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Objective

Jordan algebras

ST N\?

Lie algebras <— Geometry
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Smooth vector fields on differentiable manifold M

= Lie algebra
[X,Y]=XY -YX
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For a symmetric manifold M (dim M < o)

Tangent space T,M = Jordan algebra (or Jordan triple).
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For a symmetric manifold M (dim M < o)
Tangent space T,M = Jordan algebra (or Jordan triple).
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Preview

M ~ G/K (G Lie group)
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Preview

M ~ G/K (G Lie group)

G — Lie algebra g
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Preview

M ~ G/K (G Lie group)

G — Lie algebra g

g=tdp
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Preview

M ~ G/K (G Lie group)

G — Lie algebra g

g=top
T

Jordan structure
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Jordan algebras

Origin of Jordan algebras

P. Jordan, J. von Neumann, E. Wigner
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Jordan algebras

Origin of Jordan algebras

P. Jordan, J. von Neumann, E. Wigner

On algebraic generalization of quantum mechanical
formalism
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Jordan algebras

Origin of Jordan algebras

P. Jordan, J. von Neumann, E. Wigner

On algebraic generalization of quantum mechanical
formalism

Annals of Math. 1934
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Jordan algebras

Observables <« Hermitian operators on Hilbert space
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Jordan algebras

Observables <« Hermitian operators on Hilbert space

S, T Hermitian % ST Hermitian
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Jordan algebras

Observables <« Hermitian operators on Hilbert space
S, T Hermitian % ST Hermitian
But

S, T Hermitian = SoT := ST + TS Hermitian
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Jordan algebras

Observables <> Hermitian operators on Hilbert space
S, T Hermitian % ST Hermitian

But

S, T Hermitian = SoT := ST + TS Hermitian

(Hermitian operators, o) —> Jordan algebra
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Jordan algebras

Jordan algebras

A (non-associative) algebra A (over F)
is a Jordan algebra if
ab=>ba
a®(ba) = (a®b)a.
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Jordan algebras

Jordan algebras

A (non-associative) algebra A (over F)

is a Jordan algebra if
ab=ba
a®(ba) = (a®b)a.

F =R, C (dmA< )
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Jordan algebras

Examples

Any associative algebra A is a Jordan algebra in the product
aob— %(ab+ba) (abe A)

(A, o) called a special Jordan algebra.
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Jordan algebras

Examples

Any associative algebra A is a Jordan algebra in the product
aob— %(ab+ba) (abe A)

(A, o) called a special Jordan algebra.

Exceptional Jordan algebra : Hz(O)

All 3 x 3 Hermitian matrices (a;) with a; € Cayley algebra O
and multiplication

(ay) - (b5) = 5((@)(y) + (By)(@p)
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Jordan and Lie algebras

Lie algebra
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Jordan and Lie algebras

Lie algebras

A non-associative algebra g (dim g < oo) satisfying
[Xﬁy] - —[y,X]
[x,y], 2] + Iy, 2]. x] + [[z, x],y] = O
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Jordan and Lie algebras

Lie algebras

A non-associative algebra g (dim g < oo) satisfying
[Xﬁy] - _[va]
[x,y], 2] + Iy, 2]. x] + [[z, x],y] = O

Poincaré - Birkhoff - Witt : Any Lie algebra can be
obtained from an associative algebra g by :

[X, y] == xy — yx.
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Jordan and Lie algebras

Connections to Lie algebras

Tits (1962), Kantor (1964), Koecher (1967):
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Jordan and Lie algebras

Connections to Lie algebras

Tits (1962), Kantor (1964), Koecher (1967):

Jordan algebras — 3-graded Lie algebras
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Jordan and Lie algebras

Connections to Lie algebras

Tits (1962), Kantor (1964), Koecher (1967):
Jordan algebras — 3-graded Lie algebras
Meyberg (1970):

Jordan triples (Jordan triple systems) <+ TKK Lie algebras
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Jordan and Lie algebras

Connections to Lie algebras

Tits (1962), Kantor (1964), Koecher (1967):

Jordan algebras — 3-graded Lie algebras

Meyberg (1970):

Jordan triples (Jordan triple systems) <+ TKK Lie algebras

TKK Lie algebras = 3-graded Lie algebras with involution
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Jordan and Lie algebras

Jordan triples  TKK Lie algebras

Jordan triple (dim < o)
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Jordan and Lie algebras

Jordan triples  TKK Lie algebras

Jordan triple (dim < o)

= vector space with a triple product satisfying a triple identity
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Jordan and Lie algebras

Jordan triples  TKK Lie algebras

Jordan triple (dim < o)
= vector space with a triple product satisfying a triple identity

Jordan triple TKK Lie algebra
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Jordan and Lie algebras

Jordan triples  TKK Lie algebras

Jordan triple (dim < o)
= vector space with a triple product satisfying a triple identity
Jordan triple TKK Lie algebra

