r-adaptivity, deep learning and the deep Ritz method
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Introduction

Physics-informed neural networks (PINNs) have recently become popular as a means of solving ODEs and PDEs by using the tools of deep learning
(DL). PINNs are usually referred to as ‘'meshfree methods’, as they do rely on the use of collocation points. The adoption of a moving mesh (r-adaptive)
strategy enables to increase the accuracy of the numerical solution. The aim of this method is to equidistribute the error over the mesh elements.

We will show that different DL settings allow us to solve different tasks, such as one-dimensional mesh equidistribution, convection-dominated ODEs,
and the Poisson’s equation over an L-shaped domain.

Convection-dominated ODE

Equidistribution of u(x) by using a deep neural network (DNN)

The input of the DNN is one point £ of a uniform mesh and the output is the new point x given by The mesh-less PINN takes randomly sampled
points xix as input and returns the approximate
x(&,0)=fiofi_10---0fy, fi=ca(Wif_1+b), fo=¢and© ={W, b,-},-L=1 i=1,...,L solution U(x,©). We aim to minimise the loss

function L(©) = Y0, |L[U(x, ©)] — e */42,

We train the DNN and enforce equidistribution by minimising the loss function L(©) as the upper where L[] is the operator defined as

bound of the L2 error between exact solution and piecewise linear interpolant:
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Homotopy method: Given an initial uniform
mesh of 2N points, we obtain a mesh clustered
towards the singularity by reducing logarithmi-
cally € on the domain [0,1] = [0,1 —2c] U [1 —
2¢,1].

UolXi, Xix1] = [0, 1], i = Xisq — Xi, Miyq 2 = with m(x) = (1 + uZ,)"/°.
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Numerical Result for u(x) = x2/3: DNN trained with N = 300 using Adam optimizer and o = tanh(-).
The equidistributed mesh clusters towards x = 0, where the solution exhibits a singular behaviour. e ————————=
The L? convergence rate is optimal even when N is greater than the training sample size. PINN trained with Adam optimizer (Ir = 1e — 3).

uniform N = 300 | equidistributed N = 150.

The DNN can be trained to learn the equidistribution process, and outperforms other For convective problems, PINNs need
standard numerical methods. homotopy methods to work at all.

Deep Ritz method for the Poisson’s equation: Au(X) =0o0n Q; up(r,d) = r’3sin(26/3) on 09,
The deep Ritz method (DRM) mimics the action of a PINN by solving the minimisation problem

U=argmin,,Z(v), Z(U)= / (AU(X) + f()?))2 ax + B/ (U(X) — up)?dX, B > 0penalty parameter.
Q o
The exact solution u(xX) has a gradient singularity at the interior corner 0. Given the interior angle w and the distance from the corner r, the solution for

0 ~ 0is u(r,0) ~ ref(0), with o = = and f(f) a regular function. We can solve the Monge-Ampére equation locally at the interior corner (semi-analytically)
to find the OT-based collocation points. In general, r-adaptivity in R? using OT can be obtained by minimising the Wasserstein distance.
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Exact solution ~ DRM with randomly sampled points | OT collocation points.
The relative L? error is computed by evaluating the approximate solution on a Delaunay mesh - random points: 0.468 | OT-based points: 0.0639.

OT-based r-adaptivity is very effective for 2D problems using the deep Ritz method.
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