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Two-layer neural networks

Two-layer neural network (NN) f : Rd → R:

f (x) =
n∑

i=1

aiσ(〈x ,bi〉+ ci), x ∈ Rd ,

where
{bi}ni=1 ⊂ Rd and {ai}ni=1 ⊂ R are the weights;
{ci}ni=1 ⊂ R are the biases;
σ : R→ R is the activation function;
{σ(〈x ,bi〉+ ci)}ni=1 are the neurons, collectively called the
hidden layer of the network;
〈·, ·〉 denote the scalar product in Rd .

2 / 22



Approximation by two-layer neural networks

Universal approximation theorems (Cybenko, 1989; Hornik et al.,
1989; Leshno et al., 1993)

If σ is not a polynomial then any continuous function on a
compact set can be approximated uniformly by two-layer NNs.

Approximation rates
in general exponential in dimension d even for Lipschitz
functions, error O(n−1/d );
Monte-Carlo rates O(n−1/2) for special classes of functions
(next slide).
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Spectral Barron space

Theorem (Barron, 1993)

For any function f on a compact set B ⊂ Rd let F be the magnitude of its
Fourier transform. For any constant C > 0 denote

ΓC :=

{
f : Rd → R s.t.

∫
|ω|F (ω)dω < C

}
.

Then for any n ∈ N and for any f ∈ ΓC there exists a two-layer NN fn with n
neurons such that

‖f − fn‖L2(B) 6
2C√

n
.

The weights of the second layer {ai}n
i=1 can be chosen to satisfy∑n

i=1
|ai | 6 2C.

NB: `1 bound on {ai}n
i=1 uniform in n and depends only on C.
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Infinitely wide two-layer neural networks

Infinitely wide two-layer neural network f : Rd → R:

f (x) =

∫
A
σ(〈x ,b〉+ c) da(b, c), x ∈ Rd ,

where A is a compact topological parameter space and a ∈M(A)
is a signed Radon measure. Typically A = BRd .

Definition (Bach, 2017; E, Ma, and Wu, 2019)

The space of functions that can be represented as above, equipped
with the following norm

‖f‖B := inf
a
{‖a‖M : f (x) =

∫
A
σ(〈x ,b〉+ c) da(b, c), x ∈ Rd},

is called the Barron space.

5 / 22



Barron spaces: also known as

Variation norm spaces
- Bach (2017). Breaking the curse of dimensionality with convex neural networks;

Barron spaces (not to be confused with the spectral Barron space)
- E, Ma, Wu (2019). Barron spaces and compositional function spaces for neural network models;
- E, Wojtowytsch (2020). Representation formulas and pointwise properties for Barron functions;

Radon-BV2 spaces
- Ongie, Willett, Soudry, Srebro (2020). A function space view of bounded norm infinite width ReLU
nets: The multivariate case;
- Parhi, Nowak (2021). Banach space representer theorems for neural networks and ridge splines;

Reproducing kernel Banach spaces
- Bartolucci, De Vito, Rosasco, Vigogna (2021). Understanding neural networks with reproducing
kernel Banach spaces;

Mean field approach
- Rotskoff, Vanden-Eijnden (2018). Parameters as interacting particles: long time convergence and
asymptotic error scaling of neural networks;
- Mei, Montanari, Nguyen (2018). A mean field view of the landscape of two-layer neural networks;
- Chizat, Bach (2018). On the global convergence of gradient descent for over-parameterized
models using optimal transport;
- Sirignano, Spiliopoulos (2020). Mean field analysis of neural networks: A law of large numbers6 / 22



Linear-nonlinear decomposition

Linear-nonlinear decomposition of a two-layer NN f : Rd → R

f (x) = Aσ(Bx + c), x ∈ Rd ,

where
B : Rd → Rn, c ∈ Rn and A : Rn → R

for a NN with n <∞ neurons,

B : Rd → C(Rd ), c ∈ C(Rd ) and A : C(Rd )→ R
for an infinitely wide NN.

