Regularising Inverse Imaging Problems using Generative Machine Learning Models

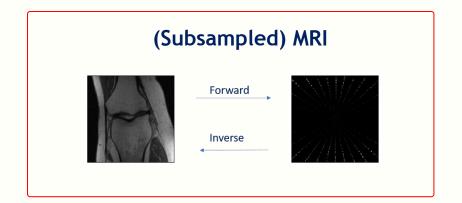
Margaret Duff, Neill D F Campbell, Matthias J Ehrhardt

Engineering and Physical Sciences Research Council

Overview

Inverse problem

where $x \in \mathcal{X}, y \in \mathcal{Y}$.



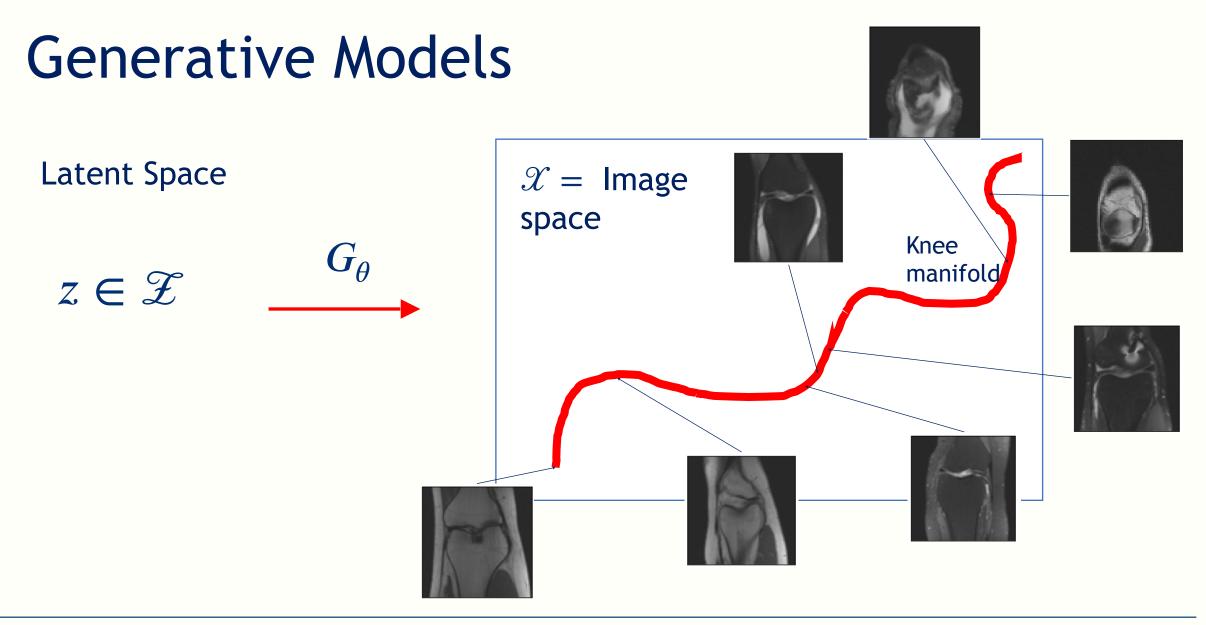
• Variational approach: solve

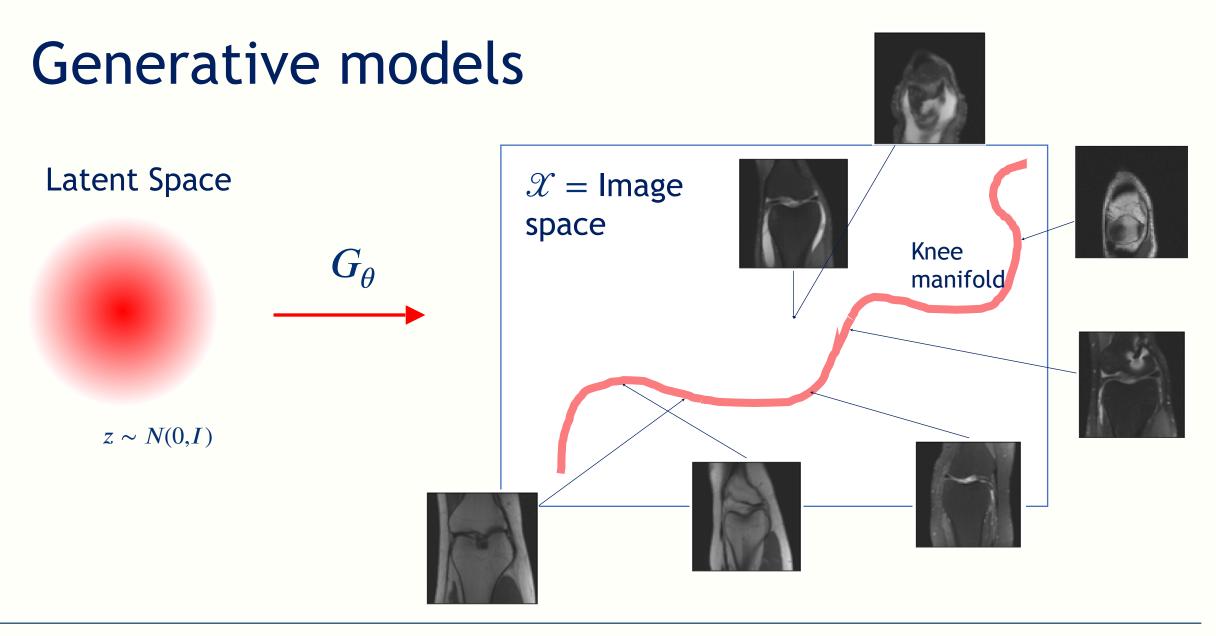
$$\arg\min_{x\in\mathcal{X}} \|y - Ax\|_2^2 + \lambda \mathcal{R}_G(x)$$

