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A brief primer on inverse problems

X-ray source

forward model

Ys = AR+

measurement data noise

retrieving the unknown

I}ilggl {1(x) := d(Ax,ys) + Ar(x)}

exploiting a priori knowledge

TV(x) = > [ Xij = Xigajl+ > [Xij = Xijl.

Can we design a neural Bayesian prior to solve this task?



A Bayesian approach to quantify uncertainty

in the Bayesian framework, instead of finding a single best image, the posterior distribution,

model evidence prior beliefs

p(xlys) = p(ys)” ' plys|x)p(x).

objective hyperparameters optimization

scores every image according to their agreement with the observation and the prior belief,
and the discrepancy among these solutions acts as an estimate of uncertainty



Tools for modelling uncertainty in deep learning

1. Place a prior distribution over NN parameters

2. Define some likelihood function to characterize the agreement of the NN function
with the observations

3. Update the weight distribution using Bayes’ rule

Bayesian NN




The Laplace approximation

1. Train the neural network (find a mode)
—logp(x'[£(ATy};0)) —logp(0)

-

N P -
0" € argmin {l(D; 0) := Zd(xi,xi;e):l:r(e)}/’/
i=1

2. Approximate the (intractable) posterior distribution
over the NN parameters

p(9|D) I~ q(9) = N(O; 9*, Zg), with g = — [Vgl(p; 9)9:9*] -1

3. Further... approximate

1
gaan(0) =N (9 0", (J(ATy5:0) " A(ATys: £(0))) (Alys;0) + Sal)o—e*)
N (MacKay, 1992)



The linearized Laplace method

A Gaussian can be a very poor approximation to Image classification under distribution shift

the NN'’s posterior distribution ... yet

experimentally it is a very good for a linear model

1. Linearization of the underlying BNN

Jacobian acts as basis expansion
A

\

\
\

h(0%) := f(Aly;;0") + J(ATy5;0%)(0 — 6%) ’ ) 0 ; 4 c
inducing a (GP) deep image prior,"4 Model: Baselines:
,; - ResNet-18 with 11M weights * MAP
x ~ N (h(0), J Zo(ealﬂ' o)) ) Inference: 3’?;98?03;53?('22?2016)
we can now perform approximate inference Lin Laplace Subnetwork ' Kiiiﬂﬁ,i}giﬁan 2017)

in the GP model or solve it in closed-form (Daxberger et. al. 2021) « SWAG (Maddox 2019)
for regression! (Immer, 2021 ) “Bayesian Deep Learning via Subnetwork Inference”



The deep image prior for inverse problems
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Rethinking DIP — is DIP in need of a good education ?

Our i . - . -
Baseline Stage 1: Supervised pretraining on synthetic training data
Method
EDIP (FBP) EDIFI’t?t::T;;n Fv?:ronc‘) up] DIP (noise) 0 S (ugmm{ Z ”f ATy(S - XZHg}
OcRe

Stage 2: Unsupervised fine-tuning on real measurement

0; € argmin{lt(B) = ||Af(2:0) — ys||5 + ATV (f(z: 9))},

0cRe

Is Deep Image Prior in Need of a Good Education?
R Barbano, J Leuschner, M Schmidt, A Denker, A Hauptmann, P Maal}, B Jin

x* = f(z; 07),

Can be interpreted as a MAP objective given a prior that constrains
reconstructions to be the output of a U-net and have low TV



https://scholar.google.com/citations?view_op=view_citation&hl=en&user=6jYGiC0AAAAJ&citation_for_view=6jYGiC0AAAAJ:Tyk-4Ss8FVUC

Reconstructing the Walnut data

EDIP (FBP) DIP (noise) Ground truth

Ellipses-Walnut (Sparse 120)
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EDIP takes approx. 30 min against DIP, which takes 2 h and 30 min with NVIDIA

GeForce RTX 2080Ti. A TV regularized reconstruction of the Walnut takes
approximately 6 min and converge to 31.67 dB. EDIP takes only 3 min (i.e.

””i approximately 421 iterations) to match 31.67 dB. In 6 min, EDIP reaches 32.80 dB,

M| that corresponds to a gain of 1.1 dB.
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Building a probabilistic deep image prior

Idea: build surrogate prior with a
covariance kernel that enforces TV
smoothness

1. Train (educated) U-net with “standard objective”
2. Build Bayesian hierarchical model

ys|0 ~ N (ys; Ah(6), 031),
’
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p(€) = ptla) = || Exp(Ara) |-

0l

d=1 d=1
with Rd «— Ep(od|€d§03) HiD=1,i;£d 5(6;) [TV(h(O))] . . wall-clock time
DIP optim. w/ pretraining Tm

.. . . . . Hyperparam. optim. with CG 7h:50m
3. Optimize hyperparameters with marginal likelihood Assemble X, h-30m

Draw k posterior samples (without CG)  16m (k = 210)

4. Predict (UQ)!



Probabilistic DIP for high resolution CT Our method remains well-calibrated in this setting!

X*

Bayes DIP (TV-MAP)
.. |

PSNR: 26.350 dB; SSIM: 0.7891
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PSNR: 23.490 dB; SSIM: 0.7339

A Probabilistic Deep Image Prior for Computational Tomography

R Barbano, J Antoran, J Leuschner, MH Lobato, B Jin (under submission).
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we apply our method to a problem twice as large

(i.e., 120x128=15360)




Summary/Contributions

1. Designing a tractable Bayesian prior over reconstructed images
mimicking the TV

2. Combining such a prior with the linearized Laplace method to obtain
more calibrated uncertainty estimates than existing DIP approaches

3. Proposing an efficient implementation of the method.
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Thank you for listening



Appendix

MCT Measurement Data

Cone-beam measurements using 3 source
positions

1200 equidistant angles over [0, 360°)

Reduce geometry to 2D volume slice, selecting
a subset of measurement pixels

Assemble forward operator as a sparse matrix
for image resolution (501 px)? from given
geometry

Sparse-view task: reconstruct from 120 (or 60)
angles (10x/ 20x subs.)

Ground truth publicly available
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