(E and Wojtowytsch, 2020)
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Linear-nonlinear decomposition

Linear-nonlinear decomposition of a two-layer NN f : Rd+1 → R

f (x) = Aσ(Bx), x ∈ Rd+1,

where we slightly abused the notation and identified Rd with Rd × R and B with an
operator (B, c) acting on Rd × R as (x , α) 7→ Bx + αc. For inputs of the form (x , 1)
the two formulas are the same.

Now we have
B : Rd+1 → Rn and A : Rn → R

for a NN with n <∞ neurons,

B : Rd → C(Rd+1) and A : C(Rd+1)→ R
for an infinitely wide NN.
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Linear-nonlinear decomposition

Linear-nonlinear decomposition of a two-layer NN f : Rd+1 → R

f (x) = Aσ(Bx), x ∈ Rd+1.

If σ is positively one-homogeneous, parameters can be chosen on the unit ball BRd+1 .

Finally, we get
B : Rd+1 → Rn and A : Rn → R

for a NN with n <∞ neurons,

B : Rd+1 → C(BRd+1) and A : C(BRd+1)→ R
for an infinitely wide NN.

Hence, A is a linear functional on C(BRd+1), can be identified with a ∈ M(BRd+1).
Then

‖f‖B = inf
a
{‖a‖M : f (x) = 〈σ(Bx), a〉 , x ∈ Rd+1},

where 〈·, ·〉 is the dual pairing between C(BRd+1) andM(BRd+1).
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Monte-Carlo rates in Barron spaces

Theorem (direct approximation; E, Ma and Wu, 2019)

Let µ ∈ Pp(Rd ) be a probability measure with p > 1 finite moments
and let f ∈ B(Rd ). Then for any n ∈ N there exists a two-layer NN fn
with n neurons such that

‖f − fn‖L2
µ(Rd ) 6

2 ‖f‖B√
n

and ∑n

i=1
|ai | 6 2 ‖f‖B .

Cf. Barron’s theorem: ‖f‖B substitutes the spectral Barron norm.

Inverse approximation also holds (E, Ma and Wu, 2019).
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Learning in infinite-dimensional spaces

Reproducing kernel Hilbert/Banach spaces a.k.a. random feature models
- Micchelli, Pontil (2005). On learning vector-valued functions;
- Zhang, Zhang (2013). Vector-valued reproducing kernel Banach spaces with
applications to multi-task learning;
- Álvarez, Rosasco, Lawrence (2012). Kernels for vector-valued functions: A
review;
- Nelsen, Stuart (2020). The random feature model for input-output maps between
Banach spaces.

Universal approximation theorems for operators
- Chen, Chen (1995). Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical
systems;
- Lanthaler, Mishra, Karniadakis (2021). Error estimates for DeepOnets: A deep
learning framework in infinite dimensions.
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Vector-valued two-layer neural networks

Vector-valued two-layer NN f : X → Y

f (x) = Aσ(Bx), x ∈ X ,

where
X , Y have separable preduals and Y is also a vector lattice,
σ : Y → Y is the generalised ReLU function,

σ(y) := y+ = y ∨ 0 in the lattice sense,

B : X → C(BL(X ;Y);Y) maps

x 7→ Lx (·) such that Lx (K ) = Kx ,

A : C(BL(X ;Y);Y)→ Y maps

ϕ(·) 7→
∫
BL

ϕ(K ) da(K ), where a ∈M(BL(X ;Y)).
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Vector lattices, a.k.a. Riesz spaces

Vector space X with partial order “ 6 “ called an ordered vector space
if

x 6 y =⇒ x + z 6 y + z ∀ x , y , z ∈ X ,
x 6 y =⇒ λx 6 λy ∀ x , y ∈ X and λ ∈ R+.