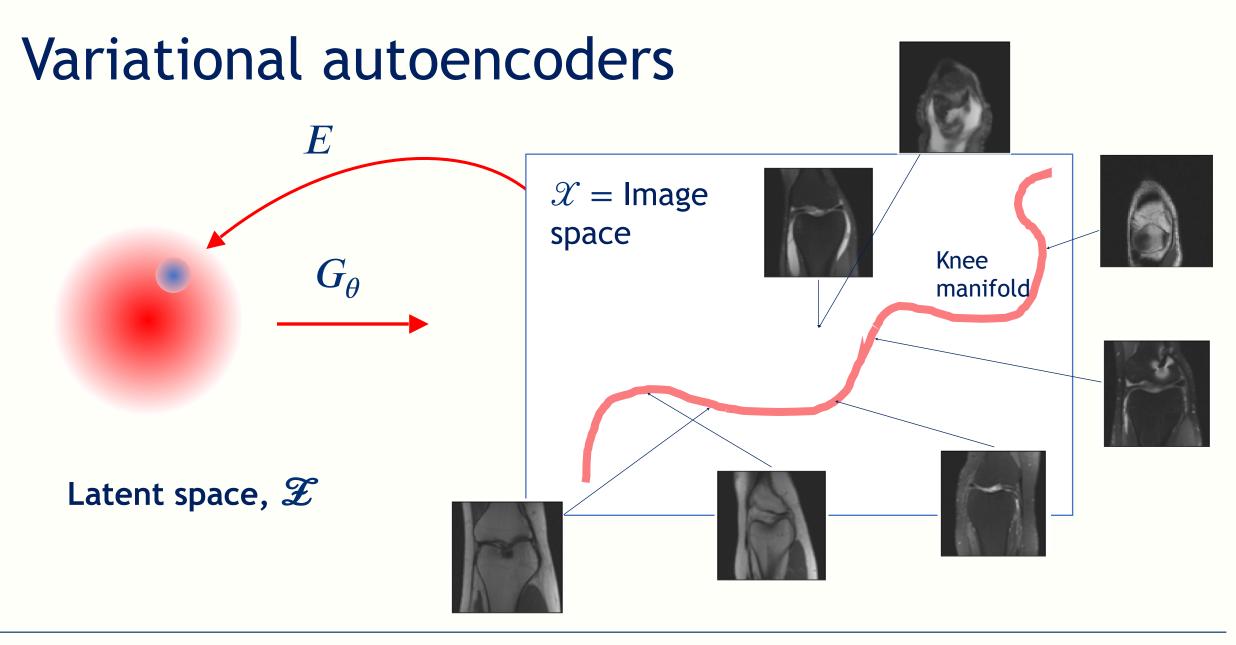
 $y \approx Ax$

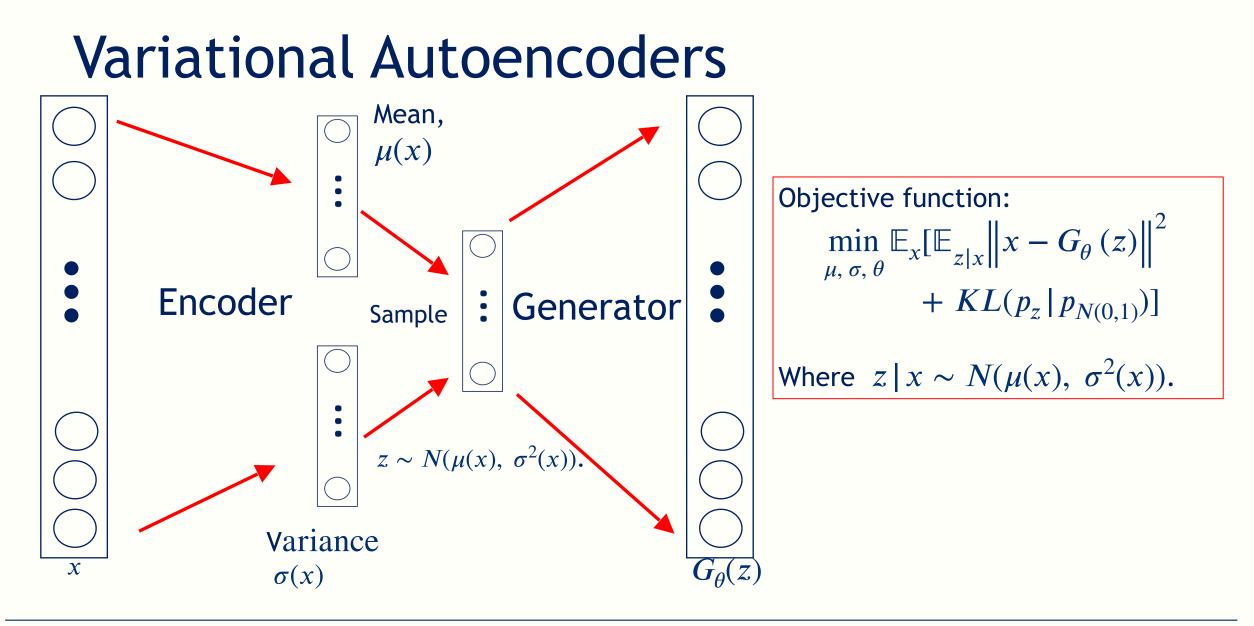
where $G: \mathscr{Z} \to \mathscr{X}$, a generative model.

