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Abstract—In this study, we introduce a rigorous full-wave eigen-
mode analysis technique based on a volumetric method of moments
to the optical spectrum. We first apply this technique to a nanorod
as an example to illustrate how the real part of the eigenfrequency
and the modal quality factor (defined as the ratio of the real part of
the eigenfrequency to the imaginary part) together with the eigen-
mode determine the line position and quality factor of a resonance
and the corresponding resonant mode. Then, the eigenfrequen-
cies and eigenmodes of a composite plasmonic nanostructure, a
Dolmen, and its two individual constituents, a dimer and a
monomer, are extracted. The line position of the Fano dip in Dol-
men’s spectrum is discussed by examining the relative positions of
the eigenfrequencies of the dimer and the monomer in the complex
plane. Further, the formation of the Fano dip is reinterpreted as the
destructive interference between the nonorthogonal eigenmodes of
the whole Dolmen structure. The proposed full-wave modal anal-
ysis brings a new perspective on understanding and designing the
plasmonic response of nanoantennae beyond the quasi-static limit.

Index Terms—Eigenmode analysis, nanoantennae, plasmonics,
volumetric method of moments (V-MoM).

I. INTRODUCTION

THE antenna as an object converting radiative energy into
localized energy and vice versa [1] has found wide appli-

cations at both microwave and optical frequencies. At optical
frequencies, due to its possible subwavelength scale, nanoanten-
nae can be exploited as a powerful tool to overcome the diffrac-
tion limit. Many topologies, like the monopole [2], dipole [3],
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Yagi-Uda [4], etc., have been studied at optical frequencies. Sev-
eral attempts have been made in order to bridge the gap between
microwave and optical frequencies and to migrate the state of
the art in antenna design from microwave to optical frequen-
cies. For example, in order to generalize the microwave antenna
linear scaling rule to optical frequencies, Novotny [5] exploits
a relation that converts the vacuum wavelength to an effective
wavelength. Another example can be found in the “lumped cir-
cuit” model, which was reintroduced by Engheta et al. [6] in
the optical regime in parallel with the tradition at microwaves.
Moreover, De Arquer et al. [7] analyze the nanodipole antenna
by means of its input impedance as well as the matching prop-
erties of the antenna topology and material configuration. All
of these approaches are based on design rules and circuit mod-
els. As such, they provide a practical guideline for transferring
microwave know-how to the optical spectrum.

Alternatively, in the course of understanding electromagnetic
wave propagation and electromagnetic scattering problems,
eigenmode analysis can be employed, because this method iso-
lates the system under study from the excitation, and thus gives
the most intrinsic description of the problem. Several problems,
e.g., the propagation of electromagnetic waves in rectangular
and cylindrical waveguides or the scattering of electromagnetic
waves by metallic spheres, have been solved analytically and the
solution can be found in classic textbooks [8], [9]. Moreover,
eigenmode analysis has found wide application at microwave
frequencies, e.g., in the study of the interaction of an elec-
tromagnetic pulse (EMP) with metallic objects at microwave
frequencies, coined by Baum [10] as the singularity expansion
method, and in the calculation of radar scattering patterns [11].

Inspired by the spirit of modal analysis, within the quasi-
static limit, at optical frequencies, several research groups apply
eigenmode analysis to isolated [12], [13] and coupled [14]–[16]
nanoparticles. Similarly, based on the zeroth order Bergman–
Milton spectral representation [17]–[19], the effective permit-
tivity of a nanostructured material can be designed [20]. Its
value is limited by Bergman–Milton bounds [21]. Since in these
cases the wavelength of the incident electromagnetic wave is
assumed to be much larger than the size of the nanoparticles,
the dynamic aspects, including retardation and dissipation, are
neglected. Consequently, the eigenfrequencies of the systems
under consideration always lie on the real frequency axis.

Yet, for nanostructures beyond the quasi-static limit, it is
well known that the optical loss, including radiative [22] and
ohmic [23], [24] loss, strongly affects the spectral position and
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broadens the linewidth of the plasmonic resonances. In order to
fully characterize the effects of these decay channels, an extra
axis, i.e., the imaginary axis, must be exploited and the eigen-
mode analysis must be performed in the 2-D complex plane.