Triple product {a,b,c} <> Lie triple product [[a, b], ¢]
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Jordan and Lie algebras

Jordan triples  TKK Lie algebras

Jordan triple (dim < o)

= vector space with a triple product satisfying a triple identity
Jordan triple TKK Lie algebra

Triple product {a,b,c} <> Lie triple product [[a, b], ¢]

Triple identity “ Jacobi identity.
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Jordan and Lie algebras

Triple product
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Jordan and Lie algebras

Triple product

Jordan algebras :
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Jordan and Lie algebras

Triple product

Jordan algebras :

{a,b,c} =(ab)c + a(bc) — b(ac)

We have
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Jordan and Lie algebras

Triple product

Jordan algebras :

{a,b,c} =(ab)c + a(bc) — b(ac)

We have

{a,b,c} ={c, b, a}
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Jordan and Lie algebras

Triple product

Jordan algebras :

{a,b,c} =(ab)c + a(bc) — b(ac)

We have

{a,b,c} ={c, b, a}

{-,-,-} is trilinear.
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Jordan and Lie algebras

Triple identity

{a. b, {x,y,z}}

= {{a7 b,X},y,Z} - {X’ {b’ a,y},z} + {va’{av b,Z}}
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Jordan and Lie algebras

Jordan triples

A real vector space V is a Jordan triple if there is a
trilinear map
{,}: V=V

satisfying

(i) {a,b,c} ={c,b,a}
(i) Triple identity.
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Jordan and Lie algebras

Jordan triples

A complex vector space V is a Jordan triple if there is a

map
{-,-,-}: Vi— vV,
linear in the 1st and 3rd variables, in the
variable,
satisfying

() {a,b,c} ={c b,a}
(il) Triple identity.
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Jordan and Lie algebras

Examples

(i) Real Jordan algebras

-Ho Chu ( Queen Mary, University of London ) Jordan structures in symmetri



Jordan and Lie algebras

Examples

(i) Real Jordan algebras

(i) complex Jordan algebras with involution * and triple
product

{a,b,c} =(ab’)c+a(b'c)—b(ac).
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Jordan and Lie algebras

Examples

(i) Real Jordan algebras

(i) complex Jordan algebras with involution * and triple
product

{a,b,c} =(ab’)c+a(b'c)—b(ac).

(iii) Tangent spaces of symmetric manifolds.
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Jordan and Lie algebras

Tits-Kantor-Koecher construction

(V.{-,-}) = Jordan triple —-> Lie algebra
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Jordan and Lie algebras

Tits-Kantor-Koecher construction

(V.{-,-}) = Jordan triple —-> Lie algebra

Box operator (left multiplication)

aob:xeVw—{abx}eV

Vo:=VoV:= {Zakmbk:ak,bke V,k:1,...,n}
K
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Jordan and Lie algebras

Tits-Kantor-Koecher construction

(V.{-,-}) = Jordan triple —-> Lie algebra

Box operator (left multiplication)

aob:xeVw—{abx}eV
Vo:=VoV:= {Zakmbk:ak,bke V,k:1,...,n}
K

V=V, =V
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Jordan and Lie algebras

Tits-Kantor-Koecher construction

(V.{-,-}) = Jordan triple —-> Lie algebra

Box operator (left multiplication)

aob:xeVw—{abx}eV
Vo:=VoV:= {Zakmbk:ak,bke V,k:1,...,n}
K
Voy=Vy:=V

Tits-Kantor-Koecher (TKK) Lie algebra
V)=V Wwe V
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Jordan and Lie algebras
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Jordan and Lie algebras

£(V) = exceptional Lie algebra of type E7
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Jordan and Lie algebras

3-graded Lie algebras

A Lie algebra g is called 3-graded if

g=0-1Dgo D g1

satisfying
[gna gm] C gn+m-
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Jordan and Lie algebras

3-graded Lie algebras

A Lie algebra g is called 3-graded if

g=0-1Dgo D g1

satisfying
[gna gm] C gn+m-

A TKK Lie algebra g isa 3-graded Lie algebra with
involution
0:g—g9g

satisfying
0(gn) = 9-n.
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Jordan and Lie algebras

Jordan triple TKK Lie algebras

Jordan triple V --» TKK Lie algebra £(V) = V_1 & Vo & V4
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Jordan and Lie algebras

Jordan triple TKK Lie algebras

Jordan triple V --» TKK Lie algebra £(V) = V_1 & Vo & V4
(involution) 6 : (a,xoy,b) € £(V) — (b,—yox, a) € £(V).
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Jordan and Lie algebras

Jordan triple TKK Lie algebras

Jordan triple V --» TKK Lie algebra £(V) = V_1 & Vo & V4
(involution) 6 : (a,xoy,b) € £(V) — (b,—yox, a) € £(V).

