: if c →a d then c↓ →a d↓, for any rule

a ∈ {βv , ift, iff, ife,@e}.
(3) Overhead transparency: if c →a d then c↓ = d↓ for any rule

a ∈ {subvar , subl , subif}.
(4) Determinism: the transition →Cr is deterministic.
(5) Halt: if c is→Cr-normal then c↓ is→pif-normal.
(6) Overhead termination: →a terminates, for any rule a ∈

{subvar , subl , subif}.
Therefore, the Crumble GLAM, Pif evaluation →pif , and the read-

back (·)↓ form an implementation system.

Proof. (1) See Prop. 4.2.

(2) See Prop. C.10.

(3) See Prop. C.7.

(4) See Lemma C.5.

(5) See Lemma C.11, since c is closed by Lemma 5.5.2.

(6) Immediate consequence of Lemma 5.8 (proved indepen-

dently). □

C.3 Proofs of Subsect. 5.3
Proof of (Prop. 5.7). Let t be a term and v a value. Then:
(1) |t |var ≤ 1; and |t |var = 1 if and only if t is a variable;
(2) |v |var ≤ 1; and |v |var = 1 if and only if v is a variable.

Proof. By mutual induction on t and v :

• Variable, i.e. v = t B x : then v = x and t = (x, ϵ), hence
|v |var = |t |var = 1.

• Boolean or error, i.e.v = t ∈ {true, false, err}: thenv = v and

t = (v, ϵ), hence |v |var = |t |var = 0.

• Abstraction, i.e. v B λx .u C t : then v = λx .u and t =
(λx .u, ϵ); by i.h., |u |var ≤ 1. We have |v |var = |t |var = 0 by

definition.

• Application of two λ-values, i.e. t B v ′v ′′
: then, t =

(v ′v ′′, ϵ). We have |t |var = 0 by definition.

• Conditional on a value, i.e. t B ifv ′ thenu else s : then, t =
(ifv ′ thenu else s, ϵ). We have |t |var = 0 by definition.

• Application of a non-λ-value to a λ-value, i.e. t B uv where

u is not a value: then, t = (xv, [x�b]e) where u = (b, e);
by i.h., |u |var = 0. Note that |t |var = |(xv, [x�b]e)|var =
|b |var + |e |var = |(b, e)|var = |u |var =i.h. 0.

• Application of a term to a non-value, i.e. t B us where s is not
a value: then, t = ux @ ([x�b]e) = (yx, [y�b ′]e ′[x�b]e)
where s = (b, e) and ux = (yx, [y�b ′]e ′) with u = (b ′, e ′).
By i.h., |ux |var = |s |var = 0. Since |t |var = |u |var + |s |var, we
have |t |var = 0.

• Conditional on a non-value, i.e. t B if u then s else r where
u is not a value : then, t = (if x then s else r , [x�b]e) with
u = (b, e). By i.h., |u |var = 0. Then

|t |var = |(if x then s else r , [x�b]e)|var = |b |var+|e |var = |(b, e)|var = |u |var =i.h. 0

□

We define the size | · | of crumbled forms, crumbles and environ-

ments as expected:

|(b, e)| B |b | + |e | |ϵ | B 0 |e[x�b]| B 1 + |e | + |b |

|x | B 1 |λx .c | B 1 + |c | |vw | B 1 + |v | + |w |

|true| B 1 |false| B 1 |err| B 1

|ifv then c elsed | B 1 + |v | + |c | + |d |

Proof of (Lemma 5.9). Let t be a term and v a value. Then |t | ≤
5|t | and |v | ≤ 5|v |.

Proof. By mutual induction on t and v :

• Variable, i.e. v B x C t : then v = x and t = (x, ϵ), hence
|v | = 1 ≤ 5|v | and |t | = |x | + |ϵ | = 1 ≤ 5 |t |.

• Error or Boolean: similar to the case above.

• Abstraction, i.e. v B λx .u C t : then v = λx .u and t =
(λx .u, ϵ); by i.h., |u | ≤ 5|u | and hence |v | = |u |+1 ≤ 5|u |+1 ≤

5(|u | + 1) = 5|v | and |t | = |λx .u | + |ϵ | = |u | + 1 ≤ 5|u | + 1 ≤

5(|u | + 1) = 5 |t |.
• Application of two λ-values, i.e. t B vv ′

: then, t = (v v ′, ϵ);

by i.h., |v | ≤ 5|v | and |v ′ | ≤ 5|v ′ |; hence |t | = |v v ′ | + |ϵ | =

|v | + |v ′ | + 1 ≤ 5|v | + 5 · |v ′ | + 1 ≤ 5(|v | + |v ′ | + 1) = 5 |t |.

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

• Application of a non-λ-value to a λ-value, i.e. t B uv where

u is not a value: then, t = (xv, [x�b]e) where u = (b, e);
by i.h., |v | ≤ 5|v | and |u | = |b | + |e | ≤ 5|u |; hence |t | =
|x | + |v | + 1 + |b | + |e | + 1 = |v | + |u | + 3 ≤ 5|v | + 5|u | + 3 ≤

5(|v | + |u | + 1) = 5 |t |.
• Application of a term to a non-value, i.e. t B us where s is not
a value: then, t = ux @ ([x�b]e) = (yx, [y�b ′]e ′[x�b]e)
where s = (b, e) andux = (yx, [y�b ′]e ′)withu = (b ′, e ′). By
i.h., |s | = |b |+ |e | ≤ 5|s | and |u | = |b ′ |+ |e ′ | ≤ 5|u |. Therefore,
|t | = |yx | + |b ′ | + |e ′ | + 1 + |b | + |e | + 1 = |u | + |s | + 5 ≤

5|u | + 5|s | + 5 ≤ 5(|u | + |s | + 1) = 5|t |.
• Conditional, case t B (ifv thenu else s). Then t =

(ifv thenu else s, ϵ) and |t | = 1 + |v | + |u | + |s |. Conclude by
i.h.

• Conditional, case t B (if u then s else r) with u not a value.

Then t = (if x then s else r , [x�q]e) where u C (q, e). Then
|t | = 1 + 1 + |s | + |r | + 1 + |u |. Conclude by i.h. □

Proof of (Thm. 5.10). For any closed term t and any Crumble
GLAM execution ρ : t →∗

Cr c , the cost of implementing ρ on a RAM
is O((|ρ |p + 1) · |t |) plus the cost of plugging and unplugging.

Proof. By Lemma 5.8 and the discussion in the body about

costs. □

C.4 The Pointed Crumble GLAM
As discussed at the beginning of Sect. 5, we call the Crumble GLAM

a machine even though it does not satisfy the usual requirements

for abstract machines. One of these requirements is the presence of

rules that guide evaluation to the next redex: in the Crumble GLAM

the search for the next redex is instead left implicit in the evaluation

rules, because it corresponds to going through the environment

from right to left.

In order to implement the Crumble GLAM while respecting

the complexity analysis that we just presented in Subsect. 5.3, we

introduce a variant of the Crumble GLAM called Pointed Crumble

GLAM, where the search for the next redex is decomposed intoO(1)
steps of a new search transition. The other steps of the machine are

in one-to-one correspondence with the ones of the Crumble GLAM.

Finally, we prove that the overall number of the search transitions

is bilinear in the number of principal transitions and the size of the

initial term, establishing bilinearity of the Pointed Crumble GLAM.

To improve the readability of this section, all proofs are moved to

Appendix C.5.

Pointed crumbles and pointed environments. The key idea to turn

the Crumble GLAM into the Pointed Crumble GLAM is to avoid

plugging and unplugging in the rules by letting them act on pointed
crumbles, i.e. on crumbles where the beginning of the evaluated

coda is explicitly marked using a pointer. For example, the crumble

(b, eev) could be represented as (b, e ¦ev) where “¦” is the explicit
separator that must be followed byv-environments only. A pointed

crumble (b, e[x�b ′]¦ev) is the machine state that is attempting to

evaluate the crumbleC ⟨(b ′, ev)⟩, whereC = (b, e[x�⟨·⟩]). If (b ′, ev)
is a Crumble GLAM a-redex, the Pointed Crumble GLAM will

evaluate according to the corresponding a-transition that also takes

care of setting (in O(1)) the pointer to the rightmost unevaluated

crumble. Otherwise, by harmony (Prop. 5.3), b ′ must be a crumbled

value v and therefore the pointer is moved (in O(1)) one step to

the left, looking for the next redex: (b, e[x�v] ¦ ev) →sea (b, e ¦
[x�v]ev).

Not all pointed crumble configurations are of the form

(b, [x�b ′] ¦ ev): the configurations (b,¦ ev) must be also taken

into account and evaluated if b is not a crumbled value. However,

there is no simple way to describe machine transitions that act

uniformly on configurations (b,¦ev) and (b, e[x�b ′]¦ev) without
duplicating the rules or without re-introducing a notion of contex-

tual closure. To solve the issue, we abandon pointed crumbles and

adopt pointed environments instead.

A pointed environment ([x�b]e ¦ev) is just a representation of

a pointed crumble (b, e ¦ev). The leftmost variable x in a pointed

environment can be understood as the name given to the machine

output. It plays a role similar to the outermost λ-abstraction intro-

duced by CPS transformations, that binds the continuation that

is fed with the output of the evaluation. In particular, a normal

pointed environment (¦ [x�v]ev) represents the normal crumble

(v, ev).

Formal definition of pointed environments and read-back. Pointed
environments are defined as e¦ B e ¦ e ′ for any non-pointed en-

vironments e and e ′ such that either e or e ′ is non-empty. The

environment on the left of the cursor¦ is the unevaluated environ-

ment; the one on the right is the evaluated environment.