The purpose of this study is threefold. 1) In order to perform a
full-wave modal analysis to nanostructures with increasing com-
plexity, the interaction of light with nanostructures is formulated
as an eigenvalue problem which is, to the knowledge of the au-
thors, solved by a volumetric method of moments (V-MoM)
algorithm for the first time. 2) The relations between the com-
plex eigenfrequencies and two design parameters of great inter-
est, namely the line position and the quality factor [25], [26] of
surface plasmon resonances are exploited. It is shown that the
real part of an eigenfrequency determines the spectral position of
the plasmonic resonance. A modal quality factor Qmod , defined
as the ratio of the real part of the eigenfrequency to the imag-
inary part of the eigenfrequency, characterizes the “life time”
of the plasmonic mode. The quality factor of resonance Qres
can be estimated from Qmod by looking at the contributions of
different eigenmodes. 3) The eigenfrequencies and eigenmodes
of a composite nanostructure, a Dolmen, are calculated. The
physical origin of the Fano dip in its spectrum is discussed by
looking at the positions of the eigenfrequencies of its individual
constituents, the dimer and the monomer, in the complex plane.
Further, a new physical interpretation is given to a Fano dip: it is
considered as the result of the destructive interference between
two nonorthogonal eigenmodes of the whole Dolmen structure.

II. LIGHT–PLASMONIC NANOPARTICLE INTERACTION

FORMULATED AS AN EIGENVALUE PROBLEM

In order to formulate the interaction of light with nanoplas-
monic antennae as an eigenvalue problem, consider a nano-
metallic scatterer excited by incident light. As a consequence of
the excitation, a polarization current J (r′) flows on the scatterer
obeying the following set of equations:

Etot (r) = Einc (r) + Esca (r) (1)

Esca (r) = −iωμ0

∫
V

G (r, r′, ω) · J (r′) dV ′ (2)

Etot (r) =
J (r)

iω (εv (ω, r) − εk )
. (3)

Notice that the time convention eiωt is employed. Equa-
tion (1) states that the total electric field Etot (r) is the sum
of the incident field Einc (r) and the scattered field Esca (r).
Equation (2) states that this scattered field actually originates
from the polarization current J (r) induced on the scatterer. It
is a 3-D convolution of this current and a tensor Green’s func-
tion G (r, r′, ω). Equation (3) expresses the relation between
the total electric field present at a location within the scatterer
and the complex and possibly dispersive permittivity εν (ω, r′)
of the material there. εk is the permittivity of the surrounding
environment. Note that for nanostructures operating at optical
frequencies, the skin depth may be comparable with the struc-
tural dimensions, so that currents do flow over the complete
volume and the integration must be performed with respect

to that volume. A surface current description is not sufficient.
Combining the three equations yields an equation for the current

iωμ0

∫
V ′

G (r, r′, ω) · J (r′) dV ′

+
J (r)

iω (εν (ω, r) − εk )
= Einc (r) . (4)

Equation (4) is traditionally solved numerically. A classi-
cal technique is to use the method of moments [27]. First, the
nanostructure is discretized and the current is approximated by
n discrete basis functions

J =
n∑

i=1

Iifi . (5)

Then, n test functions are applied to evaluate in an average
sense. This leads to a matrix formulation of the problem

Z (ω) I (ω) = Einc (ω) (6)

where Z is an n × n matrix, and I and Einc are n × 1 column
vectors.

An eigenfrequency ωm of the scatterer is by definition a fre-
quency at which a nonzero solution for the current can be found
for a zero excitation. In other words

iωm μ0

∫
V ′

G(r, r′, ωm ) · Jm (r′)dV ′

+
Jm (r)

iωm (εν (ωm , r) − εk )
= 0 (7)

with Jm (r′) the mth eigenmode current. In the matrix domain,
this becomes

Z (ω) Im (ω) = 0. (8)

In order to find a nontrivial solution for Im (ω), the determi-
nant of the coupling matrix has to be zero; thus

det(Z(ωm )) = 0. (9)

Equation (9) gives the eigenfrequencies in the complex plane
of the topology under consideration. The corresponding eigen-
mode is found by solving (8) at this eigenfrequency. Since this
system has now one degree of freedom, due to the fact that the
determinant is zero, an additional equation can be imposed. This
can be done by requiring the solution to be normalized, i.e., with
prescribed current profile amplitude.

III. LINE POSITION AND QUALITY FACTOR

OF SURFACE PLASMON RESONANCES

According to the previously discussed procedure, the eigen-
frequencies and eigenmodes of gold nanorods with different
lengths are numerically calculated with the in-house developed
MoM code MAGMAS [28]–[31]. The dimensions, materials,
mesh sizes, and surroundings of the nanorods are tabulated in
Table I. The calculated eigenfrequencies are shown in Fig. 1(a)
and tabulated in Table II. The calculated eigenmodes of the
300-nm nanorod are shown in the inset of Fig. 1(a). For clar-
ity, the factor 2π is dropped from all the real parts of the
eigenfrequencies.
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Fig. 1. Complex eigenfrequencies of nanorods determine the line positions of surface plasmon resonances. (a) Complex eigenfrequencies of nanorods of different
lengths; the top view of surface charge eigenmodes of the 300-nm nanorod is shown in the inset. (b) Dissipated power for incidence angle 45◦; the polarization of
the electric field is perpendicular to the direction of propagation and lies in the incidence plane.

