Generalised Eikonal Equations on graphs with applications to semi-supervised learning

Lisa Maria Kreusser

University of Bath

Mathematics for Deep Learning Opening Workshop April 21, 2022

Analysis of PDEs / Variational Models

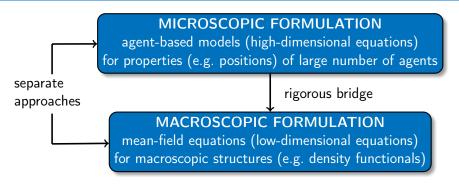
My Research Data Science / Machine Learning

Numerical Analysis

Lisa Maria Kreusser (Bath) Eikonal eq. for semi-supervised learning

April 21, 2022

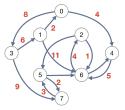
Goal: Numerical modelling across scales



Originality:

- New perspective: bridge micro- and macroscopic description
- Importance:
 - probe microscopic system via macroscopic observables
 - two different approaches for the development of computational methods
 - rigorous bridge implying reliability of approaches

- Computational methods for semi-supervised and unsupervised classification based on variational models and PDEs (e.g. algorithms based on phase fields, MBO scheme, p-Laplacians)
- Success of Eikonal equations in the continuum setting (e.g. continuum shortest path problem, electromagnetism, ray optics)

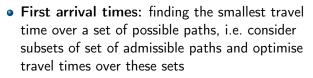


 Shortest path graph distances are widely used in data science and machine learning

 \Rightarrow Development of discrete generalised eikonal equations on graphs for semi-supervised learning

We propose three models for the propagation of information on graphs 1 :

• Front propagation models: information propagation as an evolving front, i.e. evolving front separates region for which the wave has arrived from the remainder



¹Dunbar, Elliott, LMK, arXiv:2201.07577

Lisa Maria Kreusser (Bath) Eikonal eq. for semi-supervised learning April 21, 2022

Models for information propagation on graphs

• Discrete generalised eikonal models:

• Continuum eikonal equation

 $\|\nabla u\|_2 = s \quad \text{in } \Omega \setminus \{x_0\}$

with boundary conditions

$$u(x_0) = 0,$$

 $\nabla u(x) \cdot v(x) \ge 0 \quad \text{for } x \in \Gamma$

• Discrete one-sided derivatives:

$$\nabla^+_w u_i = (w_{j,i}(u_i - u_j)^+)_{j \in N(i)}$$

 \Rightarrow Define discrete generalised eikonal equations for any $1\leqslant p\leqslant \infty$ as

$$\begin{aligned} \|\nabla_w^+ u_i\|_p &= s_i, \quad i \in \mathring{V}, \\ u_i &= 0, \quad i \in \partial V \end{aligned}$$

6/15

Lisa Maria Kreusser (Bath) Eikonal eq. for semi-supervised learning April 21, 2022

We show

- Equivalence of models (front propagation, first arrival times and discrete generalised eikonal models) depending on parameter p
 ⇒ Sufficient to focus on discrete generalised eikonal models
- Formal limit for specific regular grids for any p where $w_{ij} = \eta(||X_i X_j||_2)$:
 - Square grid: $\eta(1) \| \nabla U \|_{P} = S$
 - Triangular grid: $\eta(1) \| (\nabla U \cdot \xi_k)_{k=1,2,3} \|_p = S$ with $\xi_1 = (1,0), \xi_2 = (\cos(\pi/3), \sin(\pi/3))$ and $\xi_3 = (\cos(2\pi/3), \sin(2\pi/3))$
 - ⇒ Limiting PDE of the form $||A\nabla U(x)||_p = S(x)$ for $A \in \mathbb{R}^{2 \times 2}$
- Formal limit for regular κ -neighbor grid for κ even and p = 2

and we perform numerical experiments...

A (10) × (10) × (10) ×

Figure: The S, T, H, and R grids are regular, and we take a small interior angle of $\pi/3$, for the rhombus grid R. The U graph is created from connecting uniformly random points to nearest neighbours upto a cut-off radius 0.04 (leading to 12 average neighbours).