The translation ι(·) embeds crumbles into pointed environments:

ι(b, e) B [x�b]e ¦ϵ

where x is any variable name fresh in b and e .
The left inverse of ι(·) is the read-back function (·)⇓ (from pointed

environments to crumbles):

(ϵ ¦ [x�b]e)⇓ B (b, e) ([x�b]e ¦e ′)⇓ B (b, ee ′)

Evaluation. The transition rules of the Pointed Crumble GLAM

are (the adaptation of) those of the Crumble GLAM plus the new

search transition →sea, and they are all defined only at top level,

without a contextual closure—their union is noted→pCr:

e[x�(λy.c)v]¦ev →βv e[x�b]e ′[z�v]¦ev (i)

e[x�if true then c elsed]¦ev →ift e[x�b]e ′¦ev (ii)

e[x�if false then c elsed]¦ev →iff e[x�b]e ′¦ev (iii)

e[x�ifv then c elsed]¦ev →ife e[x�err]¦ev (iv)

e[x�vw]¦ev →@e e[x�err]¦ev (v)

e[y�x]¦ev →subvar e[y�ev (x)]¦ev (vi)

e[y�xv]¦ev →subl e[y�ev (x)v]¦ev (vi)

e[y�if x then c elsed]¦ev →subif e[y�if ev (x) then c elsed]¦ev (vi)

e[x�b]¦ev →sea e ¦ [x�b]ev (vii)

where

i. λz.(b, e ′) B (λy.c)α such that (e[x�b]e ′[z�v] ¦ ev) is well-
named.

ii. where c C (b, e ′)
iii. where d C (b, e ′)
iv. if v = λx .e or v = err.
v. if v ∈ {true, false, err}.

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

vi. if x ∈ dom(ev).
vii. if none of the other rules is applicable, i.e. when b is a practical

value v¬x or when b is x , xv , or if x then c elsed but x is not

defined in ev .

A principal transition of the Pointed Crumble GLAM is a transi-

tion →a for any rule a ∈ {βv , ift, iff, ife,@e}.
Proof

p. 24 Proposition C.12 (Harmony for the Pointed Crumble

GLAM). A reachable pointed environment e¦ is normal iff it has
the form (ϵ ¦ev) for some non-empty v-environment ev .

Implementation. We prove that that the Pointed Crumble GLAM

simulates the Crumble GLAM following the standard schema in-

troduced in Subsect. 5.2 and that we have already employed for

the Crumble GLAM in Subsect. 5.3. We only state the machine

invariants and the statement of the implementation theorem; the

details of the proof can be found in the Appendix C.5 (p. 23).

Definition C.13 (Reachable state). A pointed environment is said

to be reachable if it is obtained from evaluation steps starting from

the translation ι(c) of a well-named closed crumble c .
Proof

p. 23
Lemma C.14 (Invariants for the Pointed Crumble GLAM).

Let e¦ be a reachable pointed environment in the Pointed Crumble
GLAM:

(1) Freshness: e¦ is well-named.
(2) Closure: e¦ is closed.
(3) Rightmost: e¦ = (e ¦ ev) for some environment e and some

v-environment ev .
Proof

p. 24
Theorem C.15 (Implementation). Let e¦ be a reachable pointed

environment in the Pointed Crumble GLAM.
(1) Initialisation: (ι(c))⇓ = c for every crumble c .
(2) Principal projection: if e¦→a e ′¦ then (e¦)⇓ →a (e ′¦)⇓ for any

rule a , sea.
(3) Overhead transparency: if e¦→sea e

′
¦ then (e¦)⇓ = (e ′¦)⇓.

(4) Determinism: the transition function →pCr is deterministic.
(5) Halt: if e¦ is normal then (e¦)⇓ is normal.
(6) Overhead termination: →sea terminates.
Therefore, the Pointed Crumble GLAM (with its transition function

→pCr), the Crumble GLAM (with →Cr), and the read-back (·)⇓ form
an implementation system.

Complexity. We reuse the measures introduced in Subsect. 5.3.

The only difference here is that we need to bound also the number

of sea steps, which intuitively depends on the length of the pointed

environment that is being evaluated. We define the new measure

| · |
len

on environments and crumbles, that simply counts the number

of entries:

|b, e |
len
B 1 + |e |

len
|ϵ |

len
B 0 |e[x�b]|

len
B 1 + |e |

len

After each βv/ift/iff step, the measure increases by the length

of the body that is being concatenated. For every environment e ,
we define the constant L(e) that bounds the length of the bodies

occurring anywhere in e:

L(e) B sup{|c |
len

: c body in e}.

We extend the definitions above to pointed environments and

crumbles in the expected way:

|e ¦e ′ |
len
B |ee ′ |

len
L(e ¦e ′) B L(ee ′) L(c) B L(ι(c)).

Remark C.1. For any crumble c and term t : |c |
len
= |ι(c)|

len
,

L(t) ≤ |t | and |t |
len

≤ |t |.

As usual, an execution ρ is a sequence of evaluation steps, and

we use |ρ |a to count the number of a-evaluation steps in ρ.
By Thm. C.15, all transition steps but sea steps are mapped one-

to-one to corresponding transition steps in the Crumble GLAM. As

for the number of sea transitions:
Proof

p. 24

Lemma C.16 (Number of sea-transitions). Let c be a well-
named crumble, and let ρ : ι(c) →∗

pCr e¦ = (e ¦ ev) an execution in
the Pointed Crumble GLAM. Then |e |

len
≤ |c |

len
+ (|ρ |βv + |ρ |ift +

|ρ |iff) · L(c) − |ρ |sea.

Corollary C.17. Let t be a term. For a normalizing execution ρ
in the Pointed Crumble GLAM starting from ι(t), we have |ρ |sea ≤

(|ρ |p + 1) · |t |.

Cost of evaluation. The cost of all transitions but sea was already
discussed in Subsect. 5.3. The cost of a sea transition is clearlyO(1).

Proof

p. 24Theorem C.18 (The Pointed Crumble GLAM is bilinear).

For any closed term t and any Pointed Crumble GLAM execu-
tion ρ : ι(t) →∗

pCr e¦, the cost of implementing ρ on a RAM is
O((|ρ |p + 1) · |t |).

The previous theorem also has a consequence for the non-

pointed case. Since the theorem shows that the cost of searching

for redexes and the (un)plugging operations can indeed be realised

in bilinear time, it is also true that the Crumble GLAM can be im-

plemented in bilinear time, improving Thm. 5.10 by removing the

up to search and (un)plugging side condition.

Corollary C.19 (The Crumble GLAM is bilinear). For any
closed term t and any Crumble GLAM execution ρ : t →∗

Cr c , the cost
of implementing ρ on a RAM is O((|ρ |p + 1) · |t |).

C.5 Proofs of Appendix C.4 (p. 22)
Lemma C.20. Let b be a bite and e an environment. [x�b]e is an

v-environment if and only if (b, e) is a v-crumble.

Proof. Obvious from the definition of v-environment and v-
crumble. □

Proof of (Lemma C.14). Let e¦ be a reachable pointed environ-
ment in the Pointed Crumble GLAM:

(1) Freshness: e¦ is well-named.
(2) Closure: e¦ is closed.
(3) Rightmost: e¦ = (e ¦ ev) for some environment e and some

v-environment ev .
Proof. By induction on the length of the evaluation sequence

leading to e¦. The base cases hold by the definition of reachability

and by the definition of ι(·). As for the inductive cases, we proceed
by cases on the transition rules:

(1) For βv the claim follows from the side condition. The rules

in {ift, iff, ife,@e, sea} do not increase the number of explicit

substitutions occuring in e¦outside of abstractions, hence the
claim follows from the i.h.. The rules in {subvar , subl , subif}
copy a practical value from the environment ev : note that

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

ev (x) is either an abstraction (which does not influence well-

namedness) or a boolean or an error (which do not contain

explicit substitutions).

(2) Similar to the discussion in Lemma 5.5.

(3) The rules in {βv , ift, iff, ife,@e, subvar , subl , subif} do not

change the evaluated part, hence the claim follows from the

i.h.. As for the sea rule, by Lemma C.20 it suffices to prove

that (b, ev) is a v-crumble, knowing that the other transition

rules cannot be applied. This follows from the side condition

of the sea rule: the crumble b is necessarily a practical value,

as the other cases in which the free variable x occurs are not

possible because e¦ is a closed pointed environment. □

Proof of (Prop. C.12). A reachable pointed environment e¦ is
normal iff it has the form (ϵ ¦ev) for some non-empty v-environment
ev .

Proof. The proof of the implication from right to left is trivial.

Let us now prove the other direction. Let e¦ be a reachable normal

pointed environment. By Lemma C.14, e¦ has the form (e ¦ ev). e
cannot be non-empty, because otherwise one of the transition rules

in {βv , ift, iff, ife,@e, subvar , subl , subif, sea} could be applied, con-
tradicting the hypothesis that e¦ is normal. □

Lemma C.21. For every pointed environment (e[x�b] ¦ e ′):
(e[x�b]¦e ′)⇓ = (C ⟨b, e ′⟩)⇓ where C is:

C B

{
⟨·⟩ if e = ϵ

(b ′, e ′′[x�⟨·⟩]) if e B [y�b ′]e ′′
.

Proof. Easy by the definition of (·)⇓. □

Proof of (Thm. C.15). Let e¦ be a reachable pointed environment
in the Pointed Crumble GLAM.

(1) Initialisation: (ι(c))⇓ = c for every crumble c .
(2) Principal projection: if e¦→a e ′¦ then (e¦)⇓ →a (e ′¦)⇓ for any

rule a , sea.
(3) Overhead transparency: if e¦→sea e

′
¦ then (e¦)⇓ = (e ′¦)⇓.

(4) Determinism: the transition function →pCr is deterministic.
(5) Halt: if e¦ is normal then (e¦)⇓ is normal.
(6) Overhead termination: →sea terminates.

Therefore, the Pointed Crumble GLAM (with its transition function
→pCr), the Crumble GLAM (with →Cr), and the read-back (·)⇓ form
an implementation system.

Proof.

(1) Let c = (b, e): by the definitions, (ι(c))⇓ = ([x�b]e ¦ ϵ)⇓ =
(b, eϵ) = c .

(2) There is a clear one-to-one correspondence between the

transitions of the Pointed Crumble GLAM and the Crumble

GLAM (apart from sea). In order to prove it, one may proceed

by cases on each transition rule, but we just show the case

of βv as the others are similar.

Suppose e[x�(λy.c)v] ¦ ev →βv e[x�b]e ′[z�v] ¦ ev .
By Lemma C.21, (e[x�(λy.c)v] ¦ ev)⇓ = C ⟨((λy.c)v, ev)⟩
and (e[x�b]e ′[z�v] ¦ ev)⇓ = C ⟨b, e ′[z�v]ev ⟩ for some

crumble context C . Clearly also C ⟨((λy.c)v, ev)⟩ →βv
C ⟨(b, e ′[z�v]ev)⟩.