• Penalise images far from the range of the generative model.









Tomography example: MNIST

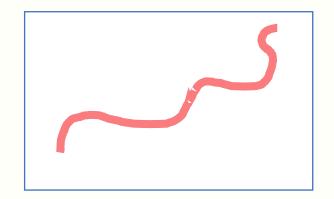
.t.

A $A: X \to Y$ Original Problem: Find x s $y = Ax + \epsilon$ 2.0 Generative model 15 10 $G: Z \to X$ 1 6 8 G 0.5 N 0.0 -0.5 -1.0New Problem: Find z s.t. -1.5 $y = A(G(z)) + \epsilon$ -2.0 -1.5 -1.0 -0.5 1.0 1.5 0.0 0.5 x = G(z)

Incorporating the generator

Image in the range of the generator

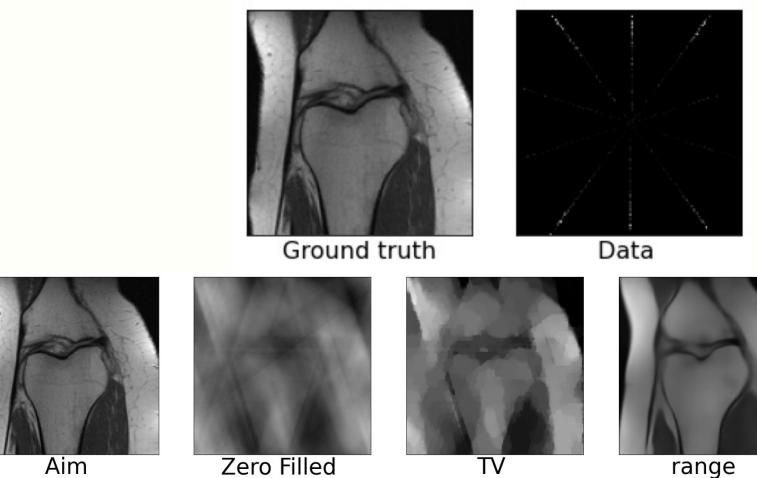
$$\mathcal{R}_G(x) = \min_{z \in \mathcal{Z}} \iota_{\{0\}}(G(z) - x) + \|z\|_2^2$$



Bora et al. "Compressed sensing using generative models". ICML 2017

NYU FastMRI dataset

ANGLES=10

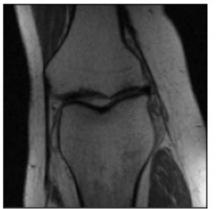


PSNR=17.99

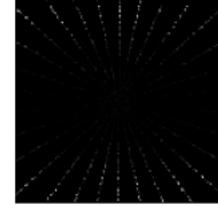
PSNR=16.58

range PSNR=21.90

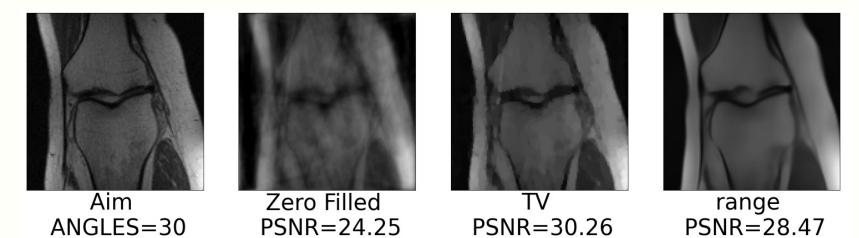
NYU FastMRI dataset



Ground truth



```
Data
```



Incorporating the generator

Image in the range of the generator

$$\mathcal{R}_G(x) = \min_{z \in \mathcal{Z}} \iota_{\{0\}}(G(z) - x) + \|z\|_2^2$$

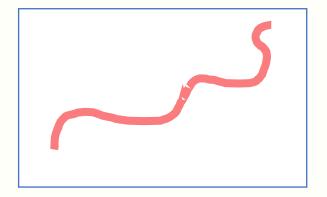
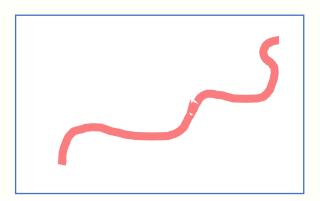
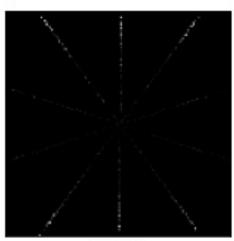


Image close to the range of the generator

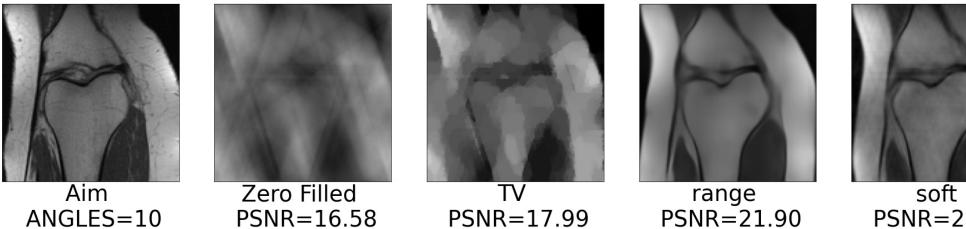
$$\mathcal{R}_G(x) = \min_{z \in \mathcal{Z}} \|G(z) - x\|_2^2 + \mu \|z\|_2^2$$



