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Adaptive deep learning PDE 
surrogates to accelerate Bayesian 
inference with guaranteed accuracy
with an application in turbo-machinery



Motivation
We want to perform Bayesian inference for models of the form


                                                    


for data indexed by , where , and with prior 
 chosen as appropriate.


This model gives rise to a normal likelihood function


                    


The mean  is assumed to depend on the solution  of a physical model 
(e.g. a PDE), typically non-trivial to evaluate and not easily differentiable wrt .

̂zi = f(x̂i; α) + ϵi

i = 1,…, M ϵi ∼ 𝒩(0,σ2)
p(θ) = p(α, σ)

p( ̂z |θ, x̂) =
1

(2πσ2)M/2 exp (−
1

2σ2

M

∑
i=1

( ̂zi − f(x̂i; α))2)
f(x̂; α) u(x̂; α)

α



Classical methods
Classical methods to approximate the posterior distribution


                    


typically follow one of two approaches:

p(θ | x̂, ̂z) ∝ p( ̂z |θ, x̂)p(θ)

Reduced order approximation


• Represent  by a parameterised distribution , 
forming a reduced class  or representable distributions


• Optimise an objective  such that  
(ELBO,MAP)


• Typically requires fewer evaluations of  than MCMC 
but requires 


• Does not converge to  (converges to optimal 
element of )

p(θ | x̂, ̂z) qλ(θ)
Q

L(λ) qλ(θ) ≈ p(θ | x̂, ̂z)

u(x̂; α)
∇αu(x̂; α)

p(θ | x̂, ̂z)
Q

Markov chain Monte Carlo


• Empirically sample from  


• Simple schemes require many evaluations of 


• More sophisticated schemes also require  


• Asymptotically exact (weak convergence as sample 
size )


p(θ | x̂, ̂z)

u(x̂; α)

∇αu(x̂; α)

→ ∞



Deep surrogate methodology
Alleviating the computational cost of working with u(x; α)
Assume  solves some PDE parameterised by 


                


Basic premise: Approximate the parametric solution map  with a neural network 
 by using gradient descent to minimise the loss    


           


Once trained using appropriate measures  the neural network  is a cheap, differentiable 
function approximating the parametric PDE solution.


u(x; α) α

ℒ(u, x; α) = 0, x ∈ Ω, α ∈ A
ℬ(u, x; α) = 0, x ∈ ∂Ω, α ∈ A .

u(x; α) : Ω × A → ℝ
̂u(x; α)

Loss( ̂u) = ∥ℒ( ̂u, x; α)∥2
L2(Ω×A,πΩ⊗πA) + ∥ℬ( ̂u, x; α)∥2

L2(∂Ω×A,π∂Ω⊗πA)

πΩ, π∂Ω, πA ̂u(x; α)



Deep surrogate methodology
Practical considerations
The loss function


                         


is intractable. In practice draw randomised collocation points from  and minimise a 
Monte Carlo approximation


                                     


These points are re-sampled after each gradient descent iteration (resulting in SGD).


To solve Bayesian problems the trained surrogate is then used to replace a numerical solver in 
order to accelerate MCMC sampling.

Loss( ̂u) = ∥ℒ( ̂u, x; α)∥2
L2(Ω×A,πΩ⊗πA) + ∥ℬ( ̂u, x; α)∥2

L2(∂Ω×A,π∂Ω⊗πA)

πΩ, π∂Ω, πA

Loss( ̂u) =
N

∑
n=1

ℒ( ̂u, xΩ
n ; αn)2 +

N

∑
n=1

ℬ( ̂u, x∂Ω
n ; αn)2



Example
Parametric advection diffusion equation

https://people.bath.ac.uk/td314/m4dlworkshop/video.html


An application in turbo machinery
We seek to understand the evolution of heat fluxes  within compressor cavities through the model


                                                                      


We have temperature measurements , at times , and locations , and the 
dynamics


                        