TABLE I
PARAMETERS USED IN THE SIMULATIONS

Parameters Nanorods
Length (L) 200 nm 240 nm 300 nm
Width (W) 40 nm 40 nm 40 nm

Thickness (T) 40 nm
Material Au [32]

Surrounding Vacuum
Mesh cell sizes 20 nm x 20 nm x 20 nm

TABLE II
EIGENFREQUENCIES OF 200, 240, AND 300-nm NANORODS

Length Anti-symmetric mode 
(THz)

Symmetric mode 
(THz)

200 nm 336.990 - 341.224i 556.564 - 2830.428i
240 nm 297.565 – 297.780i 497.472 – 751.535i
300 nm 254.355 – 249.281 448.910 – 302.259i

A. Line Position of Surface Plasmon Resonance

When an external excitation of frequency ω is applied, the
polarization current is solved as from (6)

I (ω) = Z−1 (ω) · Einc (ω) =
Y (ω)

Δ
· Einc (ω) . (10)

Y (ω) is the adjoint matrix of the impedance matrix. Δ is the
determinant of the impedance matrix, which is a polynomial that
can be decomposed into factors (ω − ωm )n . ωm = ωmr − iωmi

is a calculated eigenfrequency according to (9) and n is the order
of the eigenfrequency, indicating the degree of degeneracy of
the eigenmodes. For nanorods, only simple poles (n = 1) are
present, and the response can be rewritten as

I (ω) =
∑
m

Rm

(ω − ωm )
· Einc (ω)

=
∑
m

jm jTm
(ω − ωm )

· Einc (ω)

=
∑
m

jTm · Einc (ω)
(ω − ωm )

jm (11)

where Rm is the system residue matrix at each eigenfrequency.
It has been shown that Rm is a dyadic and can be decomposed as
the outer product of eigenmode jm and its transpose jTm [33]. For
monochromatic light of frequency ω around ωmr , the amplitude
of I (ω) is

|I (ω)| ∝ 1√
(ω − ωmr )

2 + ω2
mi

. (12)

It is readily seen from (12) that when ω is around ωmr , the
response reaches a maximum. Therefore, the positions of surface
plasmon resonances can be correctly predicted by the real parts
of the eigenfrequencies, as shown by the line positions of the
resonances in Fig. 1(b).

B. Quality Factor Qres of Surface Plasmon Resonances

Furthermore, a modal quality factor Qmod can be defined
for each eigenmode. Consider an incoming EMP δ (t), which
contains all frequency components with the same amplitude 1.
Equation (11) leads to

I (t) =
∑
m

Km jmeiωm t . (13)

Km is defined as the coupling coefficient of the mth sur-
face plasmon eigenmode, which is a constant independent of
frequency. In (13), all eigenmodes are present. By noticing
that iωm = −ωmi + iωmr , each eigenmode oscillates with fre-
quency ωmr but decays with a rate defined by −ωmi . Therefore,
the energy decaying rate is

−2ωmi =
Pdissipated

Wstored
. (14)

Based on (14), the “life time” of a surface plasmon eigenmode
can be defined as 1/−2ωmi

. The quality factor Qmod for each
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Fig. 2. Stored power (solid line) and dissipated power (dashed line) of the 300-nm nanorod when the nanorod is excited by incident light with different incidence
angles. The incident angle and the polarization of the incoming electromagnetic wave are the same as in Fig. 1. The surface plasmon modes at resonance are shown
in the insets.

