

Approximation properties of two-layer neural networks with values in a Banach space

Yury Korolev

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK

Maths4DL opening workshop, University of Bath

22 April 2022

Introduction: Scalar-valued neural networks and Barron spaces

Contribution: Vector-valued neural networks and Barron spaces

Two-layer neural networks

Two-layer neural network (NN) $f : \mathbb{R}^d \to \mathbb{R}$:

$$f(x) = \sum_{i=1}^{n} a_i \sigma(\langle x, b_i \rangle + c_i), \quad x \in \mathbb{R}^d,$$

where

 $\{b_i\}_{i=1}^n \subset \mathbb{R}^d$ and $\{a_i\}_{i=1}^n \subset \mathbb{R}$ are the weights;

 $\{c_i\}_{i=1}^n \subset \mathbb{R}$ are the biases;

 $\sigma \colon \mathbb{R} \to \mathbb{R}$ is the activation function;

 $\{\sigma(\langle x, b_i \rangle + c_i)\}_{i=1}^n$ are the neurons, collectively called the hidden layer of the network;

 $\langle \cdot, \cdot \rangle$ denote the scalar product in \mathbb{R}^d .

Universal approximation theorems (Cybenko, 1989; Hornik et al., 1989; Leshno et al., 1993)

If σ is not a polynomial then any continuous function on a compact set can be approximated uniformly by two-layer NNs.

Approximation rates

in general exponential in dimension *d* even for Lipschitz functions, error $O(n^{-1/d})$; Monte-Carlo rates $O(n^{-1/2})$ for special classes of functions (next slide).

Spectral Barron space

Theorem (Barron, 1993)

For any function f on a compact set $B \subset \mathbb{R}^d$ let F be the magnitude of its Fourier transform. For any constant C > 0 denote

$$\Gamma_C := \left\{ f \colon \mathbb{R}^d o \mathbb{R} \quad s.t. \ \int |\omega| \ F(\omega) d\omega < C
ight\}.$$

Then for any $n \in \mathbb{N}$ and for any $f \in \Gamma_C$ there exists a two-layer NN f_n with n neurons such that

$$\|f-f_n\|_{L^2(B)}\leqslant \frac{2C}{\sqrt{n}}.$$

The weights of the second layer $\{a_i\}_{i=1}^n$ can be chosen to satisfy

$$\sum_{i=1}^n |a_i| \leqslant 2C.$$

NB: ℓ^1 bound on $\{a_i\}_{i=1}^n$ uniform in n and depends only on C.

Infinitely wide two-layer neural network $f : \mathbb{R}^d \to \mathbb{R}$:

$$f(x) = \int_{\mathcal{A}} \sigma(\langle x, b \rangle + c) \, da(b, c), \quad x \in \mathbb{R}^d,$$

where \mathcal{A} is a compact topological parameter space and $a \in \mathcal{M}(\mathcal{A})$ is a signed Radon measure. Typically $\mathcal{A} = \mathbb{B}_{\mathbb{R}^d}$.

Definition (Bach, 2017; E, Ma, and Wu, 2019)

The space of functions that can be represented as above, equipped with the following norm

$$\|f\|_{\mathcal{B}} := \inf_{a} \{ \|a\|_{\mathcal{M}} : f(x) = \int_{\mathcal{A}} \sigma(\langle x, b \rangle + c) \, da(b, c), \ x \in \mathbb{R}^d \}.$$

is called the Barron space.

Barron spaces: also known as

Variation norm spaces

- Bach (2017). Breaking the curse of dimensionality with convex neural networks;

Barron spaces (not to be confused with the spectral Barron space)

- E, Ma, Wu (2019). Barron spaces and compositional function spaces for neural network models;
- E, Wojtowytsch (2020). Representation formulas and pointwise properties for Barron functions;

Radon-BV² spaces

- Ongie, Willett, Soudry, Srebro (2020). A function space view of bounded norm infinite width ReLU nets: The multivariate case;

- Parhi, Nowak (2021). Banach space representer theorems for neural networks and ridge splines;

Reproducing kernel Banach spaces

- Bartolucci, De Vito, Rosasco, Vigogna (2021). Understanding neural networks with reproducing kernel Banach spaces;

Mean field approach

- Rotskoff, Vanden-Eijnden (2018). Parameters as interacting particles: long time convergence and asymptotic error scaling of neural networks;

- Mei, Montanari, Nguyen (2018). A mean field view of the landscape of two-layer neural networks;

- Chizat, Bach (2018). On the global convergence of gradient descent for over-parameterized models using optimal transport;

- Sirignano, Spiliopoulos (2020). Mean field analysis of neural networks: A law of large numbers 6/22