Conversely
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Jordan and Lie algebras

Jordan triple TKK Lie algebras

Jordan triple V --» TKK Lie algebra £(V) = V_1 & Vo & V4
(involution) 6 : (a,xoy,b) € £(V) — (b,—yox, a) € £(V).
Conversely

TKK Lie algebra g = g_1 ® go ® g1 With involution 6
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Jordan and Lie algebras

Jordan triple TKK Lie algebras

Jordan triple V --» TKK Lie algebra £(V) = V_1 & Vo & V4
(involution) 6 : (a,xoy,b) € £(V) — (b,—yox, a) € £(V).
Conversely

TKK Lie algebra g = g_1 ® go ® g1 With involution 6

--» Jordan triple V, with g = £(V):
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Jordan and Lie algebras

Jordan triple TKK Lie algebras

Jordan triple V --» TKK Lie algebra £(V) = V_1 & Vo & V4
(involution) 6 : (a,xoy,b) € £(V) — (b,—yox, a) € £(V).
Conversely

TKK Lie algebra g = g_1 ® go ® g1 With involution 6

--» Jordan triple V, with g = £(V):

Define V :=g_; and

Xy, 2t =[x 0(y)] 2]
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Jordan algebras and geometry

Geometry
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Jordan algebras and geometry

Riemannian symmetric spaces

A connected Riemannian manifold M is a symmetric
space if each p € M is an isolated fixed-point of a

symmetry So M — M
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Jordan algebras and geometry

Riemannian symmetric spaces

A connected Riemannian manifold M is a symmetric
space if each p € M is an isolated fixed-point of a

symmetry So M — M

(sp is anisometry and involutive : s,% = identity).
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Jordan algebras and geometry

Riemannian symmetric spaces

A connected Riemannian manifold M is a symmetric
space if each p € M is an isolated fixed-point of a

symmetry So M — M
(sp is anisometry and involutive : s,% = identity).
Examples

Euclidean space R":  sp(x) =2p — x
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Jordan algebras and geometry

Riemannian symmetric spaces

A connected Riemannian manifold M is a symmetric
space if each p € M is an isolated fixed-point of a

symmetry So M — M
(sp is anisometry and involutive : s,% = identity).
Examples
Euclidean space R":  sp(x) =2p — x

Compact (connected) Lie groups :  Se(x) = x~!
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Jordan algebras and geometry

Symmetric cones in R”
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Jordan algebras and geometry

Symmetric cones in R”

These are exactly the positive cones in finite dimensional
formally real Jordan algebras .A. (Koecher, Vinberg) (1960s)
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Jordan algebras and geometry

Symmetric cones in R”

These are exactly the positive cones in finite dimensional
formally real Jordan algebras .A. (Koecher, Vinberg) (1960s)

formally real A
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Jordan algebras and geometry

Symmetric cones in R”

These are exactly the positive cones in finite dimensional
formally real Jordan algebras .A. (Koecher, Vinberg) (1960s)

formallyreal A : @+ b2=0 = a=b=0
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Jordan algebras and geometry

Symmetric cones in R”

These are exactly the positive cones in finite dimensional
formally real Jordan algebras .A. (Koecher, Vinberg) (1960s)

formallyreal A : @2 +b2=0 = a=b=0 (3 1€ A)
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Jordan algebras and geometry

Symmetric cones in R”

These are exactly the positive cones in finite dimensional
formally real Jordan algebras .A. (Koecher, Vinberg) (1960s)

formallyreal A : @2 +b2=0 = a=b=0 (3 1€ A)

Q = interior {x? : x € A} is a symmetric space.
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Jordan algebras and geometry

Symmetric cones in R”

These are exactly the positive cones in finite dimensional
formally real Jordan algebras .A. (Koecher, Vinberg) (1960s)

formallyreal A : @ +b2=0 = a=b=0 (3 1€ A)
Q = interior {x? : x € A} is a symmetric space.

A = tangent space T{1Q.
inner product : (a, b) := Trace(acb) (a,be A)

aob:xe A—{ab,x} € A
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Jordan algebras and geometry

Symmetric cones in R”

These are exactly the positive cones in finite dimensional
formally real Jordan algebras .A. (Koecher, Vinberg) (1960s)

formallyreal A : @ +b2=0 = a=b=0 (3 1€ A)
Q = interior {x? : x € A} is a symmetric space.

A = tangent space T{1Q.
inner product : (a, b) := Trace(acb) (a,be A)

aob:xe A—{ab,x} € A

Riemannian metric : (u, v)p == ({p~ " u,p7'},v) (p€Q)
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Jordan algebras and geometry

Symmetric cones in R”

These are exactly the positive cones in finite dimensional
formally real Jordan algebras .A. (Koecher, Vinberg) (1960s)

formallyreal A : @ +b2=0 = a=b=0 (3 1€ A)
Q = interior {x? : x € A} is a symmetric space.