TABLE III
RESONANT FREQUENCY fres , STORED POWER ωW, DISSIPATED POWER P, Qres FACTOR AT RESONANCES

FOR DIFFERENT INCIDENT ANGLE θ, AND MODAL Qm od FACTOR OF THE 300-nm NANOROD

resf ( )1610W - ( )1610P -
resQ modQ

0°

255.8 THz
(anti-symmetric 

mode)

39.09 12.47 3.1336

3.2055

15° 36.13 11.53 3.1336
30° 28.33 9.053 3.1293
45° 18.25 5.820 3.1357
60° 8.843 2.841 3.1126
75° 2.368 0.7338 3.2270
15°

450THz
(symmetric 

mode)

2.702 0.8788 3.0746

4.6166
30° 7.474 1.849 4.0422
45° 9.290 2.151 4.3189
60° 6.555 1.473 4.4501
75° 2.208 0.4725 4.6730

eigenmode can be defined as

Q mod =
ωWstored

Pdissipated
=

ωmr

−2ωmi
. (15)

When monochromatic light of frequency ω around ωmr is
applied, according to (11), assuming that the mth eigenmode is
dominant, the response I (ω) is

I (ω) ≈ Km jm . (16)

By noticing that Km =
(
jTm · Einc (ω)

)
/ (ω − ωm ) is a

scalar, the response I (ω) near the resonance is almost deter-
mined by the excited eigenmode jm . Since a fixed distribution
of stored energy W and dissipated power P is associated with

each eigenmode jm oscillating at ωmr , the modal quality factor
Qmod should render a good estimation of the quality factor Qres
at resonance.

As an illustration, the stored power ωW , the dissipated power
P , and the quality factor at resonance (defined as the ratio of
the stored power ωW to the dissipated power P at the resonant
frequency ωres), when the nanorod of 300 nm is excited by an
incident electromagnetic wave with different incidence angles,
are calculated from the polarization current flowing inside the
structure and plotted in Fig. 2. The details of the calculation
can be found in [34]. The quality factor Qres at the resonances
and the modal quality factor Qmod are tabulated in Table III.
It can be clearly seen that for the antisymmetric mode, a good
indication of Qres is given by Qmod .
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TABLE IV
MONOMER, DIMER, DOLMEN: THE REAL PART OF THE EIGENFREQUENCY, THE MODAL QUALITY FACTOR, THE STORED POWER

AT RESONANCE (ωW)res , THE DISSIPATED POWER Pres , AND THE QUALITY FACTOR Qres AT RESONANCE

Structure realf (THz) modQ resf (THz) ( )resW resP resQ

Monomer |B> 337 3.1026 338.5 2.201e-15 7.245e-16 3.0380
Dimer |D> 324 8.0258 324.4 2.671e-17 2.173e-18 12.292

Dolmen |B> - |D> 292 5.4104 291.5 2.645e-15 4.931e-16 5.3640
Dolmen |B> + |D> 356 3.6825 357.3 2.071e-15 5.779e-16 3.5837
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Fig. 3. Coupling coefficient of the antisymmetric mode and coupling coeffi-
cient of the symmetric mode of the 300-nm nanorod.

On the other hand, several eigenmodes can contribute to the
formation of one single resonant plasmon mode. In order to illus-
trate this, the response I (ω) at the second resonance (450 THz)
is calculated by directly solving (6). Then, the coupling coeffi-
cients Km = jm · I (ω) for the antisymmetric mode j1 and sym-
metric mode j2 are calculated for different incident angles (θ =
15◦, 30◦, 45◦, 60◦, 75◦) and shown in Fig. 3. Clearly, not one
eigenmode only contributes to the second resonance. When the
incident angle is 15◦, the contributions from the antisymmetric
mode and the symmetric mode are comparable, and neither the
antisymmetric mode nor the symmetric mode determines Qres ,
leading to the large deviation from the modal quality factor. As
the incidence angle increases, as shown in Fig. 3, the coupling
coefficient of the antisymmetric eigenmode K1 decreases. The
symmetric eigenmode plays a dominant role in the response,
resulting in the fact that the quality factor Qres approaches the
value of the modal quality factor Qmod of the symmetric eigen-
mode, as shown in Table III.

IV. FULL-WAVE MODAL ANALYSIS OF DOLMEN STRUCTURE

Having clarified the relation between a complex eigenfre-
quency and the corresponding line position and quality factor
of a plasmonic resonance, in this section, we apply the pro-
posed full-wave modal analysis to a composite nanoplasmonic
system, a Dolmen structure [35], [36]. The Dolmen structure is
of great interest in plasmonic research due to its capability of
supporting a Fano resonance, known as a sharp asymmetric line

shape. This promises applications in nanoscale sensing and the
nanoscale analogy of electromagnetically induced transparency
(EIT) [37].

The first two eigenfrequencies and eigenmodes of the Dolmen
nanostructure, made of three 200 nm × 40 nm × 40 nm gold
nanorods, are extracted and plotted in Fig. 4(a) and (c). The gap
size between the dimer and the monomer, and the separation
distance between the two nanobars in the Dimer are 50 and
20 nm, respectively. The whole Dolmen structure is immersed
in vacuum and described with 20 nm × 20 nm × 20 nm cells in
the numerical study. Again, it can be readily seen from Fig. 4(a)
and (b) that the real part of the eigenfrequencies of the Dolmen
structure well predicts the line positions of the resonances. Also,
it is tabulated in Table IV that the quality factor of the resonances
is determined by the corresponding modal quality factor.