(3) By inspection of the rule sea. We need to prove that (e[x�b]¦
ev)⇓ = (e ¦ [x�b]ev)⇓. By cases on the structure of e : if e = ϵ ,
then (ϵ[x�b] ¦ ev)⇓ = (b, ev) = (ϵ ¦ [x�b]ev)⇓. If instead
e = [y�b ′]e ′, then (e[x�b] ¦ ev)⇓ = (b ′, e ′[x�b]ev) = (e ¦
[x�b]ev)⇓.

(4) The rule sea can be applied by definition only when the

other rules cannot be applied. The remaining rules apply to

a pointed environment of the form (e[x�b]¦ev), for distinct
shapes of b:
• The rules {βv ,@e, subl } apply when b is an application,

and respectively the application of an abstraction to a

crumbled value, of a boolean/error to a crumbled value,

and of a variable to a crumbled value.

• The rule subvar applies when b is a variable.

• The rules in {ift, iff, ife, subif} apply when b is a

if-then-else, and in clearly disjoint cases according to the

structure of the condition: respectively, when the condi-

tion is true, false, an abstraction or an error, and a variable.

• Finally, note that no single rule in {subvar , subl , subif} can
transition to different pointed environments due to the

lookup of a variable which has multiple occurrences in

the environment: the lookup is deterministic because the

environment is well-named (Lemma C.14.1).

(5) By Prop. C.12, e¦ is normal iff it has the form (ϵ ¦ ev) for
some non-empty v-environment ev . Then (e¦)⇓ = (ϵ ¦ev)⇓
which is a v-crumble by Lemma C.20. By Prop. 5.3, (e¦)⇓ is

normal.

(6) Immediate consequence of forthcoming Cor. C.17 (proved

independently). □

Proof of (Lemma C.16). Let c be a well-named crumble, and let
ρ : ι(c) →∗

pCr e¦ = (e ¦ ev) an execution in the Pointed Crumble
GLAM. Then |e |

len
≤ |c |

len
+ (|ρ |βv + |ρ |ift + |ρ |iff) · L(c) − |ρ |sea.

Proof. By induction on the length of ρ. In the base case |e |
len
=

|c |
len

and |ρ |βv = |ρ |ift = |ρ |iff = |ρ |sea = 0. In the inductive

case, use the i.h. and proceed by cases on the transition rules. The

transitions subvar , subl , subif do not change the measure of the

unevaluated environment because ev (x) is a value, whose measure

is 0 by definition. A sea transition decreases by 1 the measure of

the unevaluated part. A βv/ift transition increases the measure of

the unevaluated part by a number bound by L(c). A iff transition

increases the measure of the unevaluated part by a number bound

by L(d). All remaining transitions do not increase the measure of

the unevaluated environment. □

Proof of (Thm. C.18). For any closed term t and any Pointed
Crumble GLAM execution ρ : ι(t) →∗

pCr e¦, the cost of implementing
ρ on a RAM is O((|ρ |p + 1) · |t |).

Proof. The cost |ρ | of ρ is the the total cost of principal transi-

tions (which was proved in Subsect. 5.3 to be bilinear in the number

of principal steps (plus one) and the size of the initial crumble when

starting from terms) plus the total cost of sea transitions. The cost
of sea transitions in ρ is linear in the number of sea transitions, and
therefore by Cor. C.17, again bilinear in the number of principal

steps (plus one) and the size of the initial term. □

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

D PROOFS OF SECT. 6 (OPEN CASE)
D.1 Proofs of Subsect. 6.1

Lemma D.1 (Composition of right f-contexts). Let R and R′

be right f-contexts. Then their composition R⟨R′⟩ is a right f-context.

Proof. By induction on the right f-context R. Cases:

• Hole, i.e. R B ⟨·⟩: then, R⟨R′⟩ = R′
is a right f-context by

hypothesis.

• Right, i.e. R B tR′′
: then, R⟨R′⟩ = t(R′′⟨R′⟩) is a right f-

context because R′′⟨R′⟩ is a right f-context by i.h.
• Left, i.e.R B R′′ f : then,R⟨R′⟩ = R′′⟨R′⟩ f is a right f-context
because R′′⟨R′⟩ is a right f-context by i.h.

• if-then-else, i.e. R B (if R′′ then t elseu): then, R⟨R′⟩ =

(if R′′⟨R′⟩ then t elseu) is a right f-context because R′′⟨R′⟩

is a right f-context by i.h. □

Proof of (Prop. 6.2). Let t,u be terms.
(1) Open harmony: t is cβf -normal if and only if t is a fireball.
(2) Inert substitutions and evaluation commute: Let i be an inert

term. Then t →cβf u if and only if t{x�i} →cβf u{x�i}.

Proof. (1) We show separately the two implications:

(⇒) Proof by induction on the structure of t .
• Case t value: trivial.
• Case t = us for some terms u and s: we show that then

t is an inert term (and hence a fireball). Since t is cβf -
normal, then s is cβf -normal, and hence by i.h. s is a
fireball. Since t is cβf -normal and s is a fireball, then

also u must be cβf -normal, and hence a fireball by i.h.
We proceed by cases on u, showing that the only possi-

ble cases are when u is a variable or an inert term (and

so t is a fireball). Indeed, u cannot be an abstraction

(because otherwise the rule→βf may be applied, con-

tradicting the hypothesis that t is cβf -normal); it cannot

be a boolean or err (because otherwise the rule →@e
may be applied).

• Case t = if u then s else r for some termsu, s, r : we show
that the only possible cases are when u is a variable or

a inert term (and hence t is a fireball). Since t is cβf -
normal, then u is cβf -normal, and hence by i.h. u is a

fireball.u it cannot be an abstraction or err (because oth-
erwise the rule →ife may be applied, contradicting the

hypothesis that t is cβf -normal); it cannot be a boolean

(because otherwise one of the rules →ift or →iff may

be applied).

(⇐) By hypothesis, t is a fireball, i.e. either a value or an

inert term.

• Value: We proceed by cases on the definition of value.

If t is a variable, then it is clearly cβf -normal. If t is an
abstraction, then it is cβf -normal since→cβf does not

reduce under λ’s. Otherwise t is a either a boolean or

err, which clearly are cβf -normal.

• Inert term: We proceed by cases on the definition of

inert term. If t = x f for some variable x and some

fireball f , then f is cβf -normal by i.h., and x is clearly

cβf -normal and different from abstractions, booleans

and err; therefore, no reduction rule can be applied to

t , i.e. t is cβf -normal. If t = x f or t = i f for some inert

term i and some fireball f , then i and f are cβf -normal

by i.h.; moreover, i is not an abstraction or boolean or

err; therefore, no reduction rule can be applied to t , i.e. t
is cβf -normal. Otherwise, t = if u then s else r for some

terms u, s, r where u is either a variable or a inert term;

since u is cβf -normal (if u is a inert term, this holds by

i.h.), then no reduction rule can be applied to t , i.e. t is
cβf -normal. □

(2) The direction (⇐) is exactly Lemma D.3. The direction (⇒)

is proved by induction on the definition of t →cβf u, in a

way that is analogue to the proof of Lemma D.3.

Lemma D.2 (Fireballs are closed under substitution and

anti-substitution of inert terms). Let t be a term and i be an
inert term. Then, t{x�i} is a fireball (resp. an abstraction) if and
only if t is a fireball (resp. an abstraction). Moreover, t{x�i} = true
(resp. t{x�i} = false; t{x�i} = err) if and only if t = true (resp. t =
false; t = err).

Proof. The left-to-right direction (⇒) is proved by a simple

induction on the fireball structure of t{x�i}. Conversely, the right-
to-left direction (⇐) is proved by a simple induction on the inert

structure of t . □

Lemma D.3 (Substitution of inert terms does not create

redexes). Let t,u be terms and i be an inert term. There is a term s
such that, if t{x�i} →cβf u then t →cβf s and u = s{x�i}.

Proof. By induction on the right fireball context closing the

redex. Cases:

• Step at the root: Sub-cases:
(1) Beta-step, i.e. t{x�i} = (λy.r {x�i})q{x�i} →βf

r {x�i}{y�q{x�i}} C u where t B (λx .r)q and q{x�i}
is a fireball. By Lemma D.2, q is a fireball and hence

t = (λx .r)q →cβf r {y�q}. So, s B r {y�q} satisfies the

statement, as s{x�i} = r {y�q}{x�i} = u.
(2) Conditional step with true, i.e. t{x�i} = if

true then s{x�i} elseq{x�i} →ift s{x�i} C u
where t B if r then s elseq for some term r such that

r {x�i} = true. By Lemma D.2, r = true and hence

t = if true then s elseq →ift s .
(3) Conditional step with false, i.e. t{x�i} = if

true thenq{x�i} else s{x�i} →iff s{x�i} C u
where t B if r thenq else s for some term r such that

r {x�i} = false. By Lemma D.2, r = false and hence

t = if false thenq else s →iff s .
(4) Conditional step to error, i.e. t{x�i} =

if r thenq{x�i} elsem{x�i} →ife err C u where

r B λy.r ′ or r = err, and t B if p thenq elsem for some

term p such that p{x�i} = r . By Lemma D.2, p is either an

abstraction or err and hence t = if r thenq elsem →ife err.
So, s B err satisfies the statement, as s{x�i} = err = u.

(5) Application step to error, i.e. t{x�i} =

r {x�i}q{x�i} →@e err C u where r {x�i} ∈

{true, false, err} and t B rq. By Lemma D.2,

r ∈ {true, false, err} and hence t = rq →@e err.
So, s B err satisfies the statement, as s{x�i} = err = u.

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

• Application left, i.e. t{x�i} = r {x�i} f {x�i} →cβf
p f {x�i} C u where t B r f and r {x�i} →cβf p. By i.h.
there is a term s ′ such that p = s ′{x�i} and r →cβf s ′. Then

s B s ′ f satisfies the statement, as s{x�i} = s ′{x�i} f xi =
u.