A = tangent space T{1Q.
inner product : (a, b) := Trace(acb) (a,be A)

aob:xe A—{ab,x} € A

Riemannian metric : (u, v)p == ({p~ " u,p7'},v) (p€Q)

Symmetry at1 € Q: si(w) =w™' (weQ)
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Jordan algebras and geometry

Example
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Jordan algebras and geometry

Example

Lorentz cone Ay C R" (n > 2)
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Jordan algebras and geometry

Example

Lorentz cone Ay C R" (n > 2)

An=1{(X1,...,Xn) : Xy >0, X2 — x5 — ... x2 >0}
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Jordan algebras and geometry

Example

Lorentz cone Ay C R" (n > 2)

Ao={(X1,..., %) : x4 >0, x{ — x5 — - x5 > 0}
(n=3)
future light cone
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Jordan algebras and geometry

Hermitian symmetric spaces
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Jordan algebras and geometry

Hermitian symmetric spaces

E. Cartan, Harish-Chandra
Hermitian symmetric spaces of nonpositive sectional curvature

= bounded symmetric domains in C"
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Jordan algebras and geometry

Hermitian symmetric spaces

E. Cartan, Harish-Chandra
Hermitian symmetric spaces of nonpositive sectional curvature
= bounded symmetric domains in C"

bounded symmetric domain D :
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Jordan algebras and geometry

Hermitian symmetric spaces

E. Cartan, Harish-Chandra
Hermitian symmetric spaces of nonpositive sectional curvature
= bounded symmetric domains in C"

bounded symmetric domain D : D is open, connected
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Jordan algebras and geometry

Hermitian symmetric spaces

E. Cartan, Harish-Chandra

Hermitian symmetric spaces of nonpositive sectional curvature
= bounded symmetric domains in C"

bounded symmetric domain D : D is open, connected

each p € D is an isolated fixed-point of an involutive
biholomorphic map s, : D — D.
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Jordan algebras and geometry

Hermitian symmetric spaces

E. Cartan, Harish-Chandra

Hermitian symmetric spaces of nonpositive sectional curvature
= bounded symmetric domains in C"

bounded symmetric domain D : D is open, connected

each p € D is an isolated fixed-point of an involutive
biholomorphic map s, : D — D.

biholomorphic : s, is a holomorphic bijection,
sp ' is holomorphic.
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Jordan algebras and geometry

Example

D={zeC:|z| <1}
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Jordan algebras and geometry

Example

D={zeC:|z| <1}

TzD:C
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Jordan algebras and geometry

Example

D={zeC:|z| <1}
Tz]D) — C
Riemann Mapping Theorem

all 1-dim bounded symmetric domains =~ D.
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Jordan algebras and geometry

Cartan’s classification

6 types of irreducible bounded symmetric domains D
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Jordan algebras and geometry

Cartan’s classification

6 types of irreducible bounded symmetric domains D

(4 classical domains ; 2 exceptional domains)
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Jordan algebras and geometry

Cartan’s classification

6 types of irreducible bounded symmetric domains D
(4 classical domains ; 2 exceptional domains)

Each D ~ open unitball B= {zc C?: ||z| < 1},
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Jordan algebras and geometry

Cartan’s classification

6 types of irreducible bounded symmetric domains D
( 4 classical domains ; 2 exceptional domains)
Each D ~ open unitball B= {z c C%: || z|| < 1},

| - || = Carathéodory norm.
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Jordan algebras and geometry

Cartan’s classification

6 types of irreducible bounded symmetric domains D
(4 classical domains ; 2 exceptional domains)

Each D ~ open unitball B= {z c C%: || z|| < 1},

|| - || = Carathéodory norm.

(C9 |- ||) is a Jordan triple !
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Jordan algebras and geometry

Examples

type VI (exceptional) :
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Jordan algebras and geometry

Examples

type VI (exceptional) :

D= (C¥.|| - ]|) = Hs(0)
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Jordan algebras and geometry

Examples

type VI (exceptional) :
D = (C¥.|| - ||) = Ha(O)

type IV (classical) : Lie ball
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Jordan algebras and geometry

Examples

type VI (exceptional) :
D = (C¥.|| - ||) = Ha(O)
type IV (classical) : Lie ball

Dx{zeC: |z <1} c(C%-]) (d=3)

1z|? = (z,2) + \/ 7,2)2 — (z,z%)
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Jordan algebras and geometry

oo dimension

Bounded symmetric domain D :
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Jordan algebras and geometry

oo dimension

Bounded symmetric domain D :

a bounded domain in a complex Banach space s.t.
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Jordan algebras and geometry

oo dimension

Bounded symmetric domain D :
a bounded domain in a complex Banach space s.t.

