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Weather and climate models and the role of parametrizations

* The atmosphere is divided into millions of "grid-boxes®, with dimensions of ~ 50 x 50 x 0.5 km
» Each grid box carries several “prognostic variables”, such as temperature, wind and pressure for which the primitive

equations are solved numerically using a finite elements/volumes time stepping

The Primitive Equations
Equations of (horizontal) motion
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Weather and climate models and the role of parametrizations

* Many processes happen on scales much smaller than the “resolved” model grid yet have important implications for the
large-scale evolution of the atmosphere.

* These processes are typically represented by “parametrizations”, which are statistical, empirical or theoretical sub-
models, e.g., representing cloud and precipitation formation, radiative transfer, land-atmosphere interactions etc.
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Weather and climate models and the role of parametrizations

* Many processes happen on scales much smaller than the “resolved” model grid yet have important implications for the

large-scale evolution of the atmosphere.
* These processes are typically represented by “parametrizations”, which are statistical, empirical or theoretical sub-

models, e.g., representing cloud and precipitation formation, radiative transfer, land-atmosphere interactions etc.

Large-scale state
(water content and cloud fraction in grid box)
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Weather and climate models and the role of parametrizations

* Many processes happen on scales much smaller than the “resolved” model grid yet have important implications for the
large-scale evolution of the atmosphere.

* These processes are typically represented by “parametrizations”, which are statistical, empirical or theoretical sub-
models, e.g., representing cloud and precipitation formation, radiative transfer, land-atmosphere interactions etc.

Large-scale state
(water content and cloud fraction in grid box)

Hyyrb — ASil) (Juturb - AS:’I)

ig=f——= I terf(——=—)))+
qh‘? 2 ( f( \/zo_mrb )))
Dturb ex 7(1“1‘urb *Asii)z

Vorm P 2O'turl;v2

(Jumrb - AS:’!‘) ))

1
cflig =h= (1 +er
fllq 2( f( \/Eo'turb

Parametrization
(linking large-scale state to sub-grid-turbulence,
and a Gaussian sub-grid moisture distribution)
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Weather and climate models and the role of parametrizations

* Many processes happen on scales much smaller than the “resolved” model grid yet have important implications for the
large-scale evolution of the atmosphere.

* These processes are typically represented by “parametrizations”, which are statistical, empirical or theoretical sub-
models, e.g., representing cloud and precipitation formation, radiative transfer, land-atmosphere interactions etc.

- Parametrizations can add considerable cost (~ 35%) to the model integration
time, and are typically a large source of uncertainty, due to their crude
approximations, empiricism with limited observational data, or lack of
theoretical framework.

- Parametrizations are indispensable to correctly represent how the
atmosphere evolves over time in climate and weather forecasting models.

- We could use machine learning to replace complete parametrizations:

- Learn on data from existing parametrizations to just speed up the model

- Learn on observational data sets (relating various observed variables)

- Learn on high-resolution model data (where parametrizations should
start having a smaller impact)

- We could use machine learning to replace parts of parametrizations
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Examples of machine learning application in
the Atmospheric Processes and
Parametrizations Team
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Gravity wave drag (van Niekerk, Hardiman, Prudden, Scaife)

Data-Wave: Five-year international project, funded by the Virtual Earth System Research Institute
(VESRI), to enhance and improve gravity wave representation in climate simulations using machine

learning.

upward_air_velocity, 1993-10-25 11:15:00
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Gravity waves seen in the vertical velocity field of the Met Office climate model
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Gravity wave drag: Sensitivity to ML algorithm
(van Niekerk, Hardiman, Prudden, Scaife)

linear random forest fully connected dense conv dilated conv
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Gravity wave draqg: QBO (van Niekerk, Hardiman, Prudden, Scaife)

» Simulate QBO in simple 1D model
» enables us to optimize the network
* gives hope that scheme will work when coupled to climate model

« Train on two years of data, containing QBOE and QBOW phases, and NH winter stratosphere
with SSW and strong polar vortex.

Zonal wind (Equator) Zonal wind (Equator)
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amplitude and structure.
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QBO simulated by offline NOGWD
scheme coupled to 1D model.

Time (days)
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QBO simulated by neural
network coupled to 1D model.