Linear-nonlinear decomposition

Linear-nonlinear decomposition of a two-layer NN $f \colon \mathbb{R}^d \to \mathbb{R}$

$$f(x) = A\sigma(Bx + c), \quad x \in \mathbb{R}^d,$$

where

 $\begin{array}{ll} B \colon \mathbb{R}^d \to \mathbb{R}^n, \quad c \in \mathbb{R}^n \quad \text{and} \quad A \colon \mathbb{R}^n \to \mathbb{R} \\ & \text{for a NN with } n < \infty \text{ neurons,} \\ B \colon \mathbb{R}^d \to \mathcal{C}(\mathbb{R}^d), \quad c \in \mathcal{C}(\mathbb{R}^d) \quad \text{and} \quad A \colon \mathcal{C}(\mathbb{R}^d) \to \mathbb{R} \\ & \text{for an infinitely wide NN.} \end{array}$

(E and Wojtowytsch, 2020)

Linear-nonlinear decomposition

Linear-nonlinear decomposition of a two-layer NN $f : \mathbb{R}^{d+1} \to \mathbb{R}$

$$f(x) = A\sigma(Bx), \quad x \in \mathbb{R}^{d+1},$$

where we slightly abused the notation and identified \mathbb{R}^d with $\mathbb{R}^d \times \mathbb{R}$ and *B* with an operator (*B*, *c*) acting on $\mathbb{R}^d \times \mathbb{R}$ as $(x, \alpha) \mapsto Bx + \alpha c$. For inputs of the form (x, 1) the two formulas are the same.

Now we have

 $\begin{array}{ll} B \colon \mathbb{R}^{d+1} \to \mathbb{R}^n & \text{and} & A \colon \mathbb{R}^n \to \mathbb{R} \\ & \text{for a NN with } n < \infty \text{ neurons,} \\ B \colon \mathbb{R}^d \to \mathcal{C}(\mathbb{R}^{d+1}) & \text{and} & A \colon \mathcal{C}(\mathbb{R}^{d+1}) \to \mathbb{R} \\ & \text{for an infinitely wide NN.} \end{array}$

Linear-nonlinear decomposition

Linear-nonlinear decomposition of a two-layer NN $f : \mathbb{R}^{d+1} \to \mathbb{R}$

$$f(x) = A\sigma(Bx), \quad x \in \mathbb{R}^{d+1}.$$

If σ is positively one-homogeneous, parameters can be chosen on the unit ball $\mathbb{B}_{\mathbb{R}^{d+1}}$.

Finally, we get

$$B: \mathbb{R}^{d+1} \to \mathbb{R}^n$$
 and $A: \mathbb{R}^n \to \mathbb{R}$
for a NN with $n < \infty$ neurons,
 $B: \mathbb{R}^{d+1} \to \mathcal{C}(\mathbb{B}_{\mathbb{R}^{d+1}})$ and $A: \mathcal{C}(\mathbb{B}_{\mathbb{R}^{d+1}}) \to \mathbb{R}$
for an infinitely wide NN.

Hence, A is a linear functional on $\mathcal{C}(\mathbb{B}_{\mathbb{R}^{d+1}})$, can be identified with $a \in \mathcal{M}(\mathbb{B}_{\mathbb{R}^{d+1}})$. Then

$$\|f\|_{\mathcal{B}} = \inf_{a} \{ \|a\|_{\mathcal{M}} : f(x) = \langle \sigma(Bx), a \rangle, x \in \mathbb{R}^{d+1} \},\$$

where $\langle \cdot, \cdot \rangle$ is the dual pairing between $\mathcal{C}(\mathbb{B}_{\mathbb{R}^{d+1}})$ and $\mathcal{M}(\mathbb{B}_{\mathbb{R}^{d+1}})$.

Theorem (direct approximation; E, Ma and Wu, 2019)

Let $\mu \in \mathcal{P}_p(\mathbb{R}^d)$ be a probability measure with $p \ge 1$ finite moments and let $f \in \mathcal{B}(\mathbb{R}^d)$. Then for any $n \in \mathbb{N}$ there exists a two-layer NN f_n with n neurons such that

$$\|f-f_n\|_{L^2_{\mu}(\mathbb{R}^d)} \leqslant \frac{2\,\|f\|_{\mathcal{B}}}{\sqrt{n}}$$

and

$$\sum_{i=1}^n |a_i| \leqslant 2 \, \|f\|_{\mathcal{B}} \, .$$

Cf. Barron's theorem: $||f||_{\mathcal{B}}$ substitutes the spectral Barron norm. Inverse approximation also holds (E, Ma and Wu, 2019).