                       


This problem is ill-conditioned (without regularisation small changes in temperature indicate large changes in 
flux).

q̃(t, r)

̂ui = u(ti, ri; α) + ϵi

̂u1, …, ̂uM ̂t1, …, ̂tM ̂r1, …, ̂rM

∂u(t, r)
∂t

=
∂2u(t, r)

∂r2
+

1
r

∂u(t, r)
∂r

− q̃(t, r)

u(0,r) = u0(r)
u(t, a) = ua(t)
u(t, b) = ub(t)



Key requirements

This method may influence future aircraft engine design so our 
approach must: 

• Allow interpretable priors 

• Be accurate and efficient to train 

• Have theoretical guarantees



Interpretable priors
What happens with a poor prior on q̃(t, r)
Using fixed basis functions , represent  by the expansion


                                                                         


We choose the Chebyshev polynomials  of degree , so .


The problem is then to infer the coefficients  using the data. This includes choosing an appropriate prior.


A poor prior(e.g.  ), leads to physically unreasonable inferences


                          True                                                                           Inferred 


ϕi(t, r) q̃(t, r)

q(t, r) =
D

∑
i=1

αiϕi(t, r) .

ϕi(t, r) = Tn(t)Tm(r) n + m ≤ 10 D = 66

α
α ∼ Unif(A)

q̃(t, r) q(t, r)



Interpretable priors
Approximating a Gaussian process prior over q̃(t, r)
Using fixed basis functions , represent  by the truncated basis expansion


                                                                 .


Gaussian processes are a natural choice of prior, as their behaviour can be controlled through the specification of 
their mean and covariance functions.                                                                                                           

Suppose we want the prior:


        


We can approximate this with  if the coefficients are                                                                              fffgf 
, with:


                                  


                 


ϕi(t, r) q̃(t, r)

q(t, r) =
D

∑
i=1

αiϕi(t, r)

q̃(t, r) ∼ 𝒢𝒫(μ(t, r), K([t, r], [t′ , r′ ]))
q(t, r)

α ∼ MVN(m, Σ)
D

∑
i=1

miϕi(t, x) ≈ μ(t, r)

D

∑
i,j=1

ϕi(t, x)Σi,jϕj(t′ , x′ ) ≈ K([t, x], [t′ , x′ ])



Interpretable priors
Approximating a Gaussian process prior over q̃(t, r)
Using fixed basis functions , represent  by the truncated basis expansion


                                                                 .


Gaussian processes are a natural choice of prior, as their behaviour can be controlled through the specification of 
their mean and covariance functions.                                                                                                            

Suppose we want the prior:


        


We can approximate this with  if the coefficients are                                                                              fffgf 
, with:


                                  


                 


ϕi(t, r) q̃(t, r)

q(t, r) =
D

∑
i=1

αiϕi(t, r)

q̃(t, r) ∼ 𝒢𝒫(μ(t, r), K([t, r], [t′ , r′ ]))
q(t, r)

α ∼ MVN(m, Σ)
D

∑
i=1

miϕi(t, x) ≈ μ(t, r)

D

∑
i,j=1

ϕi(t, x)Σi,jϕj(t′ , x′ ) ≈ K([t, x], [t′ , x′ ])

Inferred q(t, r)

True q̃(t, r)



Accuracy and efficiency
Tailoring the training procedure for Bayesian inversion
Assuming estimates of  are not known a-priori, the standard approach to training a surrogate is to choose 

 (the training measure over the parameters) as something general e.g. .

During inference with MCMC we produce an empirical approximation to the posterior


                                                                  


 is only evaluated close to the typical set of   (recall ). 


Ideally we would choose  such that its PDF is , however  is specified before training when no 
approximation to  is known.


