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Overview
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* Inverse problem
y ~ Ax

wherex € X, ye ¥ .

* Variational approach: solve ,
arg Hélg(l |y — Az||5 + MRa(z)
xr

where G: £ — X, a generative model.

* Penalise images far from the range of the generative model.
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Generative Models
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Variational autoencoders
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Variational Autoencoders
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Encoder sample | - | Generator + KL(p,| Pno.1)]
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Where z|x ~ N(u(x), ¢%(x)).
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Tomography example: MNIST

A: X - Y
Original Problem: Find x s

L.
y=Ax+¢

Generative model
G:Z > X "

New Problem: Find Z s.t. . .
y = A(G(z)) + € B T O O R R
x=G(z) /
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Incorporating the generator

Image in the range of the generator

Re(z) = min gy (G(2) — z) + [|2|3

z€EZ

Bora et al. “Compressed sensing using generative models". ICML 2017
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NYU FastMRI| dataset
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Incorporating the generator

Image in the range of the generator

Re(z) = min gy (G(2) — z) + [|2|3

z€EZ

Image close to the range of the generator

Re(x) = min |G(2) — 2l + |22
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NYU FastMRI| dataset
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NYU FastMRI| dataset
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The Benefits of Generative Regularisers

* Don’t require supervised (paired) training data
* Flexible to changes in the forward problem

* Some degree of mathematical insight and control.
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Generative Model Desired Properties

Variational Autoencoder Generative Adversarial Network
Generate all ‘feasible’ images V Susceptible to mode collapse
Generate no ‘unfeasible’ images Can produce blurry images V
Smoothness with respect to Depends on .the. netyvork Depends on the network
Encoder distribution
Known latent space distribution Only the prior is known Only the prior is known




Takeaway points

 Generative models can be used

A: X >Y as priors for inverse problems
Original Problem: Find x s » Penalise images far from the range
t y ~ Ax of a generative model

» Requires generative models that

Generative model produce more than a few good
G 7 —> X images.

arg min ||y — Az||3 + ARa(z)

New"Problem:

https://arxiv.org/abs/2107.11191
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Deep Learning and Inverse Problems:
ReVieW Deep

equilibrium
methods
Forward S
model known : Unrolled iterative
) .. Adversarial
in training regularisation methods
Tk Kk
Forward Generative Learned post
model */regularisers processing
unknown in V%
training Plug and play
methods ST
Deep,image priors
No training o

Unsupervised: Supervised: image
ground truth data pairs available
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What properties do we need for the
generator?
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What properties do we need for the
generator?

Generator properties
* Generator produces all ‘feasible’ images
* Generator produces no ‘unfeasible’ images

* The generated probability distribution matches the training
data distribution

Generative Models Applied to Inverse Problems |M4DL 2022



What properties do we need for the
generator?

Generator properties
» Generator produces all ‘feasible’ images
* Generator produces no ‘unfeasible’ images

* The generated probability distribution matches the training data
distribution

Latent space properties

« Smoothness of the generator with respect to z
* The area of the latent space that maps to feasible images is known

Generative Models Applied to Inverse Problems |M4DL 2022



Variational autoencoders
E

/—\ 2 = Image

P space

. Gy
» —

Latent space, &

Knee
manifold

Generative Models Applied to Inverse Problems |M4DL 2022



Variational Autoencoders

Mean,

p(x)
O > / O Objective function: ,
N \ ® min [Ex[[Ezlex - G, (2)|
H, o,

Encoder sample | - | Generator + KL(p,| Pno.1)]
= O

Where z|x ~ N(u(x), ¢%(x)).

.

z ~ N(u(x), 6%(x)):

e .

variance

QOO

OO0

=
=
N

o(x)

Generative Models Applied to Inverse Problems |M4DL 2022



Variational autoencoders
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Generative Adversarial Networks (GANSs)

z€ /L Fake data
e G(z) e X
o

- %\
=

zZ~ P,

Discriminator » D)€ (1)

v
X~ Pdata / Probability the image is real

Real data Objective function:
casissizal minmaxV(G, D)
‘ G D
; V(G,D)=E,., logD(x)+E,, log(l1—-D(G(z))
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Generative Adversarial Networks u
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Generative Adversarial Networks
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Generative model comparisons

 Datasets:
« MNIST

« Squares and circles
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Generative model comparisons

» Generator produces all ‘feasible’ images
* Generator produces no ‘unfeasible’ images
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Generative model comparisons

« Smoothness of the generator with respect to z

GAN
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VAE and GAN Comparison

Variational Autoencoder

Generative Adversarial Network

Generate all ‘feasible’ images

v/

Susceptible to mode collapse

Generate no ‘unfeasible’ images

Can produce blurry images

v/

Smoothness with respect to

Depends on the network
Encoder distribution

Depends on the network

Known latent space distribution

Only the prior is known

Only the prior is known




Takeaway points

 Generative models can be used

A: X >Y as priors for inverse problems
Original Problem: Find x s » Penalise images far from the range
t y ~ Ax of a generative model

» Requires generative models that

Generative model produce more than a few good
G 7 —> X images.

arg min ||y — Az||3 + ARa(z)

New"Problem:

https://arxiv.org/abs/2107.11191
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