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Introduction:
Scalar-valued neural networks and Barron spaces
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Two-layer neural networks

Two-layer neural network (NN) f: RY — R:

n
f(x)=> ao((x,b)+¢), xeR
i=1
where
{bi}", c R% and {a;}"_, C R are the weights;
{ci}y C R are the biases;
o: R — R is the activation function;

{o({(x, b;) + ¢;)}_ are the neurons, collectively called the
hidden layer of the network;

(-,-) denote the scalar product in RY.
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Approximation by two-layer neural networks

Universal approximation theorems (Cybenko, 1989; Hornik et al.,
1989; Leshno et al., 1993)

If o is not a polynomial then any continuous function on a
compact set can be approximated uniformly by two-layer NNs.

Approximation rates

in general exponential in dimension d even for Lipschitz
functions, error O(n~"/9);

Monte-Carlo rates O(n~'/2) for special classes of functions
(next slide).
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Spectral Barron space

Theorem (Barron, 1993)

For any function f on a compact set B c R? let F be the magnitude of its
Fourier transform. For any constant C > 0 denote

Mc:= {f:Rd—HR s.t. /|w|F(w)dw<C}.

Then for any n € N and for any f € T ¢ there exists a two-layer NN f, with n
neurons such that e

1 = fall 28y < Ve

The weights of the second layer {a;}]_ ; can be chosen to satisfy

n
Z, lai| < 2C.
i=1

NB: ¢! bound on {a;}"_, uniform in n and depends only on C.
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Infinitely wide two-layer neural networks

Infinitely wide two-layer neural network f: R? — R:
0= [ altx.b) + c)da(bio), x e B
A

where A is a compact topological parameter space and a € M(.A)
is a signed Radon measure. Typically A = Bya.

Definition (Bach, 2017; E, Ma, and Wu, 2019)

The space of functions that can be represented as above, equipped
with the following norm

£l 2= inf{lall i £(x) = /Aa(<x, b) + c) da(b.c), x € RY},

is called the Barron space.
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Barron spaces: also known as

Variation norm spaces
- Bach (2017). Breaking the curse of dimensionality with convex neural networks;

Barron spaces (not to be confused with the spectral Barron space)

- E, Ma, Wu (2019). Barron spaces and compositional function spaces for neural network models;
- E, Wojtowytsch (2020). Representation formulas and pointwise properties for Barron functions;

Radon-BV? spaces

- Ongie, Willett, Soudry, Srebro (2020). A function space view of bounded norm infinite width ReLU
nets: The multivariate case;

- Parhi, Nowak (2021). Banach space representer theorems for neural networks and ridge splines;

Reproducing kernel Banach spaces

- Bartolucci, De Vito, Rosasco, Vigogna (2021). Understanding neural networks with reproducing
kernel Banach spaces;

Mean field approach

- Rotskoff, Vanden-Eijnden (2018). Parameters as interacting particles: long time convergence and
asymptotic error scaling of neural networks;

- Mei, Montanari, Nguyen (2018). A mean field view of the landscape of two-layer neural networks;
- Chizat, Bach (2018). On the global convergence of gradient descent for over-parameterized
models using optimal transport;

- Sirignano, Spiliopoulos (2020). Mean field analysis of neural networks: A law of large numbers ,,



Linear-nonlinear decomposition

Linear-nonlinear decomposition of a two-layer NN f: RY — R
f(x) = Ao(Bx +¢), xeRY,

where
B:RY-R", cecR” and AR’ R
for a NN with n < oo neurons,
B:RY - C(RY), cecCR?Y and A:C(RY —R
for an infinitely wide NN.

(E and Wojtowytsch, 2020)
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Linear-nonlinear decomposition

Linear-nonlinear decomposition of a two-layer NN f: R9+1 - R
f(x) = Ao(Bx), x e R,

where we slightly abused the notation and identified R? with RY x R and B with an
operator (B, ¢) acting on R x R as (x, a) — Bx + ac. For inputs of the form (x, 1)
the two formulas are the same.

Now we have
B:R*" 5 R" and A:R" =R
for a NN with n < oo neurons,
B:RY - C(RI") and A:C(RT) =R
for an infinitely wide NN.
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Linear-nonlinear decomposition

Linear-nonlinear decomposition of a two-layer NN f: R9+1 - R
f(x) = As(Bx), x e RIHT
If o is positively one-homogeneous, parameters can be chosen on the unit ball Bya. 1.

Finally, we get
B: R 5 R" and A:R" R
for a NN with n < oo neurons,
B: RI+1 C(Bgar1) and A:C(Bgat1) = R
for an infinitely wide NN.
Hence, A is a linear functional on C(Bgs:1), can be identified with a € M (Bgai1).

Then
Iflls = inf{l[all» - f(x) = (o(BX), &), x & R,

where (-, -) is the dual pairing between C(Bgo+1) and M (Bgar1).
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Monte-Carlo rates in Barron spaces

Theorem (direct approximation; E, Ma and Wu, 2019)

Let i € Pp(RY) be a probability measure with p > 1 finite moments
and let f € B(RY). Then for any n € N there exists a two-layer NN f,
with n neurons such that

2|f]
If = foll 2 ey < ﬁs

and

n
S lail <2]fls.

