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Al2O3 passivated n-doped Si substrates are investigated by second-harmonic generation (SHG)

upon applying an external electric field by a corona wire. The observed change in the SHG

response upon applying an external electric field is attributed to charge transfer in the

semiconductor. Capacitance-voltage measurements are performed to affirm this conclusion. Upon

applying a large negative electric field over the structure, a clear alteration in SHG signal is

observed, which corresponds to tunneling of holes from the n-doped silicon into the aluminum

oxide layer. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793578]

The optimization of the channel in a metal oxide semi-

conductor (MOS) is one of the key issues in the semiconduc-

tor industry. The function of an MOS device is to alter the

current through the channel (or space-charge region in the

semiconductor), which results in an on-current or off-

current. In an actual device, the switching between on and

off is achieved by changing the voltage on the metal gate.

Besides electrical techniques, this switching between on and

off can be investigated by second-harmonic generation

(SHG) and electric field-induced SHG (EFISH), with the

advantage that it does not necessarily require the fabrication

of electrodes on the structure. Moreover, SHG gives infor-

mation on both the electrical properties and interface proper-

ties. Investigation of the space-charge region (SCR) of

silicon and the interface properties of semiconductors with

metal gate by means of EFISH has been evaluated by many

authors, such as Aktsipetrov et al.,1,2 Chang et al.,3 Glinka

et al.,4 and Scheidt et al.5,6 Moreover, SHG has been used to

characterize the interface of MOS structures.7,8 Although

MOS structures form the basis of the current transistor devi-

ces, quantum well devices are promising to keep scaling the

devices according to the scaling laws.9,10 In these devices,

the tunneling current is of critical importance for device

operation. Since the tunneled charges are confined in the

structure, the SHG response can give valuable insights into

quantum well devices.

However, in the previously mentioned investigations,1,3

the SHG contributions from the metal layer could not be sep-

arated from those of the charges at the interface.

In order to clearly investigate the role of the SHG signal

from the relevant semiconductor interface, we chose a differ-

ent approach to charge the structure, namely by positioning a

charged corona wire above the aluminum oxide passivated

semiconductor. In this manner, no additional metal layer is

present, which in turn cannot contribute to the total (SHG)

signal and facilitates the analysis.

In this letter, we report the SHG response upon changing

the electric corona field from zero to positive or negative and

vice versa. Applying a positive corona field decreases the ini-

tial electric field in the space-charge region of Si, decreasing

the SHG signal. Upon applying a large negative electric field

over the structure, a clear increase and subsequent decrease

in SHG signal is observed, where the latter corresponds to

tunneling of holes through the SiOx layer. The second-

harmonic signals are verified by capacitance-voltage meas-

urements on the same structures, to justify the physical model

that is proposed here. The change in SHG intensity is corre-

lated to the exponential tunneling decay and the decrease of

electric field in the silicon SCR due to dissipation of the co-

rona charges at the surface.

The Si-SiO2-Al2O3 structures were prepared on 300 mm

n-type Si (100) wafers. Initially, a �200 nm thick As-doped

epitaxial Si layer was deposited by chemical vapor deposi-

tion in an ASM Epsilon reactor. The doping level was

1016 cm�3. Subsequently, a �1 nm thick chemical SiO2 was

grown on the surface in ozonated H2O. Different thickness

of Al2O3 was then deposited by atomic layer deposition in

an ASM Pulsar reactor from trimethyl aluminum and H2O at

300 �C.

The time-dependent second-harmonic generation

(TD-SHG) experiments were carried out using a Ti-Al2O3

laser at the fixed fundamental wavelength of 800 nm with

an average power output of 70 mW. The pulse length and

repetition rate are, respectively, 120 fs and 82 MHz. For

our measurements, the polarizer-analyzer combination of

pin-pout was used.11

The charging of the passivated semiconducting samples

is achieved by corona poling, as is schematically presented

in Fig. 1. The corona wire was placed at 3 cm from the sam-

ple. A voltage of �3 kV and 2.7 kV was used to charge the

surface, which did not lead to oxide breakthrough. Upon

charging, the voltage was quickly ramped from 0 V to the

maximal value. The current from the corona wire to the sub-

strate was monitored and remained constant during the

measurements.

In centrosymmetric materials like Si, SHG is forbidden

within the electric dipole approximation. However, the total

SHG response of uncharged structures can be written in

terms of electric dipole contributions ~P
Dð2xÞ and electric

quadrupole contributions ~P
Qð2xÞ by
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~P
ef f ð2xÞ ¼ ~P

Dð2xÞ þ ~P
Qð2xÞ

¼ vD : ~EðxÞ ~EðxÞ þ vQ�~EðxÞr~EðxÞ; (1)

where vD and vQ indicate the dipolar and the quadrupole

nonlinear susceptibilities. A separation of the dipolar and

quadrupole contributions is usually not possible in an experi-

ment with a single fundamental beam in a polarizer-analyzer

combination of pin - pout. Hence, the nonlinear polarization

attributed to Si will be treated as an effective polarization.