• Application right, i.e. t{x�i} = q{x�i}r {x�i} →cβf
q{x�i}p C u where t B qr and r {x�i} →cβf p. Analo-

gous to the application left case, just switch left and right.

• If-then-else, i.e. t{x�i} =

if r {x�i} thenq{x�i} elsep{x�i} →cβf
ifm thenq{x�i} elsep{x�i} C u where t B
if r thenq elsep and r {x�i} →cβf m. By i.h. there

is a term s ′ such that m = s ′{x�i} and r →cβf s ′.

Then s B if s ′ thenq elsep satisfies the statement, as

s{x�i} = if s ′{x�i} thenq{x�i} elsep{x�i} = u. □

D.2 Proofs of Subsect. 6.2
D.2.1 Evaluated environments.

Given the terms t1, . . . , tn and pairwise distinct variables

x1, . . . , xn , let σ B {x1�t1, . . . , xn�tn } be the simultaneous
capture-avoiding substitution of ti for xi , for all 1 ≤ i ≤ n. In
particular, if n = 0 then σ = {}, the identity (or empty) sub-

stitution. If u is a term and y , xi for all 1 ≤ i ≤ n, we set

{y�u} ∪ σ B {y�u, x1�t1, . . . , xn�tn }.
Given an environment e , the simultaneous substitution σ (e)

associated with e is defined by induction on the length of e:

σ (ϵ) B {} σ ([x�b]e) B {x�(b, e)↓} ∪ σ (e) .

Lemma D.4 (Semi-closure under substitution). Let v be a
value, x1, . . . , xn be pairwise distinct variables, and f1, . . . , fn be
fireballs. Then v{x1�f1, . . . , xn�fn } is a fireball. If moreover v is a
λ-abstraction, then v{x1�f1, . . . , xn�fn } is a λ-abstraction.

Proof. Letσ B {x1�f1, . . . , xn�fn }. By cases on the definition
of value:

• Variable, i.e. either v B xi for some 1 ≤ i ≤ n and then

vσ = fi which is a fireball by hypothesis; or v B y , xi for
all 1 ≤ i ≤ n and then vσ = y which is a fireball.

• Abstraction, i.e. v B λy.u and we can suppose without loss

of generality that y <
⋃n
i=1

fv(fi) ∪ {x1, . . . , xn }; therefore,
vσ = λy.(uσ) which is a λ-abstraction and hence a fireball.

• Booleans and errors, i.e. v ∈ {true, false, err}. Trivial since
vσ = v . □

Lemma D.5 (Read-back to fireball). For every crumbled value
v and f -environment ef , one has that (v, ef)↓ is a fireball. If moreover
v is a practical value, then (v, ef)↓ is a practical value.

Proof. By induction on the length of ef . We proceed by cases

on the shape of v .

• Abstraction: If ef B ϵ , then clearly (v, ef)↓ = v↓ is a λ-
abstraction and hence a fireball. Otherwise ef B e ′f [x�b]

where b is a bite such that b↓ is a fireball: thus, (v, ef)↓ =
(v, e ′f)↓{x�b↓}; by i.h., (v, e ′f)↓ is a λ-abstraction, thus

(v, ef)↓ is a λ-abstraction (and so a fireball) by Lemma D.4.

• Booleans and errors: the proof is identical to the previous

case.

• Variable: If v B x < dom(ef), then (v, ef)↓ = x which is a

fireball; otherwise v B x ∈ dom(ef) with ef B e ′f [x�b]e ′′f ,

and then (x, ef)↓ = (b, e ′′f)↓ (since x < dom(e ′f)) is a fire-

ball by definition of f -environment, as the f -environment

[x�b]e ′′f = E⟨(b, e ′′f)⟩ with E B [x�⟨·⟩]. □

Lemma D.6. Let ef well-named. If (x, ef)↓ is a practical value, then
ef (x) is a practical value.

Proof. Assume by contradiction that x is not defined in ef : then
by Lemma B.5 (x, ef)↓ = (x, ϵ)↓ = x , contradicting the hypothesis
that (x, ef)↓ is a practical value. Therefore x must be defined in ef , i.e.
ef B e ′f [x�b]e ′′f with b B ef (x). By the hypothesis that ef is well-

named, x < dom(e ′f); therefore (x, ef)↓ = (b, e ′′f)↓ by Lemma B.9.

By the definition of ef , since (b, e
′′
f)↓ is a practical value, then also

b is a practical value, and we conclude. □

Lemma D.7. Let c = (b, ef) be a well-named crumble, and let b
have the following property: either b is a practical value, or b is x
or xv or if x then c elsed but x is not defined in ef or ef (x) is not a
practical value. Then c is a f -crumble.

Proof. Let c = (b, ef) as above: it suffices to prove that (b, ef)↓
is a fireball, and that if (b, ef)↓ is a practical value, then also b is a

practical value. By cases on the property about b in the hypothesis:

• Abstraction: nothing to prove because (b, ef)↓ is an abstrac-

tion by Lemma D.5 and thus a fireball.

• Booleans and errors: nothing to prove because (b, ef)↓ is a
boolean or an error and thus a fireball.

• Variable, i.e. b = x for some x when x is not defined in

ef or ef (x) is not a practical value. (b, ef)↓ is a fireball by

Lemma D.5. Let us now assume that (b, ef)↓ is a practical

value, and show that it is not possible: in fact by Lemma D.6

ef (x) must then be defined and a practical value, contradict-

ing the hypothesis.

• Application of a variable to a crumbled value, i.e. b = xv
when x is not defined in ef or ef (x) is not a practical value.
Note that (b, ef)↓ = (x, ef)↓(v, ef)↓, where both (x, ef)↓ and
(v, ef)↓ are fireballs by Lemma D.5. If (x, ef)↓ is inert there
is nothing else to prove, because then (b, ef)↓ is a fireball,

and clearly not a practical value. The case when (x, ef)↓ is
a practical value is not possible: again by Lemma D.6 ef (x)
should be defined and a practical value, contradicting the

hypothesis.

• if-then-else where the guard is a variable, i.e.
b = if x then c elsed when x is not defined in

ef or ef (x) is not a practical value. Note that

(b, ef)↓ = if (x, ef)↓ then (c @ ef)↓ else (d @ ef)↓, where
(x, ef)↓ is a fireball by Lemma D.5. If (x, ef)↓ is inert there
is nothing else to prove, because then (b, ef)↓ is a fireball,

and clearly not a practical value. The case when (x, ef)↓ is a
practical value is not possible: again by Lemma D.6 ef (x)
should be defined and a practical value, contradicting the

hypothesis. □

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

Corollary D.8. If the well-named crumble (b, ef) is normal, then
it is a f -crumble.

Proof of (Prop. 6.3). A crumble c is oCr-normal if and only if it
is a f -crumble.

Proof.

(⇒) Let c = (b, e) be well-named and normal. We proceed by

structural induction on e:
– if e = ϵ , then (b, ϵ) is a f -crumble by Cor. D.8;

– if e = [x�b ′]e ′, then also the crumble (b ′, e ′) is normal.

By i.h. (b ′, e ′) is a f -crumble, and therefore e = [x�b ′]e ′

is a f -environment. By Cor. D.8, c = (b, e) is a f -crumble.

(⇐) Let c = cv , we need to prove that cv is normal. Let cv =
C ⟨(b, ef)⟩ for some C,b, ef . First of all, note that by the def-

inition of cv , (b, ef)↓ is a fireball, and that if (b, ef)↓ is a

practical value, then also b is a practical value. We prove that

no reduction rule is applicable to C ⟨(b, ef)⟩:
– Rule βf can be applied only if b = (λx .b ′)v , but this
contradicts the hypothesis that (b, ef)↓ is a fireball, since
((λx .b ′)v, ef)↓ = (λx .b ′, ef)↓ (v, ef)↓ and (λx .b

′, ef)↓ is an
abstraction by Lemma D.5.

– The analysis for the rules ift, iff, ife,@e is similar to the

previous case: in all cases the read-back of the lhs of the

rule is not a fireball, contradicting the hypothesis.

– Rule subvar can be applied only if b is some variable x and

ef (x) is defined and a practical value. This contradicts the

hypothesis that if (b, ef)↓ is a practical value, then also b
is a practical value.

– Rule subl can be applied only if b = xv for some x,v ,
and ef (x) is defined and a practical value. This con-

tradicts the hypothesis that (b, ef)↓ is a fireball, since

(xv, ef)↓ = (x, ef)↓(v, ef)↓ and (x, ef)↓ is a practical value
by Lemma D.5 because ef (x) is a practical value.

– Rule subif can be applied only if b = if x then c elsed
for some x, c,d , and ef (x) is defined and a prac-

tical value. This contradicts the hypothesis that

(b, ef)↓ is a fireball, since (if x then c elsed, ef)↓ =

if (x, ef)↓ then (c @ ef)↓ else (d @ ef)↓ and (x, ef)↓ is a

practical value by Lemma D.5 because ef (x) is a practical
value. □

D.2.2 The implementation theorem for the Open Crumble GLAM.

Lemma D.9 (Invariants for the Open Crumble GLAM). For
every reachable crumble c :

(1) Freshness: c is well-named.
(2) Disjointedness: if c = C ⟨(b, e)⟩ then dom(C) ∩ fv(b) = ∅.
(3) Bodies: any body in c is a subterm (up to renaming) of the

initial crumble.
(4) Weak contextual decoding: for every decompositionC ⟨(b, ef)⟩

where (b, ef)↓ is not a fireball, if C ′′ is a prefix of C then C ′′
↓

is a right v-context.

Proof. By induction on the length of the reduction sequence

leading to the crumble c . The base cases hold by Lemma 4.5 (by

noting that for Point 4, Lemma 4.5.5 implies the weaker statement

Lemma D.9.4). As for the inductive cases, we inspect each reduction

rule:

1. The substitution transitions subvar , subl , subif do not change
the set of variables occurring on the lhs of substitutions

outside abstractions because they copy a value that does not

contain any. Hence the claim follows from the i.h.. For the
rule βf the claim follows from the side condition. For the

remaining rules ift, iff, ife,@e the claim follows from the fact

that all substitutions outside abstractions in the rhs alredy

occur in the lhs.