NYU FastMRI dataset

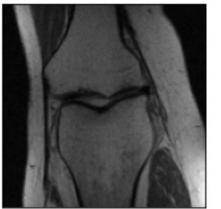


Data

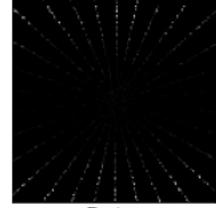


PSNR=23.31

NYU FastMRI dataset



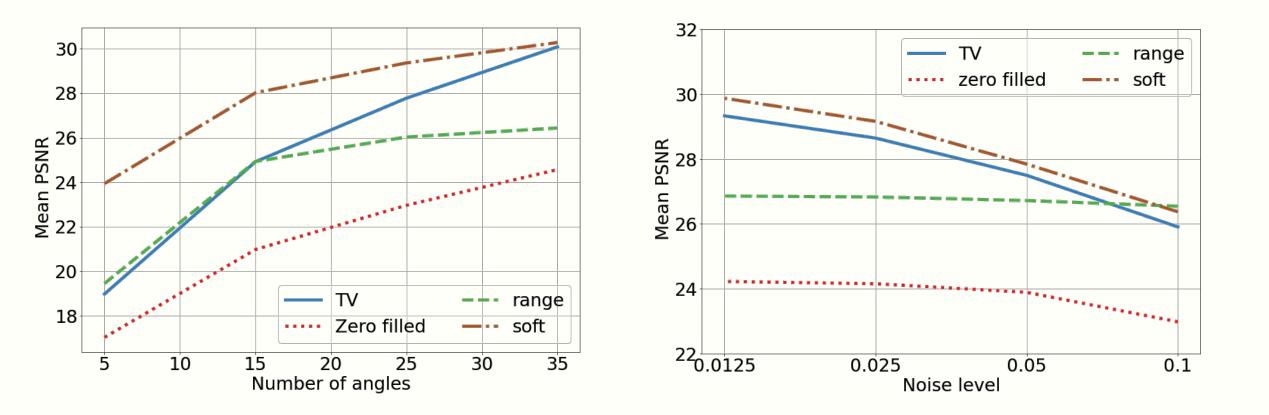
Ground truth



Data

PSNR=31.50

Method comparison



The Benefits of Generative Regularisers

• Don't require supervised (paired) training data

• Flexible to changes in the forward problem

• Some degree of mathematical insight and control.

Generative Model Desired Properties

	Variational Autoencoder	Generative Adversarial Network
Generate all 'feasible' images		Susceptible to mode collapse
Generate no 'unfeasible' images	Can produce blurry images	
Smoothness with respect to	Depends on the network Encoder distribution	Depends on the network
Known latent space distribution	Only the prior is known	Only the prior is known

Takeaway points

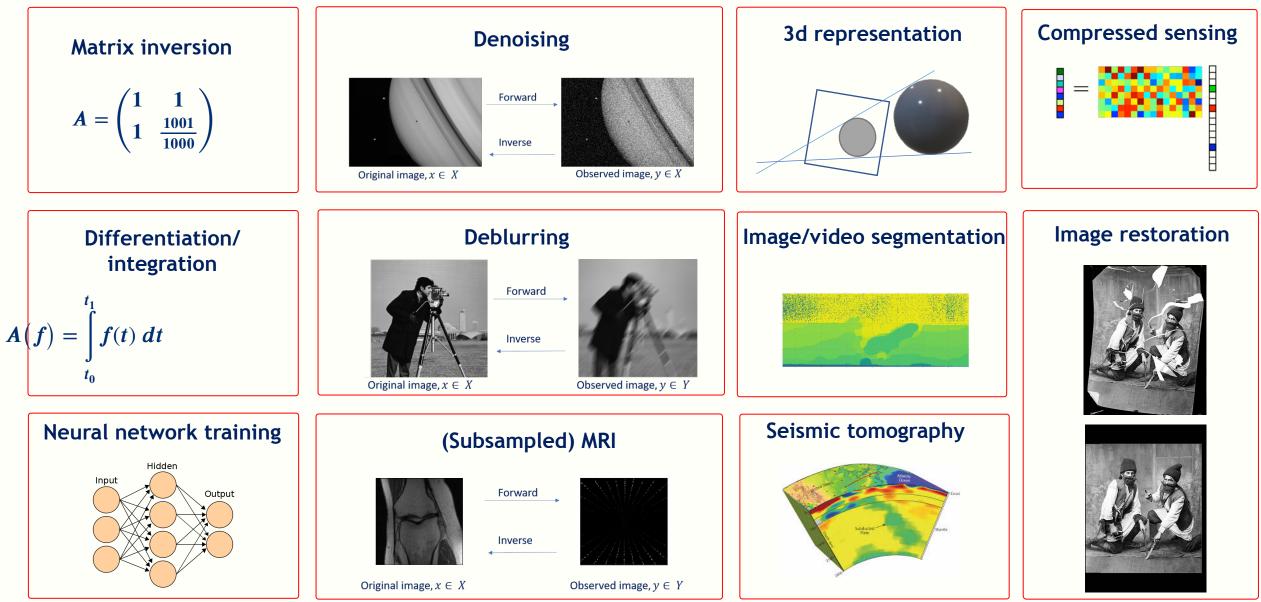
 $\begin{array}{ll} A: X \to Y \\ \text{Original Problem: Find } x \text{ s} \\ . \text{ t. } & y \approx Ax \end{array}$