each p € D is an isolated fixed-point of an involutive
biholomorphic map s, : D — D.
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Jordan algebras and geometry

holomorphic maps

V, W = Banach spaces
(Open set D C V)

f: D — W is holomorphic if it has a Fréchet derivative f'(a) at
each a € D, where
flay: V— W

is a continuous linear map such that

i 1@+ v) — f(a) — r(aw)

- 0.
lIv]|—0 v
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Jordan algebras and geometry

Riemann Mapping Theorem

(Kaup 1983) : Every bounded symmetric domain D
is biholomorphic to the open unit ball of a JB*-triple V:
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Jordan algebras and geometry

Riemann Mapping Theorem

(Kaup 1983) : Every bounded symmetric domain D
is biholomorphic to the open unit ball of a JB*-triple V:

@ Vis a complex Banach space;

© Vs a Jordan triple;

©Q ava: xe Vi {aa x} € Vis hermitian;
Q o(ava) C[0,00);

Q [{a, b.ctl < allllbllicl  (ab,ce V).
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Jordan algebras and geometry

Riemann Mapping Theorem

(Kaup 1983) : Every bounded symmetric domain D
is biholomorphic to the open unit ball of a JB*-triple V:

@ Vis a complex Banach space;

© Vs a Jordan triple;

©Q ava: xe Vi {aa x} € Vis hermitian;
Q o(ava) C[0,00);

Q [{a, b.ctl < allllbllicl  (ab,ce V).

(Finite dimensional case : Loos 1977)
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Jordan algebras and geometry

Riemann Mapping Theorem

(Kaup 1983) : Every bounded symmetric domain D
is biholomorphic to the open unit ball of a JB*-triple V:

@ Vis a complex Banach space;

© Vs a Jordan triple;

©Q ava: xe Vi {aa x} € Vis hermitian;
Q o(ava) C[0,00);

Q [{a, b.ctl < allllbllicl  (ab,ce V).

(Finite dimensional case : Loos 1977)

ForbcC=V,
xy.zt =xyz (x,y,z€C)
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Jordan algebras and geometry

Examples

type VI (exceptional) :
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Jordan algebras and geometry

Examples

type VI (exceptional) :

D= (C¥.|| - ]|) = Hs(0)
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Jordan algebras and geometry

Examples

type VI (exceptional) :
D = (C¥.|| - ) = H3(O)

{a,b,c} =(a-b")-c+a-(b*-c)—c-(a-b")
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Jordan algebras and geometry

Examples

type VI (exceptional) :
D (C?, - ||) = Hs(0O)
{a,b,c} =(a-b")-c+a-(b*-c)—c-(a-b")

type IV (classical) : Lie ball
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Jordan algebras and geometry

Examples

type VI (exceptional) :

D < (C#,]| - 1) = Hs(0)
{a,b,c}=(a-b")-c+a-(b"-c)—c-(a-b")
type IV (classical) : Lie ball

Dx{zeC: |z <1} c(C%-]) (d=3)
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Jordan algebras and geometry

Examples

type VI (exceptional) :

D < (C#,]| - 1) = Hs(0)

{a,b,c} =(a-b*)-c+a-(b*-c)—c-(a-b")
type IV (classical) : Lie ball

D~{zeC: |zl <1} c(C/|-]) (d=3)

{X,y,Z} = <X,y>Z—|— <z,y>x— <X7Z*>y*-

Cho-Ho Chu ( Queen Mary, University of London ) Jordan structures in symmetric manifolds



Jordan algebras and geometry

Open unit balls of JB*-triples
are

bounded symmetric domains
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Jordan algebras and geometry

More examples of JB*-triples

o Hilbert spaces H: {x,y,z} = %(<x,y>z +(z,y)x)
(C : {x,y.2} = xy2)
e C*-algebras: {a,b,c} = %(ab*c+ cb*a)
e L(H,K):{a,b,c} = %(ab*c+ cb*a)
L(H, K)

= all bounded linear operators between Hilbert spaces H and K
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Jordan algebras and geometry

D < JB*-triple V

ho-Ho Chu ( Queen Mary, University of structures in symmetric manifolds



Jordan algebras and geometry

D < JB*-triple V

Fix pe D and symmetry s, : D — D.
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Jordan algebras and geometry

D < JB*-triple V

Fix pe D and symmetry s, : D — D.

Let G = Aut D = all biholomorphic maps : D — D.
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Jordan algebras and geometry

D < JB*-triple V

Fix pe D and symmetry s, : D — D.
Let G = Aut D = all biholomorphic maps : D — D.

G is areal Lie group —> real Lie algebra g.

Cho-Ho Chu ( Queen Mary, University of London ) Jordan structures in symmetric manifolds



Jordan algebras and geometry

D < JB*-triple V

Fix pe D and symmetry s, : D — D.
Let G = Aut D = all biholomorphic maps : D — D.
G is areal Lie group —> real Lie algebra g.