Cf. Barron’s theorem: ||f||; substitutes the spectral Barron norm.
Inverse approximation also holds (E, Ma and Wu, 2019).
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Contribution:
Vector-valued neural networks and Barron spaces
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Learning in infinite-dimensional spaces

Reproducing kernel Hilbert/Banach spaces a.k.a. random feature models

- Micchelli, Pontil (2005). On learning vector-valued functions;

- Zhang, Zhang (2013). Vector-valued reproducing kernel Banach spaces with
applications to multi-task learning;

- Alvarez, Rosasco, Lawrence (2012). Kernels for vector-valued functions: A
review;

- Nelsen, Stuart (2020). The random feature model for input-output maps between
Banach spaces.

Universal approximation theorems for operators

- Chen, Chen (1995). Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical
systems;

- Lanthaler, Mishra, Karniadakis (2021). Error estimates for DeepOnets: A deep
learning framework in infinite dimensions.
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Vector-valued two-layer neural networks

Vector-valued two-layer NN f: X — )
f(x) = Ao(Bx), xe X,

where
X, Y have separable preduals and ) is also a vector lattice,
o: Y — YV is the generalised ReLU function,

o(y):=y+ =y VvO0 inthe lattice sense,
B: X — C(B(x.y); V) maps
X — Lx(-) suchthat Lyx(K)= KX,
A: C(Bz(x.yy: V) — Y maps

() : o(K)da(K), whereac M(IB%E(XQ,)).
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Vector lattices, a.k.a. Riesz spaces

Vector space X with partial order “ < " called an ordered vector space
if

X<y — X+z<y+2z vV X,y,ze X,

X<y = A<y Vx,yeXand A e Ry.

A vector lattice (or a Riesz space) is an ordered vector space X with
well defined suprema and infima

Vx,yeX 3IxVvyeX, xNyedX,
XxVO0=xy, (—Xx)y=x_, X=X —X_, |X=x4+x_.
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Examples of vector lattices

o

Sequence spaces /P, 1 < p < oo

[¢]

X2y <— x')y’ ieN;
Space of signed Radon measures M(Q)

nw=zv <= pA) =>v(A) VACQ,

o

Lebesgue spaces £P, 1 < p < >

f>g < f(x)29(x) ae.inQ

@]

Space of continuous functions C(2), space of Lipschitz functions Lip(Q2)

f>2g < f(x)=9(x) Vxe

o

Space of linear operators between two partially ordered spaces £"(X;))
A> B < Vx > 0it holds that Ax > Bx.
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Caveats — 1

The parameter space is B (x,y). To make sure it is compact, we
need to

o make sure that L(X'; V) is a dual space and
o use the weak™* topology.

Theorem (Ryan, Introduction to tensor products of Banach spaces, 2002)

Suppose that X and Y have separable preduals X° and Y° and that either
X or)° has the approximation property. Then the dual of the space of
nuclear operators N'(Y°; X¢) can be identified with the space of bounded
operators L(X;))

(N(% X)) ~ L(X; ).

Consequently, the unit ball B.x.y) is weakly* compact and metrisable.

16/22



Caveats — 2

Since B (x,y) is equipped with the weak™ topology, we need to
make sure that

o the function Ly: B x.yy — Y such that L,(K) = Kx is weakly-*
continuous  — true if ) is equipped with the weak* topology;
o the nonlinearity o is weakly-* continuous
— turns out to be quite restrictive for the ReLU!
Examples:
4 Sequence spaces (P, p > 1; Lipschitz space Lip(Q);

X Lebesgue spaces L}, (unless y is atomic); space of linear
operators L'(X; )V) (except in special cases); space of Radon
measures M () (unless Q is discrete).
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Caveats — 3

In order to obtain convergence rates in Bochner spaces LP, we
need to metrise the weak* topology on the unit ball in ). This can
be done using the following metric

d(y.2) =" 27 |tm,y-2).

where {n;};cn is @ countable dense system in the predual such that
lmil| = 1 for all /.

Approximation rates will be obtained in Lebesgue-Bochner spaces
LP(x, (I, d.)).
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Vector-valued Barron space

Definition (Vector-valued Barron functions)

Let X', Y have separable preduals and let ) be such that lattice
operations are 1-Lipschitz with respect to the d, metric. We define
the space of Y-valued Barron functions as follows

B(X; V) == {f € Lipg: [Ifll5 < oo},

where Lip, is the space of Lipschitz functions with respect to the d.
metric in ) that vanish at zero and

= jnf. {lalles 100 = [ o(ex(k) da(k) vx < .
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Monte-Carlo rates in vector-valued Barron spaces

Theorem (direct approximation; YK 2021)

Let above assumptions be satisfied and let f € B(X;)). Then for any
n € N there exists a two-layer neural network with n neurons

n
f(X) := 2/11 ai(KiX)+, XX,

where K; have finite rank and ||Ki|| ;. < 1, such that if ju € Pp(X) and
mp(p) < oo is its p-th moment, p > 1, then

2v2 |fll (mp())?
o .

If = fallg, <

Inverse approximation also holds.
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Conclusions

We have
v’ Generalised Barron spaces with ReLU activation to networks
with values in a Banach space;

v" Proved inverse and direct approximation theorems, obtained
Monte-Carlo rates;

v/ Results also hold for any 1-homogeneous and weakly-*
continuous activation, e.g., leaky ReLU

J(y) ::y-l-_)‘.y—a )‘6(071);

X Saw a limitation — weak* continuity of o often not fulfilled by
ReLU — is the use of weak™* topologies a technicality?
X More complex architectures.

YK (2021). Two-layer neural networks with values in a Banach space. arXiv:2105.02095
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