Furthermore, it is interesting to study the physical origin of
the line position of the Fano dip in Fig. 4(b) by applying the full-
wave modal analysis technique. The eigenfrequency of the fun-
damental eigenmode of the individual monomer and the dimer
is extracted. For the monomer, the first eigenmode is a “super-
radiant” dipolar mode. Its nonzero dipolar moment radiates into
free space, contributing to the main channel for the decay of the
stored energy. Therefore, the correspondent eigenfrequency has
a large imaginary part (a short life time and thus a low modal
quality factor). As opposed to the monomer, the first eigenmode
of an individual dimer is an electric quadruple mode whose elec-
tric dipolar moment is almost zero, thus only weakly coupled to
free space, resulting in a slow decaying and a high modal qual-
ity factor. Due to the near degeneracy of these two eigenmodes,
when properly excited, the Dolmen structure can be coupled
with the incident wave |I〉 via two channels |I〉 → |B〉 [38],
which provides a broad background continuum as implied by
the low modal quality factor, and |I〉 → |B〉 → |D〉 → |B〉,
where the “bright” mode mediates free space with the high
modal quality factor sharp “dark” dimer. The destructive inter-
ference between these two channels leads to the Fano dip in the
dissipated energy. At the Fano dip, the Dolmen structure reacts
little to the external electromagnetic perturbation, mimicking
EIT at nanoscale.

On the other hand, besides the analysis starting from the
interaction between the eigenmodes of the constituent nanocav-
ities, the Fano dip can also be understood by closely examining
the interaction of the eigenmode |B〉 + |D〉 with the eigen-
mode |B〉 − |D〉 of the whole Dolmen structure. First of all,
the nonorthogonality of these two modes can be readily read
from the surface charge distribution, as shown in Fig. 4(c). This
is further proved by numerically calculating the inner product
of the two modes. Such a nonorthogonality implies that the
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Fig. 4. (a) Hybridization diagram in the complex plane. (b) Dissipated energy of the excited monomer, dimer, and Dolmen structures. (c) Fundamental eigenmode
of the monomer and dimer; the first two modes of the Dolmen and the propagation direction and the polarization of the incident electromagnetic field exciting
these eigenmodes: |B> is the bright mode for the monomer; |D> is the dark mode for the dimer; |B> − |D> and |B> + |D> are the bonding and antibonding
mode for the Dolmen, respectively. (d) and (e) Amplitude and phase of the surface charge at the Fano dip.

excitation of one mode provides a possibility for the other mode
to couple with the incident electromagnetic field. At the Fano
dip, although the |B〉 − |D〉 eigenmode still realizes the major
contribution, via the near field coupling, the |B〉 + |D〉 eigen-
mode is excited with the same amplitude but with a π−phase
difference. Therefore, a nonactive monomer and a nonradiating
dimer, as shown in Fig. 4(d) and (e), minimize the radiative loss,
which results in a dip in the dissipated power spectrum.

V. CONCLUSION

In summary, the electromagnetic scattering of nanoplasmonic
structures beyond the quasi-static limit is formulated as an

eigenvalue problem. The eigenfrequencies and eigenmodes are
calculated by the V-MoM algorithm. Due to the radiative and
ohmic loss of plasmonic nanostructures, the eigenfrequencies
are considered in the complex plane. It is shown that the real
parts of the eigenfrequencies give the accurate line positions
of the resonances, with the eigenmodes defining the resonant
modes of the plasmonic responses. Moreover, the imaginary
parts of the eigenfrequencies define the energy decaying rate of
stored energy via radiative and ohmic loss of the eigenmodes.
The modal quality factor Qmod is defined for each eigenmode.
With the knowledge of coupling coefficients, the quality factor
Qres of the correspondent resonance can be estimated from the
modal quality factor Qmod . Further, this method is applied to a
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composite nanoplasmonic system to reveal the physical origin
of the Fano resonance. The line position of the Fano dip can
be pointed out as soon as the eigenfrequencies of the individ-
ual constituents are calculated. The formation of the Fano dip
is explained from the whole structure point of view. Since the
proposed modal analysis does not depend on the excitation, it
reveals the most intrinsic aspects of light–metallic nanoparticle
interaction and helps designers to thoroughly understand and,
thus, tailor the plasmonic response of nanostructures.
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