Furthermore, upon applying an EFISH term can be writ-

ten as

~P
dc�inducedð2xÞ ¼ vð3Þ�~EðxÞ ~EðxÞ ~Edc; (2)

where ~Edc is the internal electric field, arising from the exter-

nal applied electric field and vð3Þ is a fourth rank tensor.

Since ~Edc is oriented in the z direction only, Eq. (2) can be

written as

~P
dc�induced

ef f ð2xÞ ¼ vð3Þef f �
~EðxÞ ~EðxÞ ~Ez;dc; (3)

where ~Ez;dc is only oriented in the z-direction, perpendicular

to the surface and ~Pef f denotes that we neglect retardation

effects.1

From Eqs. (1) and (3), the total SHG polarization and

SHG intensity in reflection can be described as1,12,13

~Ptotal ¼ vD :~EðxÞ ~EðxÞ þ vQ�~EðxÞr~EðxÞ
þ vð3Þ�~EðxÞ ~EðxÞ ~Ez;dc

Ið2xÞ � ð~PtotalÞ2;
(4)

where vD reflects the centrosymmetry of the structure and

the symmetry of surface or interface, vQ reflects the crystal

lattice and the gradient of the light within the penetration

depth, and vð3Þ corresponds to EFISH. Only vð3Þ is affected

by the applied electric field, while vD and vQ stay invariant.

The major contribution in vð3Þ arises mostly from the vzzzz

and vzxxz ¼ vzyyz, since the direction of the electric field in

the SCR of silicon is in the z-direction.

Upon applying a corona field, only the ~Edc term will

be affected. The number of charges particles QðtÞ can be

written as

QðtÞ ¼ q � Nt 1� exp
�t � Ie � r

q

� �� �
; (5)

where q is the charge, Nt is the number of charges, t is the

time, Ie is the current of the charges in the SCR of the semi-

conductor, and r is the capture cross section. The electric

field in the SCR ~EðtÞ in a semiconductor can be written as

~EðtÞ � ~Eð0Þ þ A � 1� exp
�t � Ie � r

q

� �� �
; (6)

where A describes the amplitude of decay, which is depend-

ent on structure design.

In equilibrium, Ie is equal to the current of ions at the

surface due to the corona charging. Hence, for a decrease in

electric field in the SCR due to tunneling, the EFISH inten-

sity according to Eq. (4) can be written as

IEFISHð2xÞ � ð~PEFISHÞ2

� ~Eð0Þ þ A � 1� exp
�t � Ie � r

q

� �� �� �2

: (7)

When the corona field is turned off, due to dissipation of

the corona charges, the electric field in the SCR of the semi-

conductor obeys14

~EðtÞ ¼ b � lnðBðtþ t0ÞÞ�1; (8)

where b is the field dependency with SCR thickness,

B ¼ Cb=ei, C is the capacitance, ei is the insulator dielectric

constant, and t0 is the constant of integration obtained from
~Eð0Þ.

From Eq. (4), the EFISH intensity upon turning the co-

rona field off can be expressed as

IEFISHð2xÞ � ð~PEFISHÞ2 � ðb � lnðBðtþ t0ÞÞ�1Þ2: (9)

It should be mentioned that the oxide thickness influen-

ces the electric field, since a voltage drop appears over the

oxide layer; however, this decrease in field is small com-

pared to the applied corona field. Moreover, fixed charges in

Al2O3 and interface charges influence the dc-induced polar-

ization. Furthermore, multiple reflections in the oxide layer

are neglected, since the SHG intensity is similar for all the

samples with different oxide thickness and is predicted to be

small over the range of 20 nm, under non-Brewster angle

conditions.15

The SHG intensity of the Si-SiOx-Al2O3 structures is

shown in Fig. 2. Initially, the SHG intensity corresponds to

an uncharged situation. In situation (a) in Fig. 2, the

uncharged sample is schematically represented, where the

direction and the strength of the electric field in the SCR are

represented with an arrow. Upon applying a positive external

field at t¼ 0 s, the SHG response decreases dramatically,

which indicates that the electric field in the Si SCR

decreased as well, according to Eq. (4). Due to the corona

FIG. 1. Schematic representation of the TD-SHG experiment on aluminum

oxide passivated silicon with a corona wire. An external electric field can be

applied between the surface of the metal-oxide-semiconductor structure and

the corona wire. Due to this electric field, an internal field in the space-

charge region in silicon is induced.
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field, electrons from the silicon bulk are attracted to the Si/

oxide interface, resulting in a decrease in field in the silicon

space-charge region (situation (b) in Fig. 2). Upon increasing

the corona field, no drastic change is observed in the struc-

ture, only an increase of the amount of charges near the inter-

face. At 700 s or 860 s, depending on the sample, the electric

field is switched off, whereby the SHG signal recovers to its

original intensity, i.e., the intensity level without electric

field. Hence, the charge distribution recovers to the original

structure and the field in the SCR increases due to the dissi-

pation of charges. It can be clearly observed that the charg-

ing effect is equal for all structures, independent of oxide

thickness. This is easily explained, because the voltage drop

over the oxide layer is small, compared to the corona field

that is used to charge the surface. The initial (before corona

charging) and final (after removal of the corona field) SHG

intensities are equal, indicating that the electrical properties

in the Si-SCR have not been altered by the measurements,

which is confirmed by capacitance-voltage (CV) measure-

ments shown in Fig. 4. For the positive corona, the hysteresis

difference before and after the charging is similar. Moreover,

the positive flat-band potential is not shifted. From this, we

can conclude that the initial and final amounts of charges in

the oxide layer are equal and that the small amount of

charges present in the oxide layer is negative.