Sp —>involution 0 : gc — gc (gc = complexification of g)
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Jordan algebras and geometry

D < JB*-triple V

Fix pe D and symmetry s, : D — D.

Let G = Aut D = all biholomorphic maps : D — D.

G is areal Lie group —> real Lie algebra g.

Sp —>involution 0 : gc — gc (gc = complexification of g)

gc isaTKK Lie algebra = g_1 & go @ g1.
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Jordan algebras and geometry

D < JB*-triple V

Fix pe D and symmetry s, : D — D.

Let G = Aut D = all biholomorphic maps : D — D.

G is areal Lie group —> real Lie algebra g.

Sp —>involution 0 : gc — gc (gc = complexification of g)
gc isaTKK Lie algebra = g_1 & go @ g1.

V := g_4 with Jordan triple product
{x.y,z} =[x, 0(y)], Z]

Cho-Ho Chu ( Queen Mary, University of London ) Jordan structures in symmetric manifolds



Jordan algebras
Jordan and Lie algebras

Jordan algebras and geometry
Geometric analysis

e T
books describe it diverse applications. Here, the author discusses some
recent advances of Jordan theory in ifferential geometry, complex and
functional analysis, with the aid of numerous examples and concise historical
notes. These include: the connection between Jordan and Lie theory via the
Tits-Kantor-Koecher construction of Lie algebras; a Jordan algebraic
approach to infinite dimensional symmetric manifolds including Riemannian
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Geometric analysis

Geometric Analysis
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Geometric analysis

Geometric Analysis

Bounded symmetric domain D
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Geometric analysis

Geometric Analysis

Bounded symmetric domain D

={veV:|v| <1} (V=JB*triple)
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Geometric analysis

Geometric Analysis

Bounded symmetric domain D
={veV:|v| <1} (V=JB*triple)

generalises {zeC9:|z| <1}
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Geometric analysis

Geometric Analysis

Bounded symmetric domain D
={veV:|v| <1} (V=JB*triple)
generalises {zeC9:|z| <1}

Problem Study geometric function theory on D.
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Geometric analysis

Geometric Analysis

Bounded symmetric domain D

={veV:|v| <1} (V=JB*triple)
generalises {zeC9:|z| <1}

Problem Study geometric function theory on D.

Special features : dim < oo ; ambient Jordan structures

Cho-Ho Chu ( Queen Mary, University of London ) Jordan structures in symmetric manifolds



Geometric analysis

Useful tools

V = JB*-triple

aob:zeVw—{ab,z}eV
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Geometric analysis

Useful tools

V = JB*-triple

aob:zeVw—{ab,z}eV

Bergman operator B(a,b): V — V

B(a,b)(z) = z — 2(acb)(z) + {a, {b, z, b}, a}

Cho-Ho Chu ( Queen Mary, University of London ) Jordan structures in symmetric manifolds



Geometric analysis

Useful tools

V = JB*-triple
anb:zeVw—{ab,z}cV
Bergman operator B(a,b): V — V
B(a,b)(z) = z—2(aub)(z) + {a,{b, z, b}, a}
Mobius transformation g: D — D (a€ D)

9a(2) = a+ B(a, a)'/?(1+ z0a) ' (2)
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Geometric analysis

AutD={logy:ac D}

t:V—V (linear isometry)
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Geometric analysis

AutD={logy:ac D}
t:V—V (linear isometry)
(Shoshichi) Kobayashi distance

r(a,b) = tanh'|g_p(a)|  (abeD)
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Geometric analysis

AutD ={log,:a€c D}
t:V—V (linear isometry)
(Shoshichi) Kobayashi distance
r(a,b) = tanh~||g_p(a)|  (abe D)

ForD={zeC:|z|<1}:
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Geometric analysis

AutD ={log,:a€c D}
t:V—V (linear isometry)
(Shoshichi) Kobayashi distance
r(a,b) = tanh~||g_p(a)|  (abe D)
ForD={zeC:|z|<1}:

a+z
1+az

9a(2) =
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Geometric analysis

AutD ={log,:a€c D}
t:V—V (linear isometry)
(Shoshichi) Kobayashi distance
r(a,b) = tanh~||g_p(a)|  (abe D)
ForD={zeC:|z|<1}:

a+z
1+az

9a(2) =

_ —1
k(a, b) = tanh T 2h

a-b ' (Poincare distance)

Cho-Ho Chu ( Queen Mary, University of London ) Jordan structures in symmetric manifolds



Geometric analysis

lteration of holomorphic maps

D={zeC:|z| <1} D={zeC:|z| =1}

Given holomorphic f : D — D, without fixed point, then
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Geometric analysis

lteration of holomorphic maps

D={zeC:|z| <1} D={zeC:|z| =1}

Given holomorphic f : D — D, without fixed point, then

@ (Wolff Theorem) 3 £ € 9D such that Vy € D, 3 f-invariant
horodisc S(&,y) containing y:

f(S(y)) S y)cD
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Geometric analysis

lteration of holomorphic maps

D={zeC:|z| <1} D={zeC:|z| =1}
Given holomorphic f : D — D, without fixed point, then

