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Goal: Numerical modelling across scales

MICROSCOPIC FORMULATION
agent-based models (high-dimensional equations)

for properties (e.g. positions) of large number of agents

MACROSCOPIC FORMULATION
mean-field equations (low-dimensional equations)

for macroscopic structures (e.g. density functionals)

rigorous bridge
separate
approaches

Originality:
New perspective: bridge micro- and macroscopic description
Importance:

probe microscopic system via macroscopic observables
two different approaches for the development of computational methods
rigorous bridge implying reliability of approaches
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Motivation

Computational methods for semi-supervised and
unsupervised classification based on variational
models and PDEs (e.g. algorithms based on
phase fields, MBO scheme, p-Laplacians)
Success of Eikonal equations in the continuum
setting (e.g. continuum shortest path problem,
electromagnetism, ray optics)
Shortest path graph distances are widely used in
data science and machine learning

ñ Development of discrete generalised eikonal equations on graphs
for semi-supervised learning
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Models for information propagation on graphs

We propose three models for the propagation of information on graphs 1:

Front propagation models: information
propagation as an evolving front, i.e. evolving
front separates region for which the wave has
arrived from the remainder

First arrival times: finding the smallest travel
time over a set of possible paths, i.e. consider
subsets of set of admissible paths and optimise
travel times over these sets

1Dunbar, Elliott, LMK, arXiv:2201.07577
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Models for information propagation on graphs

Discrete generalised eikonal models:
Continuum eikonal equation

}∇u}2 “ s in Ωztx0u

with boundary conditions

upx0q“ 0,
∇upxq ¨ νpxqě 0 for x P Γ

Discrete one-sided derivatives:

∇`
w ui “ pwj,i pui ´ ujq

`qjPNpiq

ñ Define discrete generalised eikonal equations for any 1 ď p ď 8 as

}∇`
w ui}p“ si , i P V̊ ,

ui“ 0, i P BV
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Theoretical results

We show
Equivalence of models (front propagation, first arrival times and
discrete generalised eikonal models) depending on parameter p
ñ Sufficient to focus on discrete generalised eikonal models

Formal limit for specific regular grids for any p where
wij “ ηp}Xi ´ Xj}2q:

Square grid: ηp1q}∇U}p “ S
Triangular grid: ηp1q}p∇U ¨ ξkqk“1,2,3}p “ S with
ξ1 “ p1, 0q, ξ2 “ pcospπ{3q, sinpπ{3qq and ξ3 “ pcosp2π{3q, sinp2π{3qq

ñ Limiting PDE of the form }A∇Upxq}p “ Spxq for A P R2ˆ2

Formal limit for regular κ-neighbor grid for κ even and p “ 2

and we perform numerical experiments. . .
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Close-up views of underlying graphs

Square (S) Triangular (T ) Hexagonal (H) Rhombus (R) Uniform (U)

Figure: The S ,T ,H, and R grids are regular, and we take a small interior angle of
π{3, for the rhombus grid R. The U graph is created from connecting uniformly
random points to nearest neighbours upto a cut-off radius 0.04 (leading to 12
average neighbours).

Lisa Maria Kreusser (Bath) Eikonal eq. for semi-supervised learning April 21, 2022 8 / 15



Discrete solution on different structured grids

uS uT uH uR

p “ 1

p “ 2

p “ 3

p “ 8
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Discrete solutions for the generalised Eikonal equation

Stencil: 4 8 12 20

p “ 1

p “ 2

p “ 8

Figure: Discrete solutions on a square vertex grid where every node has 4,8,12, or
20 neighbours, from left to right. The stencils forming these neighbourhoods are
shown in the first row, and the solutions for model choice p P t1, 2,8u in
subsequent rows .
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Traveltime fields and classification for two moons problem

Figure: Left and centre panels: traveltime field for label 1 and 2 respectively.
Right panel: classification with predicted label 1 (blue) and predicted label 2
(yellow) solved with initially known labels 1 (orange), and 2 (dark blue). The
accuracy was 94.7%.
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Mean (standard deviation) of classification for the two
moons example

wi ,j Eikonal model Two moons accuracy %
p “ 1 92.7 (3.81)

exp

ˆ

´
}xi´xj}

2
?

d10pxi qd10pxj q

˙

p “ 2 92.0 (2.80)

p “ 8 89.5 (2.96)
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Performance of on data sets Cora and CiteSeer

wi ,j Eikonal model Cora accuracy CiteSeer accuracy
p “ 1 69.0 (7.49) 64.3 (1.64)

1{}xi ´ xj}ℓ2 p “ 2 68.9 (6.86) 62.6 (1.87)
p “ 8 68.1 (3.86) 61.0 (2.26)
p “ 1 72.4 (1.58) 64.3 (1.91)

expp´
}xi´xj}

2
ℓ2

500 q p “ 2 71.8 (1.88) 62.5 (2.12)
p “ 8 69.2 (2.50) 60.8 (2.25)
p “ 1 72.4 (1.56) 64.3 (2.06)

expp´
}xi´xj}

2
ℓ2

100
?

dmaxpxi qdmaxpxj q
q p “ 2 71.7 (1.91) 62.5 (2.08)

p “ 8 69.0 (2.42) 60.7 (2.22)

Table: Mean (standard deviation) of classification accuracy given as percentages,
for the examples using different choices of weights. The function dmaxpxq is the
Euclidean distance from xi to its furthest neighbour.

ñ Comparably performance to flaship methods Planetoid-T and Planetoid-I
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Conclusion: PDEs on graphs for semi-supervised learning

Model development:
Discrete models on graphs (front
propagation, first arrival time and
discrete eikonal models)
Derivation of continuum models

Generalised eikonal equations
Dunbar, Elliott, LMK,
arXiv:2201.07577
Second-order PDEs
LMK, Wolfram, arXiv:2007.12516

Quantitative behaviour: Analytic
results on equivalence of models
Computational experiments for
semi-supervised learning
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Thank you very much for your attention!

Happy to answer any questions!

More information: https://people.bath.ac.uk/lmk54/
Email: Lmk54@bath.ac.uk
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