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Inverse problems in imaging

• Reconstruct image x ∈ X from observed data

y = Ax+w ∈ Y

• Main challenges:

• In general, ill-posed: A is poorly conditioned or non-invertible

• Multiple x explain y (even with no noise)

• Instability when the observation is noisy

• Variational regularization: min
x

L(y,Ax)︸ ︷︷ ︸
depends on imaging physics

+λ R(x)︸ ︷︷ ︸
prior belief

• Desirable properties: well-posedness, convergent regularization
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How machine learning can help

Supervised setting:

• Parametric estimator fθ, θ ∈ Θ (typically, a neural network)

• Training data: i.i.d. samples (xi, yi)
n
i=1 of (x,y)

• Training: min
θ∈Θ

LX (xi, fθ(yi)) + µφ(θ)

Unsupervised setting:

• Training data: i.i.d. samples (xi)
n
i=1 and (yj)

n′
j=1 of x and y, respectively

• min
x

L(y,Ax) + λ Rθ(x)︸ ︷︷ ︸
learn from data

Questions:

• How to construct the architecture of fθ? unrolling

• How to train a regularizer Rθ? adversarial learning
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Algorithm unrolling

• Proximal gradient for minimizing the variational objective with a convex R:

xk+1 = proxλR︸ ︷︷ ︸
learnable

(
xk − ηk∇L(y,Ax)

∣∣∣
x=xk

)
︸ ︷︷ ︸

physics-driven

• Unroll N times, for a fixed N , and replace the prox with a neural net:

xk+1 = ϕθk

(
xk − ηk∇L(y,Ax)

∣∣∣
x=xk

)
, k = 0, 1, · · · , N − 1

• Learned primal-dual: [Adler & Öktem, IEEE-TMI 2018]

• Training: learn θ = (θk)
N−1
k=0 by min

θ
E(x,y)∼µ̂ loss (xN (y, θ),x)

• Based on the loss, approximates different statistical estimators (e.g.,

loss(a, b) = ∥a− b∥22 =⇒ xN (y, θ) ≈ E[x|y = y] )
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Adversarial regularizers (AR)

• Training data:
• high-quality ground-truth images (xi)

n1

i=1 ∼ πx

• images with artifacts (x̃i)
n2

i=1 ∼ πx̃

• Training objective [Lunz et al., NeurIPS-2018]:

min
θ

(Ex∼πx [Rθ (x)]− Ex̃∼πx̃ [Rθ (x̃)]) s.t. Rθ ∈ 1− Lipschitz

• Optimal critic recovers the Wasserstein-1 distance between πx and πx̃

Remarks:

• Weakly stable, but not a convergent regularization scheme

• No global convergence for the variational problem

• Needs ‘negative’ images for discriminative training

• Solving a variational problem for large images could be expensive
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Adversarial convex regularization (ACR)

• Use input-convex neural networks (ICNNs) [Amos et al., ICML-2017] to model Rθ

• Well-posedness (existence, uniqueness, and stability) follows from the classical

convex regularization theory

• Convergent regularization: Let x† ∈ argmin
x

Rθ∗(x) subject to Ax = y0. Then,

for δ → 0, λ(δ) → 0, and
δ

λ(δ)
→ 0, x̂λ

(
yδ
)
converges to x† in ∥ · ∥X

• Gradient descent converges provably

Ref.: S.M., Dittmer, Shumaylov, Lunz, Öktem, Schönlieb, “Learned convex regularizers for inverse

problems,” arXiv:2008.02839, code:

github.com/Subhadip-1/data_driven_convex_regularization
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Convexity matters practically

(a) Ground-truth (b) FBP: 21.61 dB, 0.17 (c) TV: 25.74 dB, 0.80

(d) LPD: 29.51 dB, 0.85 (e) AR: 26.83 dB, 0.71 (f) ACR: 27.98 dB, 0.84 7



Unrolling vs. data-driven regularization

Algorithm unrolling:

• Fast and high-quality end-to-end reconstruction ✓

• Needs supervision ✗

• No convergence guarantees in general ✗

Adversarial regularization:

• Convergence can be studied using classical regularization theory ✓

• Does not need paired training data ✓

• Reconstruction is expensive ✗

• Generally performs worse than unrolling empirically ✗
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Unrolled adversarial regularization (UAR)

min
ϕ

max
θ:Rθ∈1−Lip.

Ey∼πy ∥AGϕ(y)− y∥22 + λ
(
Ey∼πy [Rθ (Gϕ(y))]− Ex∼πx [Rθ (x)]

)
• Gϕ learns to minimize the (expected) variational loss with Rθ as the regularizer

• Rθ learns to tell apart the output of Gϕ from the ground-truth images
• Key features:

• unsupervised, no paired data needed for training

• fast reconstruction, competitive quality with supervised methods

• end-to-end solution by G can be refined using the variational framework =⇒
stability guarantees similar to AR

Ref.: S.M., Carioni, Öktem, Schönlieb, “End-to-end reconstruction meets data-driven regularization for

inverse problems,” NeurIPS-2021, code:

github.com/Subhadip-1/unrolling_meets_data_driven_regularization
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Theoretical results for UAR

• The saddle-point training problem is well-posed and equivalent to

min
ϕ

Ey∼πy ∥AGϕ(y))− y∥22 + λW1 ((Gϕ)#πy, πx)

• The parameters ϕ of the generator vary continuously w.r.to the noise level.

• Let x0 = Gϕ∗(y), x1 = x0 − η∇Rθ∗(x0) =⇒ W1 (πx1 , πx) ≤ W1 (πx0 , πx)

Gϕ∗(y)

πGϕ∗
−∇Rθ∗

πx

• λ → 0 =⇒ Gϕ → Gϕ∗
1
, minimizer of Wasserstein distance s.t. perfect data fit

• λ → ∞ =⇒ Gϕ → Gϕ∗
2
, minimizer of data fit s.t. perfect distribution matching
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Numerical examples: X-ray CT reconstruction

(a) ground-truth (b) TV: 29.16, 0.77 (c) LPD: 34.05, 0.89

(d) AR: 32.14, 0.84 (e) ACR: 30.14, 0.83 (f) UAR: 33.15, 0.87
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Performance evaluation for CT reconstruction

method PSNR (dB) SSIM # param. time (ms)

FBP 21.28± 0.13 0.20± 0.02 1 37.0± 4.6

TV 30.31± 0.52 0.78± 0.01 1 28371.4± 1281.5

U-Net 34.50± 0.65 0.90± 0.01 7215233 44.4± 12.5

LPD 35.69± 0.60 0.91± 0.01 1138720 279.8± 12.8

AR 33.84± 0.63 0.86± 0.01 19338465 22567.1± 309.7

ACR 31.55± 0.54 0.85± 0.01 606610 109952.4± 497.8

UAR

λ = 0.001 21.59± 0.11 0.22± 0.02

20477186 252.7± 13.3λ = 0.01 25.25± 0.08 0.37± 0.01

λ = 0.1 34.35± 0.66 0.88± 0.01

λ = 1.0 33.27± 0.76 0.87± 0.01

UAR with λ = 0.1 34.77± 0.67 0.90± 0.01 – 5863.3± 106.1

refinement
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Summary and conclusions

• Variational framework is a starting point devising hybrid methods

• Imposing convexity on the regularizer =⇒ theoretical guarantees, but at the

expense of numerical performance

• Better architecture and/or training strategy?

• Unrolled adversarial regularization achieves good empirical performance, and can

be analyzed using the variational setting

• Convergent regularization?

• How to build distributionally robust algorithms?

• Theoretical performance analysis under distribution shifts?
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