2. The substitution transitions subvar , subl , subif do not change
the domain of the crumble and only copy to the left a value

v such that c = C ′⟨(v, e ′)⟩ and C is a prefix of C ′
. Thus the

claim follows from the i.h. because dom(C) ⊆ dom(C ′) and

the free variables of the rhs are a subset of the union of the

free variables of the lhs with fv(v).
Transition βf copies to the toplevel and renames the

body of an abstraction. By the properties of α-renaming

fv((c @ [x�v])α) = fv(c @ [x�v]) = fv(λx .c). If the b is

chosen to be in the crumble context (say C ′′
) or in ef of

the reduction rule, then the claim follows from the i.h.. Let
instead (c @ [x�v])α C C ′⟨(b, e ′)⟩ with C = C ′′⟨C ′⟩: then

fv(C ′⟨(b, e ′)⟩) = fv(λx .c) and fv(b) ⊆ dom(e ′) ∪ fv(λx .c).
dom(e ′) ∩ dom(C) = ∅ by the side condition of βf , and
fv(λx .c) ∩ dom(C) = ∅ by i.h., therefore we conclude with
fv(b) ∩ dom(C) = ∅.

3. Transitions subvar , subl , subif may copy an abstraction, but

the abstraction was already in the environment, and the

claim follows from the i.h.. Transition βf copies and renames

the body of an abstraction that was already in the environ-

ment, and the claim follows from the i.h. since the trans-

lation commutes with the renaming of free variables (Re-

mark 4.1.3). All the bodies in the rhs of the remaning tran-

sitions ift, iff, ife,@e already occur in the lhs and therefore

the claim follows from the i.h..
4. Let b ′′ →n C ′⟨(b ′, e ′v)⟩ →a C ⟨(b, ev)⟩ (where b is not a

practical value). Cases of the transition C ′⟨(b ′, e ′v)⟩ →a
C ⟨(b, ev)⟩:
– Case βf : C

′⟨((λx .c)v, ev)⟩ →βv C ′⟨cα @ ([xα�v]ev)⟩.
Let C ′′

be a prefix of C . There are two sub-cases:

∗ C ′′ is a prefix of C ′
: by i.h. C ′′

↓
is a right v-context.

∗ C ′ is a prefix ofC ′′
, i.e.C ′′ = C ′⟨C ′′′⟩ and cα = C ′′′⟨c ′⟩.

By Lemma 4.5.4 and Lemma D.9.3 c is the translation
of a λ-term, by Remark 4.1.3 cα is so, and thus by

Lemma 4.5.5 C ′′′
↓

is a right v-context. By i.h., C ′
↓
is a

right v-context as well. Since C ′′
↓
= C ′

↓
⟨C ′′′

↓
⟩ accord-

ing to Corollary B.11.2, we obtain that C ′′
↓
is a right v-

context as composition of right v-contexts (Lemma A.1).

– Case ift: C ′⟨(if true then c elsed, ev)⟩ →βv C ′⟨c @ ev ⟩.
Let C ′′

be a prefix of C . There are two sub-cases:

∗ C ′′ is a prefix of C ′
: by i.h. C ′′

↓
is a right v-context.

∗ C ′ is a prefix of C ′′
, i.e. C ′′ = C ′⟨C ′′′⟩ and c = C ′′′⟨c ′⟩.

By Lemma 4.5.4 and Lemma D.9.3 c is the translation
of a λ-term and thus by Lemma 4.5.5 C ′′′

↓
is a right v-

context. By i.h., C ′
↓
is a right v-context as well. Since

C ′′
↓
= C ′

↓
⟨C ′′′

↓
⟩ according to Corollary B.11.2, we obtain

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

that C ′′
↓
is a right v-context as composition of right

v-contexts (Lemma A.1).

– Case iff: identical to the previous case.

– Cases subvar , ife,@e: they follow from the i.h. since C is

necessarily a prefix of C ′
because b is a practical value.

– Cases subl and subif : they follow from the i.h., since e ′v =
ev and C = C ′

. □

Lemma D.10 (Determinism). →oCr is deterministic.

Proof. Assume that there exists a crumble that may be decom-

posed in two ways C ⟨(b, ef)⟩ = C ′⟨(b ′, e ′f)⟩ such that they reduce

respectively C ⟨(b, ef)⟩ →a C ⟨c⟩ and C ′⟨(b ′, e ′f)⟩ →b C ′⟨d⟩ with

rules a,b ∈ {βf , ift, iff, ife,@e, subvar , subl , subif}.
We prove that it must necessarily be a = b, C = C ′

, and c = d
(up to α-equivalence). Three cases:

• C strict initial segment of C ′
, i.e. C ′ = C ⟨C ′′⟩ for some

C ′′ , ⟨·⟩. We show that this case is not possible: in fact,

it follows that ef = E⟨(b ′, e ′f)⟩ for some E, thus (b ′, e ′f) is a

f -crumble, and by Prop. 6.3 it must be normal, contradicting

the hypothesis that (b ′, e ′f) and c reduce with rule b.

• C = C ′
. By inspection of the reduction rules, a = b: in

fact the rule βf applies only when b is the application of an

abstraction to a crumbled value, the rule subvar only when b
is a variable, and the rule subl only when b is the application

of a variable to a crumbled value, etc. It remains to show

that c = d (up to alpha): this follows from the determinism

of the lookup in the environment during subvar , subl and
subif reductions.

• C ′
initial segment of C , i.e. C = C ′⟨C ′′⟩. Symmetric to the

first case. □

Proposition D.11 (Overhead transparency). Let c be a reach-
able crumble, and let a ∈ {subvar , subl , subif}. If c →a d then
c↓ = d↓.

Proof. Let c B C ⟨(b, ef)⟩ →a C ⟨(b ′, ef)⟩ C d , and let e ′f , e
′′
f be

such that ef = e ′f [x�ef (x)]e
′′
f , noting that x does not occur in e ′′f

by Lemma D.9.1 and Lemma D.9.2. We first prove that (b, ef)↓ =
(b ′, ef)↓:

• Case subvar , i.e. b B x and b ′ = ef (x). By Lemma B.4,

(x, e ′f [x�ef (x)]e
′′
f)↓ = (x, e ′f e

′′
f)↓{x�(ef (x), e

′′
f)↓} =

(ef (x), e
′′
f)↓ as c is well-named (Lemma D.9.1). By

Lemma D.9.2, fv(ef (x)) ∩ dom(e ′f [x�ef (x)]) = ∅, therefore

(ef (x), e
′′
f)↓ = (ef (x), ef)↓, and we conclude with (x, ef)↓ =

(ef (x), ef)↓.
• Case subl , i.e. b B xv and b = ef (x)v . Since (xv, ef)↓ =
(x, ef)↓(v, ef)↓ (Prop. B.8), we can use the point above to

conclude.

• Case subif , i.e. b B if x then c elsed and b ′ =

if ev (x) then c elsed . Since (if x then c elsed, ev)↓ =

if (x, ev)↓ then (c @ ev)↓ else (d @ ev)↓ (Prop. B.8), we can
use the point above to conclude.

We now prove that C ⟨(b, ef)⟩↓ = C ⟨(b ′, ef)⟩↓ under

the hypothesis that (b, ef)↓ = (b ′, ef)↓. By cases on C:
if C B ⟨·⟩ just use the hypothesis. Otherwise C B

(b ′′, e[x�⟨·⟩]) and so (b ′′, e[x�b]ef)↓ = (b ′′, eef)↓{x�(b, ef)↓} =
(b ′′, eef)↓{x�(b ′, ef)↓} = (b ′′, e[x�b ′]ef)↓ by Lemma B.4. □

Lemma D.12 (Substitution). Let t and u be terms, x1, . . . , xn
pairwise distinct variables, and f1, . . . , fn be fireballs. If t →a
u for a ∈ {βv , ift, iff, ife,@e}, then t{x1�f1, . . . , xn�fn } →cβf
u{x1�f1, . . . , xn�fn }.

Proof. Let σ B {x1�f1, . . . , xn�fn }. By induction on the defi-

nition of t →βv u. Cases:

• Top level:.
– βv -step, i.e. t B (λy.s)v ′ 7→βv s{y�v ′} C u and we can

suppose without loss of generality that y <
⋃
i=1

fv(fi) ∪
{x1, . . . , xn }. According to Lemma D.4, v ′σ is a fireball.

As a consequence, tσ = (λy.sσ)(v ′σ) →βf sσ {y�v ′σ } =

s{y�v ′}σ = uσ .
– the ift, iff, ife,@e steps are similar to the βv -step.
Lemma D.4 is used in the proof of the ife-step to prove that
a ife-redex where the guard is an abstraction is mapped

to a ife-redex of the same kind.

• Application right, i.e. t B sr →a sq C u with r →a q; by i.h.
rσ →cβf qσ , and therefore tσ = sσ (rσ) →cβf sσ (qσ) = uσ .

• Application left, i.e. t B sv ′ →a rv ′ C u with s →a r ; by
i.h., sσ →cβf rσ ; according to Lemma D.4, v ′σ is a fireball

and hence tσ = sσ (v ′σ) →cβf rσ (v ′σ) = uσ .

• If-then-else guard, i.e. t B if r then s elsep →a
if q then s elsep C u with r →a q; by i.h. rσ →cβf
qσ , and therefore tσ = if rσ then sσ elsepσ →cβf
if qσ then sσ elsepσ = uσ . □

Lemma D.13 (Substitution of fireballs). If ef B

[x1�b1] . . . [xn�bn] is a f -environment, then σ (ef) =

{x1�u1, . . . , xn�un } where all the ui’s are fireballs.

Proof. By induction on the length of e . If ef B ϵ , then
σ (ef) = {} and the statement is vacuously true. Otherwise

ef B [x�b]e ′f with e ′f B [x1�b1] . . . [xn�bn] and then σ (ef) =

{x�(b, e ′f)↓} ∪ σ (e ′f); by i.h. (since e ′f is a f -environment), σ (e ′f) =

{x1�u1, . . . , xn�un } where all the ui’s are fireballs; also (b, e ′f)↓ is

a fireball by definition of f -environment, as ef = E⟨(b, e ′)⟩ with
E B [x�⟨·⟩]; therefore, σ (ef) = {x�(b, e ′f)↓, x1�u1, . . . , xn�un }

satisfies the statement. □

Lemma D.14 (Read-back vs. append). For any crumble c and
f -environment ef , (c @ ef)↓ = c↓σ (ef).