Discrete solution on different structured grids

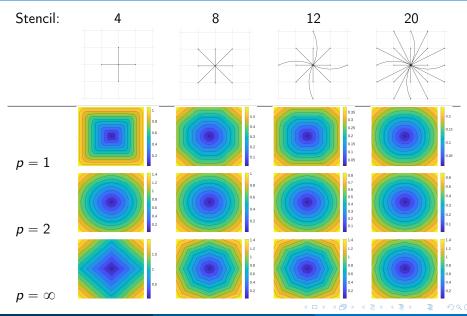
us UТ ин U_R 1.4 0.8 0.6 1.2 1.2 0.5 0.6 0.8 0.4 0.8 0.4 0.6 0.6 0.3 0.2 0.1 0.2 p = 11.4 1.5 0.8 0.8 0.6 0.4 0.4 0.5 0.2 0.2 *p* = 2 1.5 1.2 1.5 1.5 0.8 0.6 0.4 0.5 0.5 0.2 p = 31.4 1.5 1.2 1.5 0.8 0.4 0.5 0.2 $p = \infty$

Lisa Maria Kreusser (Bath)

Eikonal eq. for semi-supervised learning

April 21, 2022

Discrete solutions for the generalised Eikonal equation



Lisa Maria Kreusser (Bath)

Eikonal eq. for semi-supervised learning

April 21, 2022

Traveltime fields and classification for two moons problem

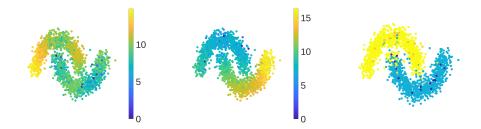


Figure: Left and centre panels: traveltime field for label 1 and 2 respectively. Right panel: classification with predicted label 1 (blue) and predicted label 2 (yellow) solved with initially known labels 1 (orange), and 2 (dark blue). The accuracy was 94.7%.

Mean (standard deviation) of classification for the two moons example

$$w_{i,j}$$
Eikonal modelTwo moons accuracy % $p = 1$ 92.7 (3.81) $\exp\left(-\frac{\|x_i - x_j\|^2}{\sqrt{d_{10}(x_i)d_{10}(x_j)}}\right)$ $p = 2$ 92.0 (2.80) $p = \infty$ 89.5 (2.96)

Performance of on data sets Cora and CiteSeer

w _{i,j}	Eikonal model	Cora accuracy	CiteSeer accuracy
$1/\ x_i - x_j\ _{\ell^2}$	p = 1	69.0 (7.49)	64.3 (1.64)
	<i>p</i> = 2	68.9 (6.86)	62.6 (1.87)
	$p=\infty$	68.1 (3.86)	61.0 (2.26)
$\exp(-\frac{\ x_i - x_j\ _{\ell^2}^2}{500})$	p = 1	72.4 (1.58)	64.3 (1.91)
	<i>p</i> = 2	71.8 (1.88)	62.5 (2.12)
	$p = \infty$	69.2 (2.50)	60.8 (2.25)
$\exp(-\frac{\ x_{i}-x_{j}\ _{\ell^{2}}^{2}}{100\sqrt{d_{\max}(x_{i})d_{\max}(x_{j})}})$	p = 1	72.4 (1.56)	64.3 (2.06)
	<i>p</i> = 2	71.7 (1.91)	62.5 (2.08)
	$\pmb{p}=\infty$	69.0 (2.42)	60.7 (2.22)

Table: Mean (standard deviation) of classification accuracy given as percentages, for the examples using different choices of weights. The function $d_{\max}(x)$ is the Euclidean distance from x_i to its furthest neighbour.

 $\Rightarrow \text{ Comparably performance to flaship methods Planetoid}_{T_and_Planetoid}_{C_a}$ Lisa Maria Kreusser (Bath) Eikonal eq. for semi-supervised learning April 21, 2022 13/15

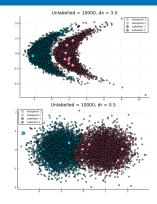
Conclusion: PDEs on graphs for semi-supervised learning

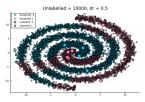
• Model development:

Discrete models on graphs (front propagation, first arrival time and discrete eikonal models)

• Derivation of continuum models

- Generalised eikonal equations Dunbar, Elliott, LMK, arXiv:2201.07577
- Second-order PDEs LMK, Wolfram, arXiv:2007.12516
- Quantitative behaviour: Analytic results on equivalence of models
- Computational experiments for semi-supervised learning





Thank you very much for your attention! Happy to answer any questions!

More information: https://people.bath.ac.uk/lmk54/ Email: Lmk54@bath.ac.uk