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1. Introduction
Limited-angle tomography is a highly ill-posed linear inverse problem. Reconstructions typically suffer from severe stretching of features along the
central direction of projections, leading to poor separation between slices perpendicular to the central direction. A new method is introduced, based on
machine learning and geometry, producing an estimate for interfaces between regions of different X-ray attenuation. The estimate can be presented on
top of the reconstruction, indicating more reliably the true form and extent of features. The method uses directional edge detection, implemented using
complex wavelets and enhanced with morphological operations. By using machine learning, the visible part of the wavefront set is first extracted and
then extended to the full domain, filling in the parts of the wavefront set that would otherwise be hidden due to the lack of measurement directions.

2. Inverse Problem and Optimization
The inverse problem of reconstructing a tomo-
graphic image f ∈ Rn based on X-ray measure-
ments m ∈ Rm is modeled by

m = Af + ϵ, (1)

where A ∈ Rm×n is a linear forward opera-
tor and ϵ > 0 models additive Gaussian noise.
We consider regularized solutions to the inverse
problems, achieved by minimizing the following
functional:

fS =
{

arg min
f∈Rn,f≥0

1
2∥Af − m∥2

2 + µ∥WCf∥1

}
, (2)

where µ > 0 serves as a regularization parame-
ter.
The PDFP algorithm [1] can be used to itera-
tively solve the above minimization problem: yk+1 = PC(f k − τ ▽ G(f (k)) − λ(WC)T vk),

vk+1 = (I − Tµτ/λ)(WCyk+1 + vk),
f k+1 = PC(f k − τ ▽ G(f (k)) − λ(WC)T v(k+1)),

where PC is the Euclidean projection, τ and λ
are positive parameters, G(f) = 1

2 ∥Af − m∥2
2,

µ > 0 represents the regularization parameter,
and T is the soft-thresholding operator.

5. Results: xz-slices
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(a) Ground truth slice. (b) Tomosynthesis recon-
struction. (c) PDFP reconstruction with learned
boundary estimate. (d) Boundary estimate curve.

6. Results: xy-slices
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(a) Ground truth slice. (b) Tomosynthesis recon-
struction. (c) PDFP reconstruction with learned
boundary estimate. (d) Boundary estimate curve.

3. Method

1. Reconstruction using the PDFP algorithm with complex wavelet regularization. 2. Compute the
finest scale complex wavelet coefficients [2] and take their absolute value. 3. Clean the coefficients
using morphological opening with oriented line structuring elements. 4. Use a neural network to
threshold the coefficients into a binary format. 5. Compute an initial guess of the microlocal prior,
by dilating the binary subbands with custom-made structuring elements. 6. Use a network to predict
the wavefront set in all six subbands. 7. Combine the information to form the singular support. 8.
Compute the morphological skeleton of the singular support, estimating its boundary. 9. Add the
learned boundary estimate on top of the reconstruction.

4. Neural Network Architecture
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