Generative model $G: Z \rightarrow X$ $\arg\min \|y - Ax\|_2^2 + \lambda \mathcal{R}_G(x)$ New Problem:

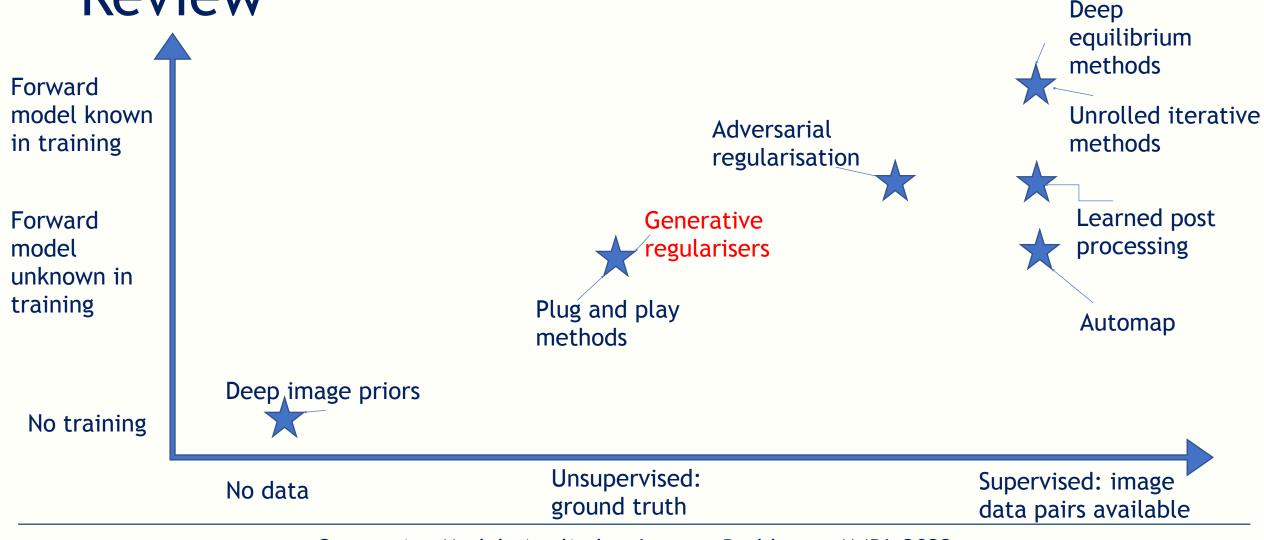
- Generative models can be used as priors for inverse problems
 - Penalise images far from the range of a generative model
- Requires generative models that produce more than a few good images.

https://arxiv.org/abs/2107.11191

Inverse Problems are Everywhere



Deep Learning and Inverse Problems: Review



What properties do we need for the generator?

What properties do we need for the generator?

Generator properties

- Generator produces all 'feasible' images
- Generator produces no 'unfeasible' images
- The generated probability distribution matches the training data distribution

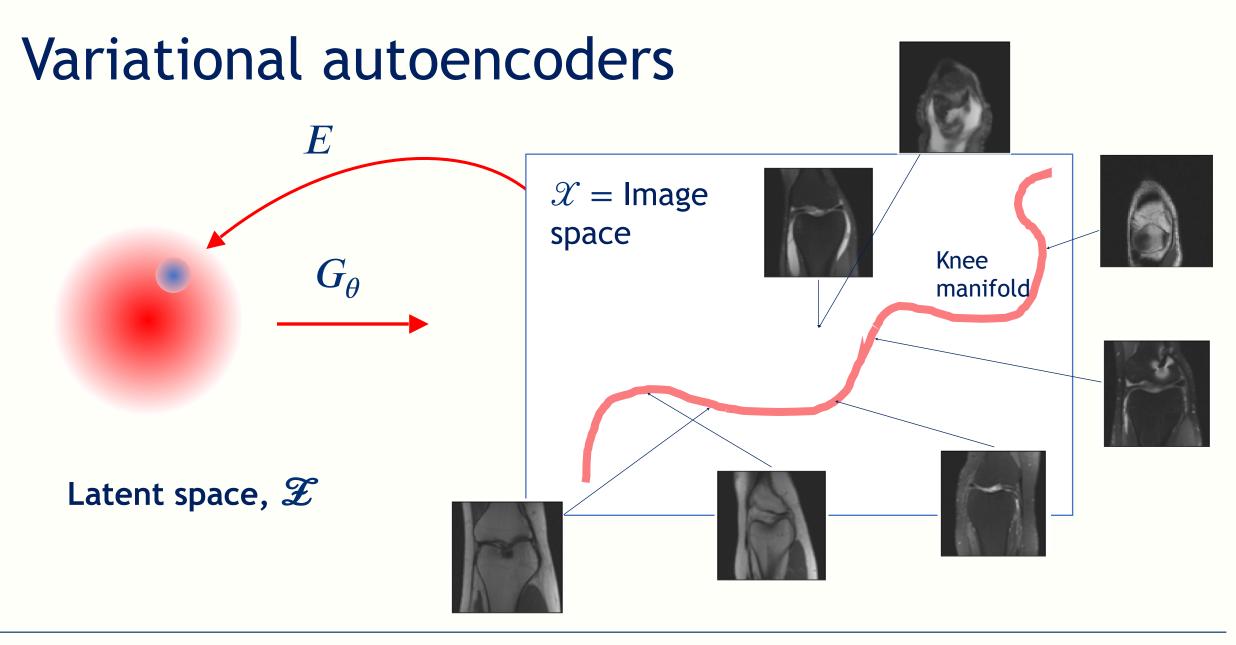
What properties do we need for the generator?