@ (Wolff Theorem) 3 £ € 9D such that Vy € D, 3 f-invariant
horodisc S(&,y) containing y:

f(S(€,y)) € S, y)cD
fT=fof---of (ntimes)
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Geometric analysis

lteration of holomorphic maps

D={zeC:|z| <1} D={zeC:|z| =1}
Given holomorphic f : D — D, without fixed point, then

@ (Wolff Theorem) 3 £ € 9D such that Vy € D, 3 f-invariant
horodisc S(&,y) containing y:

f(S(€,y)) € S, y)cD
fT=fof---of (ntimes)
© (Denjoy-Wolff Theorem)

fT"— h(-)=¢as n— oo.
(uniformly on compact sets)
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Geometric analysis

Problem

D = bounded symmetric domain
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Geometric analysis

Problem

D = bounded symmetric domain

Given holomorphic f : D — D, without fixed point,
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Geometric analysis

Problem

D = bounded symmetric domain
Given holomorphic f : D — D, without fixed point,

does Wolff Theorem hold for f?
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Geometric analysis

Problem

D = bounded symmetric domain
Given holomorphic f : D — D, without fixed point,
does Wolff Theorem hold for f?

Yes
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Geometric analysis

Problem

D = bounded symmetric domain
Given holomorphic f : D — D, without fixed point,
does Wolff Theorem hold for f?

Yes if f(D) compact (this is so if dim D < o0)
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Geometric analysis

Problem

D = bounded symmetric domain
Given holomorphic f : D — D, without fixed point,
does Wolff Theorem hold for f?

Yes if f(D) compact (this is so if dim D < o0)

Does Denjoy-Wolff Theorem hold for f?
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Geometric analysis

Problem

D = bounded symmetric domain

Given holomorphic f : D — D, without fixed point,
does Wolff Theorem hold for f?

Yes if f(D) compact (this is so if dim D < o)

Does Denjoy-Wolff Theorem hold for f?

Not always!

Cho-Ho Chu ( Queen Mary, University of London ) Jordan structures in symmetric manifolds



Geometric analysis

How to prove Wolff Theorem for D ?

Cho-Ho Chu ( Queen Mary, Uni ity of London) Jordan structures in symmetric manifolds



Geometric analysis

D={zeC:|z| <1}

@ Rouché Theorem = 3 (z) — £€D
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Geometric analysis

D={zeC:|z| <1}

@ Rouché Theorem = 3 (z) — £€D

© f has no fixed point = ¢ € ID.
7N\ oD

Zk

(0]

D
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Geometric analysis

Bounded symmetric domain

@ Earle-Hamilton = 3 (z) —£€D
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Geometric analysis

Bounded symmetric domain

@ Earle-Hamilton = 3 (z) —£€D
© f has no fixed point = ¢ € 9D.

oD
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Geometric analysis

Construction of horodisc S(¢,y) C D
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Geometric analysis

Construction of horodisc S(¢,y) C D

Poincaré disc
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Geometric analysis

Construction of horodisc S(¢,y) C D

Poincaré disc

LetacDcC
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Geometric analysis

Construction of horodisc S(¢,y) C D

Poincaré disc
LetacDcC

A Poincaré disc ( centre a) is :
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Geometric analysis

Construction of horodisc S(¢,y) C D

Poincaré disc
LetacDcC

A Poincaré disc ( centre a) is :
Ba={ze V:k(z,a) <tanh™'r)} (r>0)
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Geometric analysis

Construction of horodisc S(¢,y) C D

Poincaré disc
LetacDcC

A Poincaré disc ( centre a) is :
Ba={ze V:k(z,a) <tanh™'r)} (r>0)
k(z, a) : Poincaré distance
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Geometric analysis

S(&, y) = (interior of) limit of Poincaré discs B,

Cho-Ho Chu ( Queen Mary, University of London ) Jordan structures in symmetric manifolds



Geometric analysis

S(&, y) = (interior of) limit of Poincaré discs B,

= (interior of) {x : x = limy Xk, Xx € Bz, }
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Geometric analysis

S(&, y) = (interior of) limit of Poincaré discs B,

= (interior of) {x : x = limy Xk, Xx € Bz, }

k
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Geometric analysis

Horoball S(¢, y) in bounded symmetric domain
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Geometric analysis

Horoball S(¢, y) in bounded symmetric domain

Kobayashi ball
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Geometric analysis

Horoball S(¢, y) in bounded symmetric domain

Kobayashi ball

Letae Dc V (V = JB*-triple)

Cho-Ho Chu ( Queen Mary, University of London ) Jordan structures in symmetric manifolds