Proof. By induction on the length of ef . If ef B ϵ then

σ (ef) = {} and hence (c @ ef)↓ = c↓ = c↓{} = c↓σ (ef). Oth-
erwise ef B [x�b]e ′f where x < dom(e ′f); by i.h. (since e ′f is a

fireball environment), ((c @ [x�b]) @ e ′f)↓ = (c @ [x�b])↓σ (e
′
f)

and (b, e ′f)↓ = ((b, ϵ) @ e ′f)↓ = (b, ϵ)↓σ (e
′
f) = b↓σ (e

′
f); by the defini-

tions of append and read-back, (c @ [x�b])↓ = c↓{x�b↓}; there-
fore, (c @ ef)↓ = ((c @ [x�b]) @ e ′f)↓ = (c @ [x�b])↓σ (e

′
f) =

(c↓{x�b↓})σ (e
′
f) = c↓({x�b↓σ (e

′
f)} ∪ σ (e ′f)) = c↓{x�(b, e ′f)↓} ∪

σ (e ′f) = c↓σ (ef). □

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

Lemma D.15. If c↓ →a d↓ for a ∈ {βv , ift, iff, ife,@e}, then
(c @ ef)↓ →βf (d @ ef)↓.

Proof. According to LemmaD.13, σ (ef) = {x1�f1, . . . , xn�fn }
where f1, . . . , fn are fireballs. By Lemma D.14 and Lemma D.12,

(c @ ef)↓ = c↓σ (ef) →βf d↓σ (ef) = (d @ ef)↓ □

Note that Lemma D.15 does not hold if we let →a be →βi in

the hypothesis. Indeed, take c B ((λx .(x, ϵ))y, [y�(zz, ϵ)]) and d B
(y, [y�zz]) and ef B [z�λx .(xx, ϵ)]: then, c↓ = (λx .x)(zz) →βi
zz = d↓ but (c @ ef)↓ = (λx .x)((λx .xx)λx .xx) ̸→βf
(λx .xx)λx .xx = (d @ ef)↓. The problem is essentially due to the

fact that fireballs, contrary to values, are not closed by substitution:

this a notable difference between the closed case (where the normal

forms coincide with closed values) and the open case (where the

normal forms coincide with fireballs).

Proposition D.16 (Principal projection). Let c be a reachable
crumble. If c →a d for a ∈ {βf , ift, iff, ife,@e} then c↓ →a d↓.

Proof. Note that for everyb, ev , (b, ev) = (b, ϵ) @ ev . Therefore
all steps can be written in the formC ⟨(b, ev)⟩ →a C ⟨c @ ev ⟩ where
b is not a crumbled value. The crumble contextC unfolds to a right

v-context by Lemma D.9.4. We need to prove that C ⟨(b, ev)⟩↓ →a
(C ⟨c @ ev ⟩)↓. By Lemma B.10 and Lemma D.15, it suffices to prove

that C ⟨(b, ϵ)⟩↓ →b C ⟨c⟩↓ for all a , βf and b = a or for a = βf and

b = βv .
We proceed by cases on the rule→a .

• Rule βf : we need to prove that C ⟨((λx .c)v, ϵ)⟩↓ →βv
C ⟨e @ [y�v]⟩↓ where e @ [y�v] B (c @ [x�v])α .

C ⟨((λx .c)v, ϵ)⟩↓ = C↓⟨(λx .c↓)v↓⟩ by Corollary B.11.1

=α C↓⟨(λy.e↓)v↓⟩

→βv C↓⟨e↓{y�v↓}⟩

= C↓⟨e @ [y�v]↓⟩

= C ⟨e @ [y�v]⟩↓ by Corollary B.11.1

= C ⟨(c @ [x�v])α ⟩↓.

Note that the second use of Corollary B.11.1 requires thatC #

(e @ [y�v]) i.e. that fv(C) ∩ dom(e @ [y�v]) = ∅, which

follows from the side condition about α-renaming in the βf
rule.

• Rules ift, iff, ife,@e: a quick check by cases over (b, ev) 7→a
c @ ev shows that b↓ →a c↓.
For example, (if true then c elsed, ev) 7→ift c @ ev and

(if true then c elsed)↓ = if true then c↓ elsed↓ →ift c↓. The
other cases are all similar.

Thus

C ⟨(b, ϵ)⟩↓ = C↓⟨b↓⟩ by Corollary B.11.1

→a C↓⟨c↓⟩

= C ⟨c⟩↓ by Corollary B.11.1

Note that the second use of Corollary B.11.1 requires that

C # c . The property holds because all substitutions outside

abstractions in the rhs of the rules →a under consideration

were such in the lhs, and because reachable crumbles are

well-named (Lemma D.9.1). □

Lemma D.17 (Halt). If c is oCr-normal then c↓ is→cβf -normal.

Proof. By Prop. 6.3, if c is normal then it is a f -crumble i.e.
c = cf . By definition of cf , c↓ is a fireball. By harmony for λiffire, c↓
is cβf -normal. □

Proof of (Thm. 6.5). Let c be a crumble that is reachable by the
Open Crumble GLAM.

(1) Initialization: t ↓ = t

(2) Principal projection: if c →a d then c↓ →a d↓ for a ∈

{βf , ift, iff, ife,@e}.
(3) Overhead transparency: if c →a d then c↓ = d↓ for any rule

a ∈ {subvar , subl , subif}.
(4) Determinism: the transition →oCr is deterministic.
(5) Halt: if c is→oCr-normal then c↓ is→cβf -normal.
(6) Overhead termination: →a terminates, for any rule a ∈

{subvar , subl , subif}.

Therefore, the Open Crumble GLAM, the right-to-left conditional fire-
ball evaluation→cβf and the read-back (·)↓ form an implementation
system.

Proof. (1) See Prop. 4.2.

(2) See Prop. D.16.

(3) See Prop. D.11.

(4) See Lemma D.10.

(5) See Lemma D.17.

(6) Immediate consequence of the equivalent of Lemma 5.8 for

the Open Crumble GLAM. □

D.3 The Open Pointed Crumble GLAM
The design of a machine, called Open Pointed Crumble GLAM, for

the open case that decomposes the search for the next redex and

(un)plugging inO(1) transitions follows the same pattern as for the

Pointed Crumble GLAM in Appendix C.4 (p. 22) for the closed case.

In particular, the definitions of pointed environment, translation ι(·)
(from crumbles to pointed environments) and read-back (·)⇓ (from

pointed environments to crumbles) are the same. The transitions of

the Open Pointed Crumble GLAM (whose union is noted→poCr)

differ from the ones of the Pointed Crumble GLAM exactly as the

transitions of Open Crumble GLAM differ from the ones of the

Crumble GLAM.

D.3.1 Implementation.

Pointed environments. For the Open Pointed Crumble GLAM, the

definitions of pointed environment, translation ι(·) (from crumbles

to pointed environments) and read-back (·)⇓ (from pointed envi-

ronments to crumbles) are the same as for the Pointed Crumble

GLAM, see Appendix C.4 (p. 22).

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

Evaluation. The transition rules of the Open Pointed Crumble

GLAM are:

e[x�(λy.c)v]¦ef →βf e[x�b]e ′[z�v]¦ef (i)

e[x�if true then c elsed]¦ef →ift e[x�b]e ′¦ef (ii)

e[x�if false then c elsed]¦ef →iff e[x�b]e ′¦ef (iii)

e[x�ifv then c elsed]¦ef →ife e[x�err]¦ef (iv)

e[x�vw]¦ef →@e e[x�err]¦ef (v)

e[y�x]¦ef →subvar e[y�ef (x)]¦ef (vi)

e[y�xv]¦ef →subl e[y�ef (x)v]¦ef (vi)

e[y�if x then c elsed]¦ef →subif e[y�if ef (x) then c elsed]¦ef (vi)

e[x�b]¦ef →sea e ¦ [x�b]ef (vii)

where

i. λz.(b, e ′) B (λy.c)α such that (e[x�b]e ′[z�v] ¦ ef) is well-
named.

ii. where c C (b, e ′)
iii. where d C (b, e ′)
iv. if v = λx .e or v = err.
v. if v ∈ {true, false, err}.
vi. if x ∈ dom(ef).
vii. if none of the other rules is applicable, i.e. when b is a practical

value v¬x or when b is x , xv , or if x then c elsed but x is not

defined in ef .

The transition function →poCr of the Open Pointed Crumble

GLAM is then defined as the union of the rules above. A principal
transition of the Open Pointed Crumble GLAM is a transition→a
for any rule a ∈ {βf , ift, iff, ife,@e}.

Definition D.18 (Reachable state). A pointed environment is said

to be reachable (in the Open Pointed Crumble GLAM) if it is ob-

tained from evaluation steps starting from the translation ι(c) of a
well-named crumble c .

Lemma D.19 (Invariants). Let e¦ be a reachable pointed environ-
ment:

(1) Freshness: e¦ is well-named;
(2) Rightmost: e¦ = (e ¦ef) for some e and some f -environment

ef .

Proof. By induction on the length of the evaluation sequence

leading to e¦. The base cases hold by the definition of reachability

and by the definition of ι(·). As for the inductive step, we proceed
by cases on the transitions:

(1) For βf the claim follows from the side condition. The rules in

{ift, iff, ife,@e, sea} do not increase the number of explicit

substitutions occuring in e¦outside of abstractions, hence the
claim follows from the i.h.. The rules in {subvar , subl , subif}
copy a practical value from the environment ef : note that
ef (x) is either an abstraction (which does not influence well-

namedness) or a boolean or an error (which do not contain

explicit substitutions).

(2) The rules in {βf , ift, iff, ife,@e, subvar , subl , subif} do not

change the evaluated part, hence the claim follows from the

i.h.. As for the sea rule, by Lemma D.21 it suffices to prove

that (b, ef) is a f -crumble, knowing that the other transition

rules cannot be applied: this follows from Lemma D.7. □

Lemma D.20 (Harmony for the Open Pointed Crumble

GLAM). Let e¦ be a reachable pointed environment in the Open
Pointed Crumble GLAM: e¦ is normal if and only if it has the form
(ϵ ¦ef) for some non-empty f -environment ef .