A vector lattice (or a Riesz space) is an ordered vector space X with
well defined suprema and infima

∀x , y ∈ X ∃ x ∨ y ∈ X , x ∧ y ∈ X ;

x ∨ 0 = x+, (−x)+ = x−, x = x+ − x−, |x | = x+ + x−.
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Examples of vector lattices

◦ Sequence spaces `p, 1 6 p 6∞

x > y ⇐⇒ x i > y i i ∈ N;

◦ Space of signed Radon measuresM(Ω)

µ > ν ⇐⇒ µ(A) > ν(A) ∀A ⊂ Ω;

◦ Lebesgue spaces Lp, 1 6 p 6∞

f > g ⇐⇒ f (x) > g(x) a.e. in Ω;

◦ Space of continuous functions C(Ω), space of Lipschitz functions Lip(Ω)

f > g ⇐⇒ f (x) > g(x) ∀x ∈ Ω;

◦ Space of linear operators between two partially ordered spaces Lr (X ;Y)

A > B ⇐⇒ ∀x > 0 it holds that Ax > Bx .
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Caveats – 1

The parameter space is BL(X ;Y). To make sure it is compact, we
need to
◦ make sure that L(X ;Y) is a dual space and
◦ use the weak* topology.

Theorem (Ryan, Introduction to tensor products of Banach spaces, 2002)

Suppose that X and Y have separable preduals X � and Y� and that either
X or Y� has the approximation property. Then the dual of the space of
nuclear operators N (Y�;X �) can be identified with the space of bounded
operators L(X ;Y)

(N (Y�;X �))∗ ' L(X ;Y).

Consequently, the unit ball BL(X ;Y) is weakly* compact and metrisable.
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Caveats – 2

Since BL(X ;Y) is equipped with the weak* topology, we need to
make sure that

◦ the function Lx : BL(X ;Y) → Y such that Lx (K ) = Kx is weakly-*
continuous → true if Y is equipped with the weak* topology;

◦ the nonlinearity σ is weakly-* continuous
→ turns out to be quite restrictive for the ReLU!

Examples:
" Sequence spaces `p, p > 1; Lipschitz space Lip(Ω);

% Lebesgue spaces Lp
µ (unless µ is atomic); space of linear

operators Lr (X ;Y) (except in special cases); space of Radon
measuresM(Ω) (unless Ω is discrete).
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Caveats – 3

In order to obtain convergence rates in Bochner spaces Lp, we
need to metrise the weak* topology on the unit ball in Y. This can
be done using the following metric

d∗(y , z) =
∑∞

i=1
2−i |〈ηi , y − z〉| .

where {ηi}i∈N is a countable dense system in the predual such that
‖ηi‖ = 1 for all i .

Approximation rates will be obtained in Lebesgue-Bochner spaces
Lp(X , (Y,d∗)).
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Vector-valued Barron space

Definition (Vector-valued Barron functions)

Let X ,Y have separable preduals and let Y be such that lattice
operations are 1-Lipschitz with respect to the d∗ metric. We define
the space of Y-valued Barron functions as follows

B(X ;Y) := {f ∈ Lip0 : ‖f‖B <∞},

where Lip0 is the space of Lipschitz functions with respect to the d∗
metric in Y that vanish at zero and

‖f‖B := inf
a∈M(BL)

{
‖a‖M : f (x) =

∫
BL

σ(Lx (K )) da(K ) ∀x ∈ X
}
.
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Monte-Carlo rates in vector-valued Barron spaces

Theorem (direct approximation; YK 2021)

Let above assumptions be satisfied and let f ∈ B(X ;Y). Then for any
n ∈ N there exists a two-layer neural network with n neurons

fn(x) :=
∑n

i=1
αi (Kix)+, x ∈ X ,

where Ki have finite rank and ‖Ki‖L(X ;Y) 6 1, such that if µ ∈ Pp(X ) and
mp(µ) <∞ is its p-th moment, p > 1, then

‖f − fn‖Lp
µ
6

2
√

2 ‖f‖B (mp(µ))
1
p

√
n

.

Inverse approximation also holds.
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Conclusions

We have
" Generalised Barron spaces with ReLU activation to networks

with values in a Banach space;
" Proved inverse and direct approximation theorems, obtained

Monte-Carlo rates;
" Results also hold for any 1-homogeneous and weakly-*

continuous activation, e.g., leaky ReLU

σ(y) := y+ − λy−, λ ∈ (0,1);

% Saw a limitation – weak* continuity of σ often not fulfilled by
ReLU → is the use of weak* topologies a technicality?

% More complex architectures.

YK (2021). Two-layer neural networks with values in a Banach space. arXiv:2105.02095
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