Introduction: Scalar-valued neural networks and Barron spaces

Contribution: Vector-valued neural networks and Barron spaces

Learning in infinite-dimensional spaces

Reproducing kernel Hilbert/Banach spaces a.k.a. random feature models

- Micchelli, Pontil (2005). On learning vector-valued functions;
- Zhang, Zhang (2013). Vector-valued reproducing kernel Banach spaces with applications to multi-task learning;
- Álvarez, Rosasco, Lawrence (2012). Kernels for vector-valued functions: A review;

- Nelsen, Stuart (2020). The random feature model for input-output maps between Banach spaces.

Universal approximation theorems for operators

- Chen, Chen (1995). Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems;

- Lanthaler, Mishra, Karniadakis (2021). Error estimates for DeepOnets: A deep learning framework in infinite dimensions.

Vector-valued two-layer NN $f: \mathcal{X} \to \mathcal{Y}$

$$f(\mathbf{x}) = \mathbf{A}\sigma(\mathbf{B}\mathbf{x}), \quad \mathbf{x} \in \mathcal{X},$$

where

 \mathcal{X}, \mathcal{Y} have separable preduals and \mathcal{Y} is also a vector lattice, $\sigma: \mathcal{Y} \to \mathcal{Y}$ is the generalised ReLU function, $\sigma(\mathbf{y}) := \mathbf{y}_+ = \mathbf{y} \lor \mathbf{0}$ in the lattice sense, $B: \mathcal{X} \to \mathcal{C}(\mathbb{B}_{\mathcal{L}(\mathcal{X};\mathcal{V})};\mathcal{Y})$ maps $x \mapsto \mathcal{L}_x(\cdot)$ such that $\mathcal{L}_x(K) = Kx$, $A: \mathcal{C}(\mathbb{B}_{\mathcal{L}(\mathcal{X};\mathcal{Y})};\mathcal{Y}) \to \mathcal{Y}$ maps $\varphi(\cdot) \mapsto \int_{\mathbb{R}^{+}} \varphi(K) da(K), \text{ where } a \in \mathcal{M}(\mathbb{B}_{\mathcal{L}(\mathcal{X};\mathcal{Y})}).$

Vector space $\mathcal X$ with partial order " \leqslant " called an ordered vector space if

 $\begin{array}{ll} x \leqslant y \implies x + z \leqslant y + z & \forall \ x, y, z \in \mathcal{X}, \\ x \leqslant y \implies \lambda x \leqslant \lambda y & \forall \ x, y \in \mathcal{X} \text{ and } \lambda \in \mathbb{R}_+. \end{array}$

A vector lattice (or a Riesz space) is an ordered vector space \mathcal{X} with well defined suprema and infima

$$\begin{array}{ll} \forall x,y \in \mathcal{X} & \exists x \lor y \in \mathcal{X}, \ x \land y \in \mathcal{X}; \\ x \lor \mathbf{0} = x_+, \quad (-x)_+ = x_-, \quad x = x_+ - x_-, \quad |x| = x_+ + x_-. \end{array}$$

Examples of vector lattices

• Sequence spaces ℓ^p , $1 \leq p \leq \infty$

$$x \geqslant y \iff x^i \geqslant y^i \quad i \in \mathbb{N};$$

 \circ Space of signed Radon measures $\mathcal{M}(\Omega)$

$$\mu \geqslant \nu \iff \mu(A) \geqslant \nu(A) \quad \forall A \subset \Omega;$$

◦ Lebesgue spaces \mathcal{L}^p , 1 ≤ p ≤ ∞

 $f \geqslant g \iff f(x) \geqslant g(x)$ a.e. in Ω ;

• Space of continuous functions $C(\Omega)$, space of Lipschitz functions $Lip(\Omega)$

$$f \geqslant g \iff f(x) \geqslant g(x) \quad \forall x \in \Omega;$$

• Space of linear operators between two partially ordered spaces $\mathcal{L}^{r}(\mathcal{X};\mathcal{Y})$

 $A \ge B \iff \forall x \ge 0$ it holds that $Ax \ge Bx$.

Caveats - 1

The parameter space is $\mathbb{B}_{\mathcal{L}(\mathcal{X};\mathcal{Y})}.$ To make sure it is compact, we need to

- $\circ\;$ make sure that $\mathcal{L}(\mathcal{X};\mathcal{Y})$ is a dual space and
- use the weak* topology.

Theorem (Ryan, Introduction to tensor products of Banach spaces, 2002)

Suppose that \mathcal{X} and \mathcal{Y} have separable preduals \mathcal{X}^{\diamond} and \mathcal{Y}^{\diamond} and that either \mathcal{X} or \mathcal{Y}^{\diamond} has the approximation property. Then the dual of the space of nuclear operators $\mathcal{N}(\mathcal{Y}^{\diamond}; \mathcal{X}^{\diamond})$ can be identified with the space of bounded operators $\mathcal{L}(\mathcal{X}; \mathcal{Y})$

 $(\mathcal{N}(\mathcal{Y}^\diamond;\mathcal{X}^\diamond))^*\simeq\mathcal{L}(\mathcal{X};\mathcal{Y}).$

Consequently, the unit ball $\mathbb{B}_{\mathcal{L}(\mathcal{X};\mathcal{Y})}$ is weakly* compact and metrisable.