Proof. The proof of the implication from right to left is triv-

ial. As for the other direction, let e¦ be a reachable normal

pointed environment. By Lemma D.19, e¦ has the form (e ¦ ef).
Note that e must be empty; otherwise one of the transitions in

{βf , ift, iff, ife,@e, subvar , subl , subif, sea} could be applied, contra-
dicting the hypothesis that e¦ is normal. □

Lemma D.21. If [x�b]e is a f -environment, then (b, e) is a f -
crumble.

Proof. Assume that [x�b]e is a f -environment, and let (b, e) =
C ⟨(b ′, e ′)⟩ for some C,b ′, e ′. Then [x�b]e = E⟨C ⟨b ′, e ′⟩⟩ for E B
[x�⟨·⟩]. The requirements for a f -crumble follow from the defini-

tion of f -environment for [x�b]e . □

Theorem D.22 (Implementation). Let e¦ a pointed environment
that is reachable by the Open Pointed Crumble GLAM.

(1) Initialization: (ι(c))⇓ = c for every crumble c .
(2) Principal Projection: if e¦→a e ′¦ then (e¦)⇓ →a (e ′¦)⇓ for any

rule a , sea.
(3) Overhead Transparency: if e¦→sea e

′
¦, then (e¦)⇓ = (e ′¦)⇓.

(4) Determinism: the transition function →poCr is deterministic.
(5) Halt: if e¦ is normal, then (e¦)⇓ is normal.
(6) Overhead Termination: →sea terminates.

Therefore, the Open Pointed Crumble GLAM (with its transition func-
tion →poCr), the Open Crumble GLAM (with →oCr), and the read-
back (·)⇓ form an implementation system.

Proof.

(1) Let c = (b, e): by the definitions, (ι(c))⇓ = ([x�b]e ¦ ϵ)⇓ =
(b, eϵ) = c .

(2) There is a clear one-to-one correspondence between the

transitions of the Open Pointed Crumble GLAM and the

Open Crumble GLAM (apart from sea). The proof is similar

to the one of Thm. C.15.

(3) By inspection of the rule sea. We need to prove that (e[x�b]¦
ef)⇓ = (e ¦ [x�b]ef)⇓. By cases on the structure of e : if e = ϵ ,
then (ϵ[x�b] ¦ ef)⇓ = (b, ef) = (ϵ ¦ [x�b]ef)⇓. If instead
e = [y�b ′]e ′, then (e[x�b] ¦ ef)⇓ = (b ′, e ′[x�b]ef) = (e ¦
[x�b]ef)⇓.

(4) The rule sea can be applied by definition only when the

other rules cannot be applied. The remaining rules apply to

a pointed environment of the form (e[x�b]¦ef), for distinct
shapes of b:
• The rules {βf ,@e, subl } apply when b is an application,

and respectively the application of an abstraction to a

crumbled value, of a boolean/error to a crumbled value,

and of a variable to a crumbled value.

• The rule subvar applies when b is a variable.

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

• The rules in {ift, iff, ife, subif} apply when b is a

if-then-else, and in clearly disjoint cases according to the

structure of the condition: respectively, when the condi-

tion is true, false, an abstraction or an error, and a variable.

• Finally, note that no single rule in {subvar , subl , subif} can
transition to different pointed environments due to the

lookup of a variable which has multiple occurrences in

the environment: the lookup is deterministic because the

environment is well-named (Lemma D.19.1).

(5) By Lemma D.20, e¦ is normal iff it has the form (ϵ ¦ ef) for
some non-empty f -environment ef . Then (e¦)⇓ = (ϵ ¦ef)⇓
which is a f -crumble by Lemma D.21. By Prop. 6.3, (e¦)⇓ is

normal.

(6) Immediate consequence of forthcoming Cor. D.24 (proved

independently). □

D.3.2 Complexity. The complexity analysis for the Open Pointed

Crumble GLAM is analogue to the one for the Pointed Crumble

GLAM. More precisely, following the same approach and notations

as in Appendix C.4 and in Appendix C.5, we can prove:

Lemma D.23 (Number of sea-transitions). Let c be a well-
named crumble, and let ρ : ι(c) →∗

poCr e¦ = (e ¦ ev) an execution
in the Open Pointed Crumble GLAM. Then |e |

len
≤ |c |

len
+ (|ρ |βf +

|ρ |ift + |ρ |iff) · L(c) − |ρ |sea.

Corollary D.24. Let t be a term. For a normalizing execution
ρ in the Open Pointed Crumble GLAM starting from ι(t), we have
|ρ |sea ≤ (|ρ |p + 1) · |t |.

Theorem D.25 (The Open Pointed Crumble GLAM is bilin-

ear). For any term t and any Open Pointed Crumble GLAM exe-
cution ρ : ι(t) →∗

poCr e¦, the cost of implementing ρ on a RAM is
O((|ρ |p + 1) · |t |).

Proof. Essentially the same proof as the one of Thm. C.18. □

Analogously to the closed case, the previous theorem also has

a consequence for the non-pointed case. Since the theorem shows

that the cost of searching for redexes and the (un)plugging oper-

ations can indeed be realised in bilinear time, it is also true that

the Open Crumble GLAM can be implemented in bilinear time,

improving Thm. 6.6 by removing the up to search and (un)plugging
side condition.

Corollary D.26 (The Open Crumble GLAM is bilinear). For
any term t and any Open Crumble GLAM execution ρ : t →∗

oCr c ,
the cost of implementing ρ on a RAM is O((|ρ |p + 1) · |t |).

E IMPLEMENTATION IN OCAML
The goal of this section is implementing in OCaml the Pointed

Crumble GLAM and Open Pointed Crumble GLAM presented in

Appendix C.4 (p. 22) and Appendix D.3 (p. 29). We are going to

describe the abstract requirements of the data structures, before

picking a concrete implementation. The two machines share the

same data structures and auxiliary functions, and only differ by five

lines of code.

Data structures. The machine works on pointed environments

of the form (e ¦ev). The unevaluated part of the environment e and
the evaluated part ev are subject to different requirements:

• The unevaluated part e is extended only on the right by the

transitions βv , ift, iff by concatenating an unevaluated en-

vironment. Only the rightmost entry is inspected by every

reduction rule. The sea transition removes the rightmost

entry, moving it to the evaluated part. Therefore the un-

evaluated environment must implement the catenable stack
interface, allowing to perform catenation, pop, and topmost

inspection in constant time.

• As for the evaluated part ev , transitions never exploit

the sequential structure of ev . On the contrary, the

subvar , subl , subif transitions need to access the entry as-

sociated with a variable x in constant time. The only other

operation required (by the sea rule) is to add an entry to it

in constant time.

To satisfy lookup in constant time for ev , we implement ev as a

store, thus ignoring its list structure. In turn, this choice impacts on

the data structure for terms, because it forces (occurrences of) vari-

ables to be implemented as pointers to memory locations. More ex-

plicitly, an entry [x�b] is represented as a node n which is a record

containing a field content holding b together with additional fields

soon to be described. If α is the address of n, occurrences of x are

represented in OCaml as Shared(n), which means a memory cell

tagged as Shared and holding the pointer α .
Occurrences of λ-bound variables are instead presented as Var(v)

where v is a unique identifier for that variable. Thus the data struc-

ture for terms is:

...

and term =

| Err

| True

| False

| Var of var

| Lam of var * crumblep

| App of term * term

| IfThenElse of term * crumblep * crumblep

| Shared of node

...

A crumble is a term coupled with an unevaluated environment.

As discussed above, the unevaluated environment implements a

catenable stack interface. The simplest implementation, which we

adopted, is a linked list of nodes, referenced by two pointers to the

first and the last entries of the stack, or a special value to represent

the empty stack. Concretely, in OCaml we use an option type for

that.

...

and env = (node * node) option

and crumblep = term * env

...

Each node has a field prev used to point to the previous entry

in the environment. An additional field copying and mutability of

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

type var = { dummy : unit }

type node =

{ mutable content : term

; mutable copying : bool

; mutable prev : node option }

and env = (node * node) option

and crumblep = term * env

and term =

| Err

| True

| False

| Var of var

| Lam of var * crumblep

| App of term * term

| IfThenElse of term * crumblep * crumblep

| Shared of node

let mk_node content =

{ content ; copying = false ; prev = None }

let push n e =

n.prev <- Some e

Table 1: Data structures

all fields are required to implement α-renaming in linear time; we

explain their use later. Therefore a node is:

type node =

{ mutable content : term

; mutable copying : bool

; mutable prev : node option }

...

Unreachable nodes can be garbage-collected by the runtime of

OCaml. Because the evaluator holds a pointer to the unevaluated

environment, only evaluated nodes can be garbage-collected.

Finally, we implement the datatype of unique λ-bound variable

identifiers var as the address of an OCaml record that holds no

useful information. Thus comparing variables can be achieved using

pointer equality ==. Concrete implementations can add fields to

the record, for example to associate the name of the variable as a

string.

type var = {dummy: unit} (*no empty records in OCaml*)

A summary of the data structures can be found in Table 1.

Implementation of transitions. The code that implements eval-

uation in the closed and open cases can be found in Table 4. For

the same reason as it is discussed in Appendix C.4 (p. 22), the input

of the evaluation functions eval_c/eval_o is not a crumble, but

a crumbled unevaluated environment ι(b, e) = [x�b]e where x is

a fresh variable. More precisely, the evaluation functions take in

input just a node n, which is the rightmost entry of the crumbled

unevaluated environment that has to be evaluated.

The code that implements the transition βv for (λy.c)v is the

most complex because it must:

(1) α-rename λy.c to λy′.(b ′, e ′);
(2) change the top of the unevaluated environment (stack) from

[n�(λy.c)v] to [n�b ′] and append e ′ to it;

(3) push [y′�v] on top of the unevaluated environment.

To implement the previous steps efficiently, the code creates the

node y′ containing v and then calls a function copy_crumbp y y′ c
that performs step 1 in linear time, returning the new unevaluated

crumble c ′. Then n @ c ′ performs step 2 in constant time by con-

catenating c ′ to the unevaluated environment (and therefore to n,
its topmost element). The code of __ @ is given in Table 2.