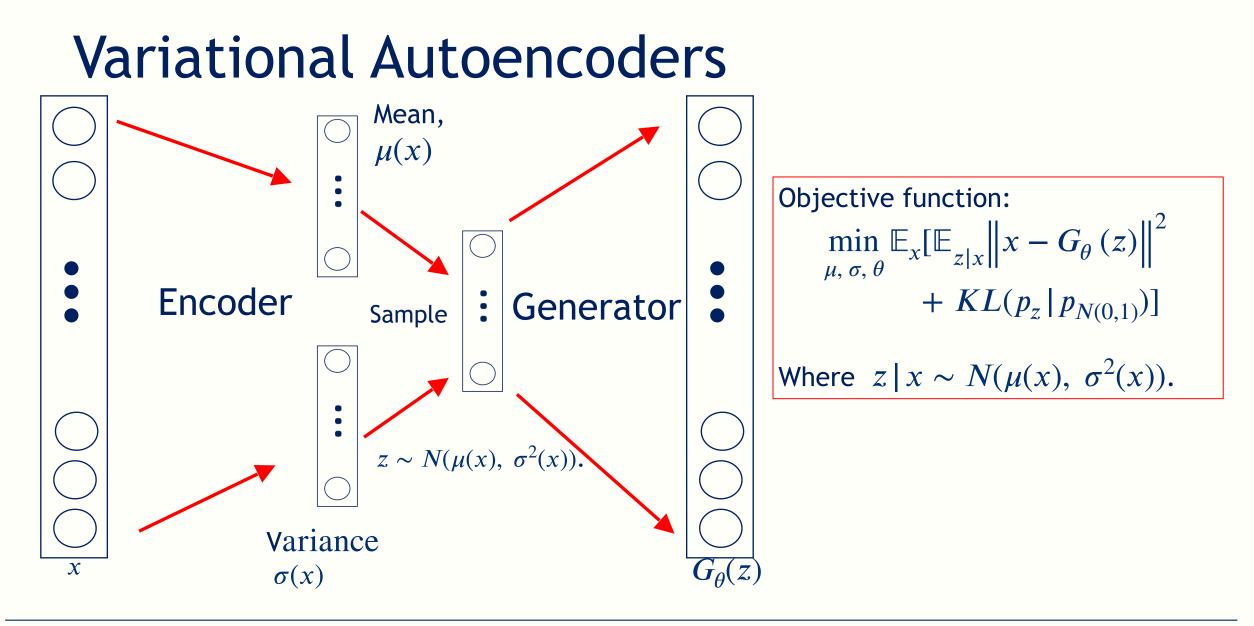
Generator properties

- Generator produces all 'feasible' images
- Generator produces no 'unfeasible' images
- The generated probability distribution matches the training data distribution

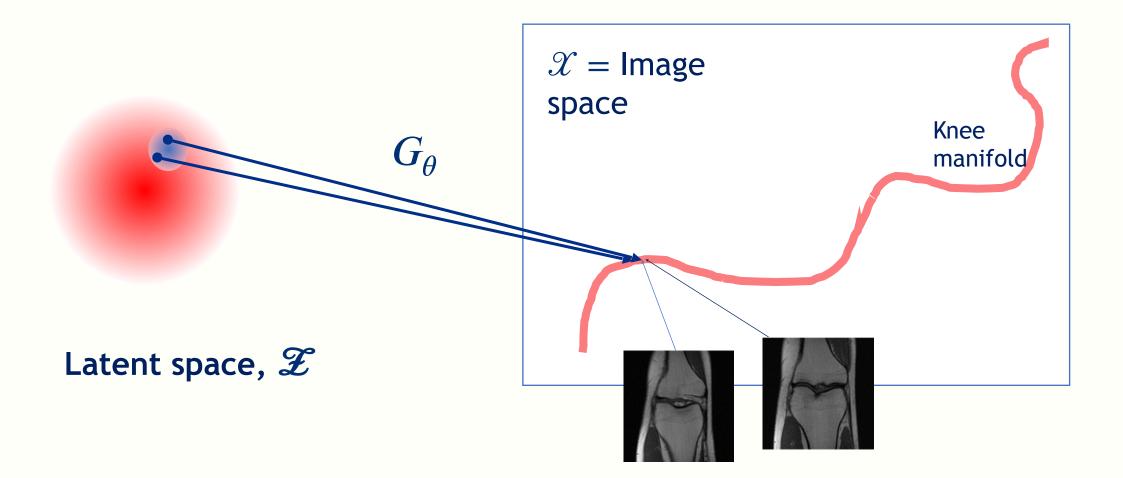
Latent space properties

- Smoothness of the generator with respect to z
- The area of the latent space that maps to feasible images is known