Caveats – 2

Since $\mathbb{B}_{\mathcal{L}(\mathcal{X};\mathcal{Y})}$ is equipped with the weak* topology, we need to make sure that

- the function $\mathcal{L}_X : \mathbb{B}_{\mathcal{L}(\mathcal{X};\mathcal{Y})} \to \mathcal{Y}$ such that $\mathcal{L}_X(K) = Kx$ is weakly-* continuous \to true if \mathcal{Y} is equipped with the weak* topology;
- the nonlinearity σ is weakly-* continuous \rightarrow turns out to be guite restrictive for the ReLU!

Examples:

- Sequence spaces ℓ^p , p > 1; Lipschitz space Lip(Ω);
- × Lebesgue spaces L^{p}_{μ} (unless μ is atomic); space of linear operators $\mathcal{L}^{r}(\mathcal{X}; \mathcal{Y})$ (except in special cases); space of Radon measures $\mathcal{M}(\Omega)$ (unless Ω is discrete).

In order to obtain convergence rates in Bochner spaces L^{p} , we need to metrise the weak* topology on the unit ball in \mathcal{Y} . This can be done using the following metric

$$d_*(y,z) = \sum_{i=1}^{\infty} 2^{-i} |\langle \eta_i, y - z \rangle|.$$

where $\{\eta_i\}_{i\in\mathbb{N}}$ is a countable dense system in the predual such that $\|\eta_i\| = 1$ for all *i*.

Approximation rates will be obtained in Lebesgue-Bochner spaces $L^{p}(\mathcal{X}, (\mathcal{Y}, d_{*})).$

Definition (Vector-valued Barron functions)

Let \mathcal{X}, \mathcal{Y} have separable preduals and let \mathcal{Y} be such that lattice operations are 1-Lipschitz with respect to the d_* metric. We define the space of \mathcal{Y} -valued Barron functions as follows

$$\mathcal{B}(\mathcal{X};\mathcal{Y}) := \{ f \in \mathsf{Lip}_0 \colon \|f\|_{\mathcal{B}} < \infty \},\$$

where Lip_0 is the space of Lipschitz functions with respect to the d_* metric in \mathcal{Y} that vanish at zero and

$$\|f\|_{\mathcal{B}} := \inf_{a \in \mathcal{M}(\mathbb{B}_{\mathcal{L}})} \left\{ \|a\|_{\mathcal{M}} : f(x) = \int_{\mathbb{B}_{\mathcal{L}}} \sigma(\mathcal{L}_{x}(K)) \, da(K) \, \forall x \in \mathcal{X} \right\}.$$

Theorem (direct approximation; YK 2021)

Let above assumptions be satisfied and let $f \in \mathcal{B}(\mathcal{X}; \mathcal{Y})$. Then for any $n \in \mathbb{N}$ there exists a two-layer neural network with n neurons

$$f_n(\mathbf{x}) := \sum_{i=1}^n \alpha_i(K_i \mathbf{x})_+, \quad \mathbf{x} \in \mathcal{X},$$

where K_i have finite rank and $||K_i||_{\mathcal{L}(\mathcal{X};\mathcal{Y})} \leq 1$, such that if $\mu \in \mathcal{P}_p(\mathcal{X})$ and $m_p(\mu) < \infty$ is its *p*-th moment, $p \ge 1$, then

$$\|f - f_n\|_{L^p_{\mu}} \leq \frac{2\sqrt{2} \|f\|_{\mathcal{B}} (m_p(\mu))^{\frac{1}{p}}}{\sqrt{n}}$$

Inverse approximation also holds.

Conclusions

We have

- Generalised Barron spaces with ReLU activation to networks with values in a Banach space;
- Proved inverse and direct approximation theorems, obtained Monte-Carlo rates;
- Results also hold for any 1-homogeneous and weakly-* continuous activation, e.g., *leaky ReLU*

$$\sigma(\mathbf{y}) := \mathbf{y}_+ - \lambda \mathbf{y}_-, \quad \lambda \in (0, 1);$$

 X Saw a limitation – weak* continuity of *σ* often not fulfilled by ReLU → is the use of weak* topologies a technicality?
 X More complex architectures.

YK (2021). Two-layer neural networks with values in a Banach space. arXiv:2105.02095

So long, and thanks for all the fish funding

Engineering and Physical Sciences Research Council

National Physical Laboratory

HUGHES HALL