Finally, push y′ (n @ c ′) performs step 3 in constant time by

pushing y′ on the new top of the unevaluated environment.

The transitions subl , subvar , subif,@e, ife rules just update the
content of the top of the unevaluated environment in the required

way.

The transitions ift and iff perform in constant time the plug-

ging of the crumble c to the unevaluted environment, then call the

evaluation function on the new topmost entry of the unevaluated

environment.

The transition sea is implemented by the function pop that pops

the top of the unevaluated environment and calls evaluation on the

new top (if present):

...

and pop n =

match n.prev with

| None -> n.content

| Some p ->

n.prev <- None;

eval_c/o p

...

When a node is popped, its prev pointer is unset to facilitate

garbage-collection of unreferenced nodes.

Otherwise a normal form is reached, and evaluation returns the

term that, pointing to the evaluated environment, consists of the

normal crumble.

Let us remark that the implementation is tail-recursive
4
; since

OCaml optimizes tail-recursion, the machine only consumes con-

stant space on the process execution stack.

As a minor optimization to the expected code, our implemen-

tation merges execution of rule subvar with that of the sea step

which always follows the former. The merging is obtained calling

pop in place of eval_c/eval_o.
The complexity of each case is O(1), but for the βv rule which

requires a renaming of crumble (copy_crumbp). It remains to see

how this operation can be implemented with linear complexity.

Implementation of α-renaming. We implement α-renaming of

unevaluated environments by creating a copy of the environment.

The representation in memory of the environment is a DAG because

terms in the nodes of the environment contain occurrences of

Shared nodes defined in the same environment. Therefore we need

to implement a copy algorithm over DAGs that runs in linear time.

4
when the pop function is inlined

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

let rec eval_c n =

match n.content with

| App(Lam(y,c), t) ->

(* βv *)

let y' = mk_node t in

let c' = copy_crumbp y y' c in

push y' (n @ c') ;

eval_c y'

| App

(Shared{content=t1},

t2) ->

(* subl *)

n.content <- App(t1, t2);

eval_c n

| App((True|False|Err), _) ->

(* @e *)

n.content <- Err ;

eval_c n

| IfThenElse(True ,c,_) (* ift *)

| IfThenElse(False ,_,c) (* iff *)

-> eval_c (n @ c)

| IfThenElse

(Shared {content=t1},

t2,t3) ->

(* subif *)

n.content <-

IfThenElse(t1,t2,t3) ;

eval_c n

| IfThenElse ((Lam _|Err),_,_) ->

(* ife *)

n.content <- Err ;

eval_c n

| Shared {content}

->

(* subvar *)

n.content <- content ;

pop n

| Lam _ | Err | True | False ->

(* sea *)

pop n

| Var _ | App(Var _, _)

| IfThenElse(Var _,_,_) ->

failwith "Open␣term"

| _ -> assert false

let rec eval_o n =

match n.content with

| App(Lam(y,c), t) ->

(* βf *)

let y' = mk_node t in

let c' = copy_crumbp y y' c in

push y' (n @ c') ;

eval_o y'

| App

(Shared{content=

(Lam _|True|False|Err) as t1},

t2) ->

(* subl *)

n.content <- App(t1, t2);

eval_o n

| App((True|False|Err), _) ->

(* @e *)

n.content <- Err ;

eval_o n

| IfThenElse(True ,c,_) (* ift *)

| IfThenElse(False ,_,c) (* iff *)

-> eval_o (n @ c)

| IfThenElse

(Shared{content=

(Lam _|True|False|Err) as t1},

t2,t3) ->

(* subif *)

n.content <-

IfThenElse(t1,t2,t3) ;

eval_o n

| IfThenElse ((Lam _|Err),_,_) ->

(* ife *)

n.content <- Err ;

eval_o n

| Shared{content=

(Lam _|True|False|Err) as c} ->

(* subvar *)

n.content <- c ;

pop n

| Lam _ | Err | True | False ->

(* sea *)

pop n

| Var _ | App(Var _, _)

| Shared _ | App(Shared _, _)

| IfThenElse (Var _,_,_) ->

(* sea *)

pop n

| _ -> assert false

Figure 4: Evaluation: closed (left) vs open (right)

The algorithm consists in using the content field of nodes to per-

form the renaming. When a node is being copied, it is temporarily

put in the copying=true status, and its content field is changed

to point to the corresponding new node. Then, the rest of the envi-

ronment is copied recursively. When an occurrence of a node that

is being copied is found in the term being copied, it is replaced with

the new node stored in the content field of the old one. Finally,

when the copy is over, the copying status of every node is reset to

false and the previous value of content is restored, yielding the
original environment.

Conference’17, July 2017, Washington, DC, USA Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

The auxiliary copying_node y y' f function, where y is the

node to be copied to y', implements the idea above by temporarily

putting y in copying=true status, until f is executed.

let copying_node y y' f =

let saved = y.content in

y.content <- Shared y' ;

y.copying <- true ;

let res = f () in

y.content <- saved ;

y.copying <- false ;

res

The copy_crumbp v n p function (Table 2) not only im-

plements the algorithm above by copying p, but it also re-

places occurrences of Var v (the bound variable in a →βv
redex) with Shared n (the new node pointing to the argu-

ment of the redex), i.e.: let c B b0, [x1�b1] . . . [xk�bk]; then
copy_crumbp v n p = b ′

0
, [y′

1
�b ′

1
] . . . [y′k�b ′k], where b ′i B

bi {v�n}{xi+1�x ′i+1
} . . . {xk�x ′k }.

The implementation of copy_crumbp v n p uses an auxiliary

function copy_env that iterates over the environment copying it.

The function copy copies a bite.

Crumbling. The code in Table 3 takes an unevaluated environ-

ment and returns the corresponding crumbled unevaluated environ-

ment. It generalizes the function · in the paper that turns terms into

crumbles. It mainly consists of three mutually recursive functions:

(1) aux_term c e translates c to d = (b ′, e ′), appends e ′ to e
and returns the obtained crumble.

(2) aux_value c e checks whether c is a value, computing

either ·, or · by calling aux_term c e.
(3) aux_env c e creates a copy of (c, e) in crumbled form in

linear time reusing the same trick of the copying flag as in
α-renaming.

let copy_crumbp v n p =

let rec copy = function

| Var v' when v == v' -> Shared n

| Shared {content; copying} when copying -> content

| Err | True | False | Var _ | Shared _ as c -> c

| App(c1,c2) -> App(copy c1,copy c2)

| IfThenElse(c,p,q) ->

IfThenElse(copy c,copy_crumbp p,copy_crumbp q)

| Lam(v,e) -> Lam(v,copy_crumbp e)

and copy_env c e =

let n' = mk_node (copy e.content) in

copying_node e n' (fun () ->

match e.prev with

| None -> copy c, n', n'

| Some prev ->

let c',b',e' = copy_env c prev in

push n' e' ;

c',b',n')

and copy_crumbp (c,e) =

match e with

| None -> copy c, None

| Some (b,e) ->

let c',b',e' = copy_env c e in

c', Some (b',e')

in copy_crumbp p

let (@) n (c,env) =

n.content <- c ;

match env with

None -> n

| Some (b,e) -> push b n ; e

Table 2: The copy_crumbp function

Crumbling Abstract Machines Conference’17, July 2017, Washington, DC, USA

let dummy = Var (mk_var ())

let iota e =

let star = mk_node dummy in

star @ e

let anf p =

let rec aux_term c e = match c with

| Var _ | Err | True | False -> c, e

| App(v, w) ->

let v, e = aux_val v e in

let w, e = aux_val w e in

App(v, w), e

| IfThenElse(v, p, q) ->

let c, e = aux_val v e in

let p = aux_crumbp p in

let q = aux_crumbp q in

IfThenElse(c,p,q), e

| Lam(x, p) -> Lam(x, aux_crumbp p), e

| Shared n -> n.content , e

and aux_val c e = match c with

| App _ | IfThenElse _ ->

let n = mk_node dummy in

let b =

(match e with

None -> n

| Some (b,e) -> push n e ; b) in

let c, e = aux_term c (Some (b,n)) in

n.content <- c;

Shared n, e

| Var _ | Lam _ | Shared _

| Err | True | False -> aux_term c e

and aux_env c e =

let p = aux_term e.content None in

match e.prev with

| None -> aux_term c (snd p)

| Some prev ->

let n = mk_node dummy in

let last = n @ p in

let (c,env) =

copying_node e n (fun () -> aux_env c prev) in

(match env with

None -> c, Some(n,last)

| Some (b,e) -> push n e ; c, Some (b,last))

and aux_crumbp (c,env) =

match env with

None -> aux_term c None

| Some (_,e) -> aux_env c e in

iota (aux_crumbp p)

Table 3: The anf function

	Abstract
	1 Introduction
	1.1 Environments
	1.2 Content of the Paper
	1.3 The Relationship with ANF
	1.4 The Complexity of Abstract Machines
	1.5 Related Work

	2 The Pif Calculus
	3 Crumbled Evaluation, Informally
	4 The Crumbling Transformation
	5 The Closed Case
	5.1 The Crumble GLAM
	5.2 The Implementation Theorem
	5.3 Complexity for the closed case

	6 The Open Case
	6.1 The Fireball Calculus
	6.2 The Open Crumble GLAM

	7 The (Open) Pointed Crumble GLAM
	8 Extensions
	9 Comments on Related Works
	10 Conclusions
	References
	Technical Appendix
	A Proofs of Sect. 2 (Pif Calculus)
	B Proofs of Sect. 4 (preliminaries)
	C Proofs of Sect. 5 (closed case)
	C.1 Proofs of Subsect. 5.1
	C.2 Proofs of Subsect. 5.2
	C.3 Proofs of Subsect. 5.3
	C.4 The Pointed Crumble GLAM
	C.5 Proofs of Appendix D.4 (p. 24)

	D Proofs of Sect. 6 (open case)
	D.1 Proofs of Subsect. 6.1
	D.2 Proofs of Subsect. 6.2
	D.3 The Open Pointed Crumble GLAM

	E Implementation in OCaml