Geometric analysis

Horoball S(¢, y) in bounded symmetric domain

Kobayashi ball
Letae Dc V (V = JB*-triple)

A Kobayashi ball ( centre a) is:

Cho-Ho Chu ( Queen Mary, University of London ) Jordan structures in symmetric manifolds



Geometric analysis

Horoball S(¢, y) in bounded symmetric domain

Kobayashi ball
Letae Dc V (V = JB*-triple)

A Kobayashi ball ( centre a) is:
Ba={ze V:k(z,a) <tanh™'r)} (r>0)
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Geometric analysis

Horoball S(¢, y) in bounded symmetric domain

Kobayashi ball
Letae Dc V (V = JB*-triple)

A Kobayashi ball ( centre a) is:
Ba={ze V:k(z,a) <tanh™'r)} (r>0)
k(z, a) : Kobayashi distance
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Geometric analysis

(interior of) limit of Kobayashi balls B,
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Geometric analysis

S(¢, y)\:/ (interior of) limit of Kobayashi balls B,

?

Not working well for co-dim !

k
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Geometric analysis

Alternative construction of S(¢, y) for D

S(,y)
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Geometric analysis

Alternative construction of S(¢, y) for D

S(,y)

. 1— ’Zk|2 }
=zeD: Im —————- < A\ some A >0
{ k=00 1 —|g-z,(2)[2 ( )
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Geometric analysis

Wolff Theorem

f: D — D : holomorphic, without fixed point.
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Geometric analysis

Wolff Theorem

f: D — D : holomorphic, without fixed point.

Let f be compact (i.e. f(D) be compact).
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Geometric analysis

Wolff Theorem

f: D — D : holomorphic, without fixed point.

Let f be compact (i.e. f(D) be compact).
Then
3¢ € 9D such thatVy € D, 3 horoball S(&,y) c D
containing y :
f(S(€,y)) € S(&, ).
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Geometric analysis

Wolff Theorem

f: D — D : holomorphic, without fixed point.

Let f be compact (i.e. f(D) be compact).
Then
3¢ € 9D such thatVy € D, 3 horoball S(&,y) c D
containing y :
f(S(€,y)) € S(&, ).

| N }
S = D:limsup—MM————— < \
&) {Z € D:lmsup o @R <Y

(some A\, > 0).
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Geometric analysis

Wolff Theorem

f: D — D : holomorphic, without fixed point.

Let f be compact (i.e. f(D) be compact).
Then
3¢ € 9D such thatVy € D, 3 horoball S(&,y) c D
containing y :
f(S(€,y)) € S(&, ).

| N }
S = D:limsup—MM————— < \
&) {Z € D:lmsup o @R <Y

(some A\, > 0).

(S, ¥)) € S(&:y)
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Geometric analysis

Wolff Theorem

f: D — D : holomorphic, without fixed point.

Let f be compact (i.e. f(D) be compact).
Then
3¢ € 9D such thatVy € D, 3 horoball S(&,y) c D
containing y :
f(S(€,y)) € S(&, ).

| N }
S = D:limsup—MM————— < \
&) {Z € D:lmsup o @R <Y

(some A\, > 0).

f(S(&,y)) € S(&,y) because k(f(a), f(b)) < k(a, b).
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Geometric analysis

Special cases

@ D = Hilbert ball Goebel (Nonlinear Anal. 1982)
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Geometric analysis

Special cases

@ D = Hilbert ball Goebel (Nonlinear Anal. 1982)

© dimD < o Hervé (J. Math. Pures. Appl. 1963),
Mellon (Crelle 2000)
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Geometric analysis

Special cases

@ D = Hilbert ball Goebel (Nonlinear Anal. 1982)

© dimD < o Hervé (J. Math. Pures. Appl. 1963),
Mellon (Crelle 2000)

© D = product of Hilbert balls Chu+ Rigby (JMAA 2014)
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Geometric analysis

Special cases

@ D = Hilbert ball Goebel (Nonlinear Anal. 1982)

© dimD < o Hervé (J. Math. Pures. Appl. 1963),
Mellon (Crelle 2000)

© D = product of Hilbert balls Chu+ Rigby (JMAA 2014)

Q D = Lie ball Chu (Adv. Math. 2014)
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Geometric analysis

Denjoy-Wolff theorem??

fT—s &7

-Ho Chu ( Queen Mary, University of London ) Jordan structures in symmetri



Geometric analysis

Denjoy-Wolff type result (dim < oo)
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Geometric analysis

Denjoy-Wolff type result (dim < oo)

D = bounded symmetric domain

Boundary of D= U, K, (disjoint union)

K, = boundary component (convex domain)
1 K, suchthat

V h=limf™ with h(D) weakly closed

2  h(D) <= K,.

e.g. If f=Mabius transformation, then h(D) = K,.
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Geometric analysis

Thank you !
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