Applying a negative corona field induces a drastic

increase in SHG intensity compared to the uncharged initial

intensity (Fig. 3). Due to the negative corona field, electrons

are removed from the SCR, and minority carriers (i.e., holes)

are attracted to the interface. The minority carriers increase

dramatically the electric field, inducing a large electric field

built-up in the Si space-charge region. Due to the positive

nature of the charges, a larger field arises in the silicon SCR.

This results in an increase in SHG intensity, which is

described in situation (b) in Fig. 3. However, after a few tens

of seconds, the SHG intensity starts to decrease exponen-

tially. The observed decrease in SHG intensity can be

explained by tunneling, since the electric field over the SiOx

layer becomes too large. The internal electric field in the

SCR of silicon decreases exponentially, according to Eq. (6).

Positive charges tunnel through the SiOx layer, resulting in a

decrease of minority carriers in the Si SCR. According to

Eq. (7), the EFISH contribution of this electric field

decreases as well (shown in inset (d) in Fig. 3).

Schematically, the situation is represented in situation (c) in

Fig. 3. Moreover, when corona field is turned off and the

charges dissipate, the change in SHG intensity can be

described by Eq. (9). The fittings are shown in inset (e) in

Fig. 3. Furthermore, the final SHG response is considerably

larger than the initial value, suggesting that the structure is

FIG. 2. SHG response upon applying a positive corona field to an Al2O3

passivated Si wafer. The initial SHG response corresponds to the uncharged

sample. This situation is schematically represented in situation (a). The

strength of the electric field in the SCR of Si is represented by the magnitude

of the arrow. At 0 s, a positive corona field of 2.7 kV is applied, resulting in

a drop in SHG intensity. The negative doping charges are attracted to the

interface, shown in situation (b). After several hundreds of seconds, the co-

rona field was turned off, resulting in a recovery of the SHG signal to its

original intensity.

FIG. 3. SHG response upon applying a negative corona field to an Al2O3 passi-

vated Si wafer. Similar curves were obtained for another thickness of the Al2O3

layer. The initial SHG response corresponds to the uncharged sample. This sit-

uation is schematically represented in situation (a). The strength of the electric

field in the SCR of Si is represented by the magnitude of the arrow. Upon

applying a �3 kV corona field, a large increase in SHG intensity is observed.

This correlates to the increase in electric field in the space-charge region of Si,

shown in situation (b). From a certain electric field over the oxide layer, tunnel-

ing of holes from Si to Al2O3 occurs, which reduces the effective electric field

in the silicon space-charge region. Hence, the SHG intensity drops exponen-

tially, as predicted by theory. Schematically, the situation is described by situa-

tion (c). Upon switching the corona charge off, the SHG drops logarithmically

due to the removal of charges in the space-charge region in Si. However, the

SHG signal does not recover to the initial intensity due to remaining positive

charges in the oxide layer, enabling a larger electric field in the silicon space-

charge region. In inset (d), the fitting on the time-shifted tunneling to an expo-

nential decay of situation (c) is shown. Similar relaxation times (313 s vs. 320 s)

are obtained for both the 10 nm and 30 nm thick oxide layer. In inset (e), the

logarithmic decay upon turning the corona field off is shown.
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electrically changed during the measurement. The effect of

tunneling can be confirmed by CV measurements, shown in

Fig. 4. The CV characteristics of the charged structure ex-

hibit a shift to negative voltage and a large hysteresis. Due to

this shift of flat-band potential and large hysteresis, the posi-

tive nature of the charges in the oxide can be confirmed.

Hence, holes tunneled from the Si layer to the Al2O3 layer

and remained in the oxide layer. This results in a larger field

in the space-charge region, enabling a larger final SHG

response, compared to the initial SHG response.

We show that, due to changes in charge density in

the space-charge region of silicon, the time-dependent sec-

ond-harmonic generation response of a structure can be

altered. Furthermore, tunneling of holes under the influence

of a positive corona field is observed with second-harmonic

generation, which is confirmed by capacitance-voltage meas-

urements. Previous methods of electric-field induced second-

harmonic generation could not separate the influence of the

metal layer and the important Si space-charge region, while

our method can. This approach can lead to valuable insights

into quantum well devices.
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FIG. 4. Capacitance-voltage characteristics before and after negative corona poling. For the positive corona charging, there is no significant difference in the

CV response ((a) vs (b)), confirming that the structure was not electrically altered during the corona poling. For the negative corona, there is a clear difference

in CV response ((c) vs (d)), indicating that there is an electrical difference between the samples before and after poling. Due to the shift in flat-band potential

and the increase in hysteresis in (b), it is clear that the amount of charges in the oxide layer increases and change sign to positive charges.
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