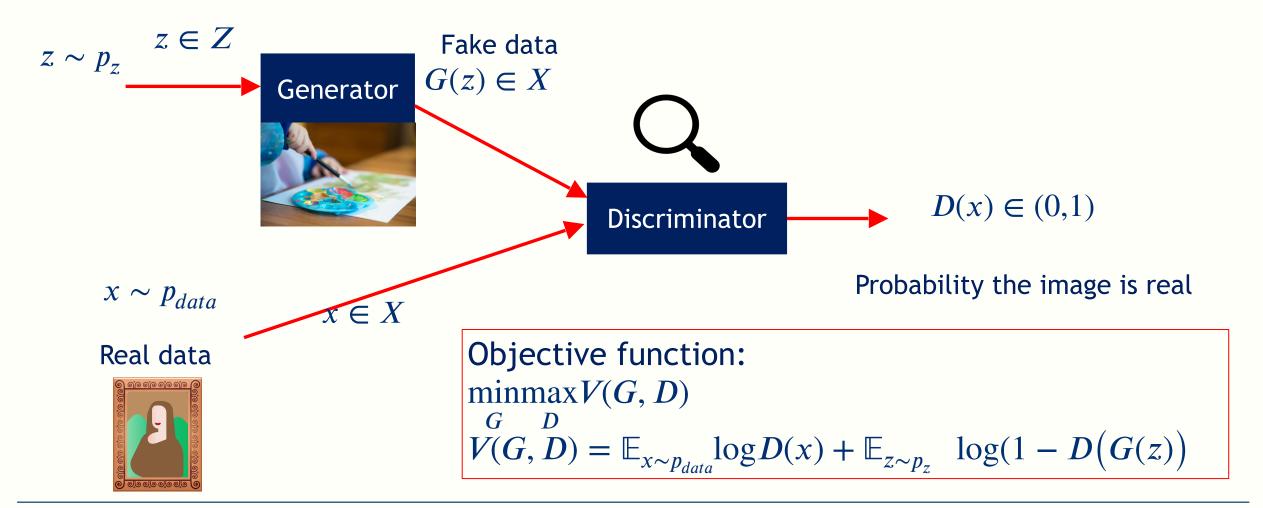


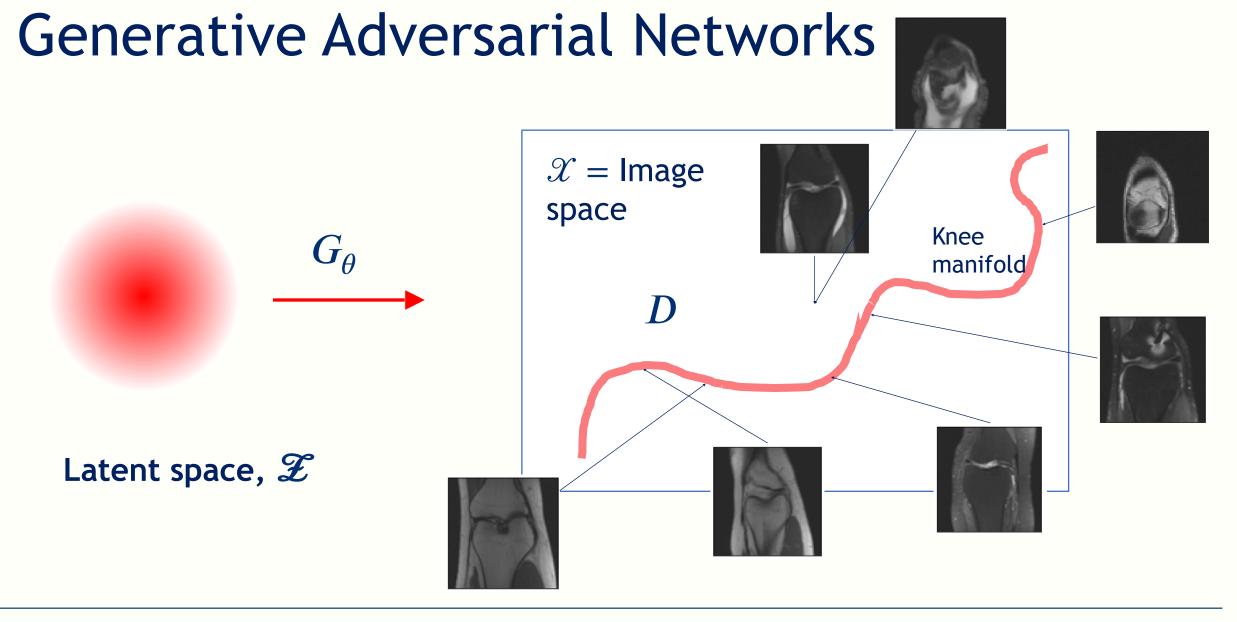


Variational autoencoders

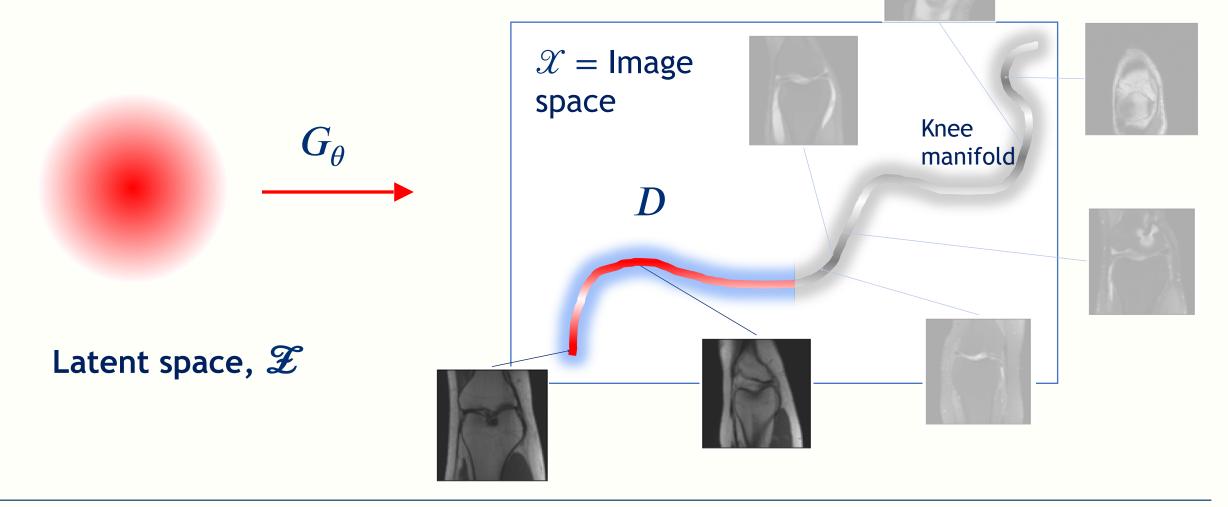


Generative Adversarial Networks (GANs)