α
πA πA ∼ Unif(Ā)

̂p(θ |z, x) =
1
S

S

∑
n=1

δθn
(θ)

u(x; α) ̂p(θ |z, x) ≈ p(θ |z, x) θ = (α, σ)

πA p(θ |z, x) πA

p(θ |z, x)



Accuracy and efficiency
Tailoring the training procedure for Bayesian inversion
An adaptive training procedure akin to a trust-region optimisation scheme for  

utilises a sequence of localised training measure  to produce local models, and updates  
based on local gradient information.


θ* = argmax
θ∈Θ

(p(θ |z, x))

πα0, πα1, πα2, … θ

α0

α1

α2

α*

•Once  is found we train the surrogate over the Laplace 
approximation to the posterior and use this to commence 
MCMC sampling


•Samples from the MCMC are additionally used as training 
points throughout a warm-up period


•The final training measure  is 


•Speed of adaptive training is 925s vs 15,874 for a general 

•Accuracy of approximation is  vs 

θ*

πA ̂p(θ |z, x)

πA

5.02 × 10−4 1.14 × 10−2

πα0

πα1

πα2

A



Accuracy and efficiency
Comparing the adaptive surrogate induced posterior for a coefficient



Accuracy and efficiency
Relating the training loss to the posterior
Theorem: Let  denote the posterior distribution and  denote the surrogate induced approximation with 
training measure . Under suitable assumptions, the error between  and  in the Hellinger distance satisfies


                


Here  so the RHS is related to the loss function.


Notably, the Radon-Nykodym derivative  with equality only occurring when .


This bounds the posterior accuracy based on the training loss, however the constants are unknown and 
training is not guaranteed to be successful a-priori. 

ψ ψ̂
πA ψ ψ̂

dHell(ψ, ψ̂)2 ≤ C
dψ
dπA

∞
∫

1
σ2

F( ̂u( ⋅ , ⋅ ,α)) dπA(α, σ2)

+C
dψ
dπA

∞
∫

1
σ6

F( ̂u( ⋅ , ⋅ ,α))3 dπA(α, σ2) .

F( ̂u) = ∥ℒ( ̂u, x; α)∥2
L2(Ω,πΩ) + ∥ℬ( ̂u, x; α)∥2

L2(∂Ω,π∂Ω)

dψ
dπA

∞

≥ 1 πA = ψ



Theoretical guarantees
Ensuring guaranteed accuracy of the posterior: Delayed acceptance

Delayed acceptance MCMC allows us to guarantee the accuracy of the posterior a-priori through the 
incorporation of a traditional solver. Suppose  is the surrogate posterior and  is the posterior wrt a 
traditional solver. In this sampling scheme:

ψ̂ ψ̃

• The surrogate is used to propose and accept the next Monte Carlo sample standard 

Metropolis criteria:           


• If accepted by the surrogate, a traditional solver is used to ‘validate’ the proposal via a 

secondary acceptance:        


• Detailed balance is preserved wrt 

AM(θprop, θ) = min {1,
q(θ |θprop)ψ̂(θprop)

q(θprop |θ)ψ̂(θ) }

A(θprop, θ) = min {1,
ψ̃(θprop)ψ̂(θ)
ψ̃(θ)ψ̂(θprop) }

ψ̃



Theoretical guarantees
Delayed acceptance: Why is this useful?
Many of the most efficient MCMC proposal distributions require information that is not readily returned by 
numerical solvers, (e.g. a Hamiltonian Monte Carlo iteration may require 50 or so gradients of the PDE 
solution wrt its parameters). The surrogate can handle these efficiently 


           Estimated cost with a full numerical solver: RWMH - 30.395 
                                                         MALA  - 4.680 
                                                         HMC    - 8.967



Key requirements

This method may influence future aircraft engine design so our 
approach must: 

• Allow interpretable priors -> Gaussian processes 

• Accurate and efficient to train -> Adaptive training 

• Theoretical guarantees -> Delayed acceptance



Example

True flux

Inferred flux

Uncertainty
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True flux

Inferred flux

Uncertainty



Thank you!