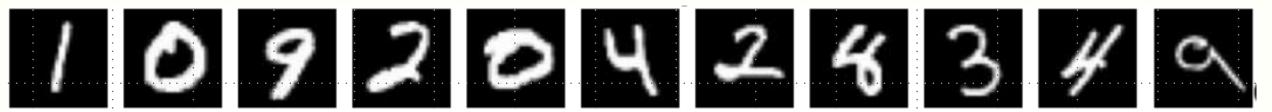


Generative Adversarial Networks

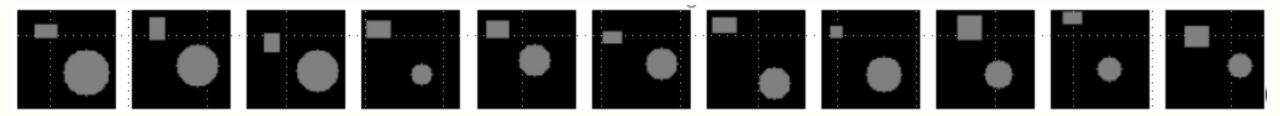


Generative model comparisons

- Datasets:
 - MNIST

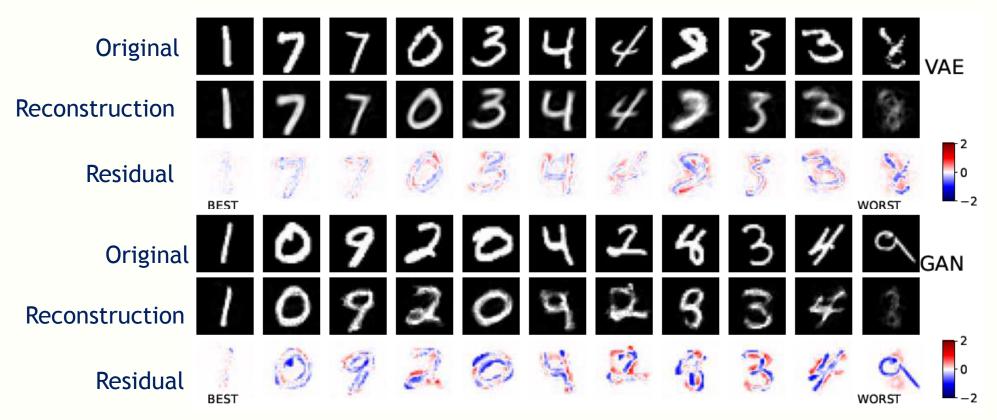


• Squares and circles



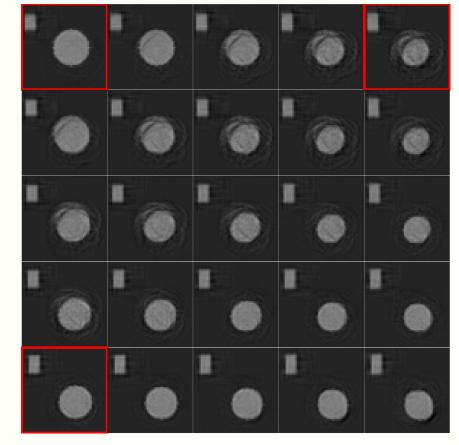
Generative model comparisons

- Generator produces all 'feasible' images
- Generator produces no 'unfeasible' images

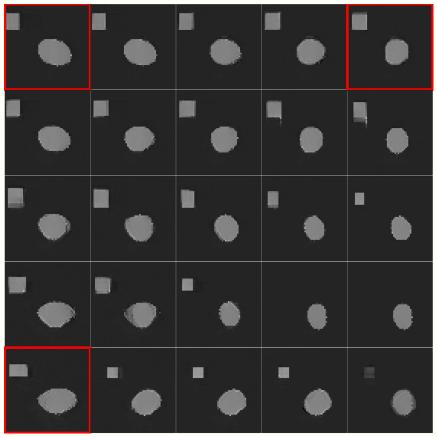


Generative model comparisons

• Smoothness of the generator with respect to z



VAE



GAN

VAE and GAN Comparison

	Variational Autoencoder	Generative Adversarial Network
Generate all 'feasible' images		Susceptible to mode collapse
Generate no 'unfeasible' images	Can produce blurry images	
Smoothness with respect to	Depends on the network Encoder distribution	Depends on the network
Known latent space distribution	Only the prior is known	Only the prior is known

Takeaway points

 $\begin{array}{ll} A: X \to Y \\ \text{Original Problem: Find } x \text{ s} \\ . \text{ t. } & y \approx Ax \end{array}$

Generative model $G: Z \rightarrow X$ $\arg \min \|y - Ax\|_2^2 + \lambda \mathcal{R}_G(x)$ New Problem:

- Generative models can be used as priors for inverse problems
 - Penalise images far from the range of a generative model
- Requires generative models that produce more than a few good images.

https://arxiv.org/abs/2107.11191