© Crown Copyright 2020, Met Office



pr =

2= Met Office ﬁ

Radiation (bunstan, Manners)

Full radiation calculations are very expensive and hence are highly simplified in weather and climate
models:
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Radiation (Dunstan, Manners)

Full radiation calculations are very expensive and hence are highly simplified in weather and climate

models:

Scalar Inputs (4)

Dense layer (70 x 29)

Concatenate

Dense layer (1024)

Dense layer (1024)

Qutput layer (71)

Profile Inputs (70 x 29)

1D Convolution (70 x 32)

1D Convolution (70 x 32)

1D Convolution (70 x 32)

—— - -
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narrow-band
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Example of shortwave direct NIR (near infra-
red) surface fluxes

NN output is more accurate and less noisy
than GA7 configuration than NB output

SW direct NIR surface flux
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Radiation (bunstan, Manners)

Full radiation calculations are very expensive and hence are highly simplified in weather and climate
models:

(a) LW net flux errors ( b) SW net flux errors (C) SW net flux divergence errors (d) LW surface flux error distribution
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Error profiles (a-c) for mean error (bias) and mean absolute error (MAE) of net flux and net flux divergence
Error distribution for LW net surface fluxes (d) (All errors are w.r.t. narrow-band SOCRATES output)
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Convection (Morcrette, Giles, Guillas, Van Weverberg, Xie, Zhang, Lin)

Lawrence
Livermore BROOKHEUEN

National NATIONAT LABORATORY
Laboratory

Machine learning of the PDF of Convection Available Potential Energy (CAPE) from lots of coarse-grained
kilometre-scale numerical weather prediction model simulations, distributed around the globe. This PDF can

be used in convective parametrizations
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Use e.g. 30x30
averaging to coarse-
grain 1.5 km data to

45 km
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0 1000 2000 3000 4000
True CAPE [)tkg)

Use convoluted neural network to learn
mean and PDF of CAPE in the global
model from large-scale state
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Ensemble Forecasting (clare, Jamil, Morcrette)

Data-driven (no model involved). Learning uncertainty 3 and 5 days ahead in Z500 and T850 using ResNets

Convolution Max-Pooling Convolution Max-Pooling Flatten Dense Q u ar'“ I es Of tem pe rature

n channels: I A v A (we used centiles in the paper)

1st quartile [

2nd quartile
[ ]
]

3rd quartile
4t quartile

T, 800, 500, 300 hPa
u, 800, 500, 300 hPa
v, 800, 500, 300 hPa

www. metoffice.gov.uk Hence can produce global maps (5 deg lat/lon grid) of © Crown Copyright 2020, Met Office
: 9o PDF of centiles of T850 or Z500 at day+3 and day+5 S '
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Imperial College E\CETER

London

Ensemble Forecasting (clare, Jamil, Morcrette)

... geopotential CNN
... temperature CNN
.. zonal wind CNN
.. specific humidity CNN
.. potential vorticity CNN

.. orog,lat,,land-sea mask
CNN

www.metoffice.gov.uk

A meta-learner, that
combines the output
from each of the other

CNNs. PDF at each lat/lon

>CNN —

Six separate CNNs trained using 500 hPa geopotential and 800 hPa T
and several other fields of ...

Hence can produce global maps (5 deg lat/lon grid) of © Crown Copvriaht 2020. Met Office
PDF of centiles of T850 or Z500 at day+3 and day+5 S '
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Ensemble Forecasting (clare, Jamil, Morcrette)

Hind-cast for Storm Ophelia
(00 UTC on 17 Oct 2017)

Using expectation (mean) value of geopotential from the predicted PDF.

£
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Deviation of true value from climatology - Z500. Deviation of 3-day hindcast from climatology - Z500. Deviation of 5-day hindcast from climatology - Z500.
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Clouds: sub-grid organisation (van weverberg et al)

== Met Office

Cloud parametrization’s task is to diagnose the fraction of the grid box that will be cloudy

Without a cloud parameterisation: cloud fraction in a grid box is 0 or 1

A N Sub-saturated mean state

d:

www.metoffice.gov.uk © Crown Copyright 2020, Met Office



UNIVERSITY OF

&)BATH
Clouds: Sub—grid organisation (Van Weverberg et al)

== Met Office

Cloud parametrization’s task is to diagnose the fraction of the grid box that will be cloudy

Without a cloud parameterisation: cloud fraction in a grid box is 0 or 1

4 A Saturated mean state

_________ ds
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&)BATH
Clouds: Sub—grid organisation (Van Weverberg et al)

== Met Office

Cloud parametrization’s task is to diagnose the fraction of the grid box that will be cloudy

Without a cloud parameterisation: cloud fraction in a grid box is 0 or 1

Need for sub-grid variability

= Important for radiation 4
—> Important for precipitation o0 Olo
OO
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Clouds: sub-grid organisation (van weverberg et al)

== Met Office

Cloud parametrization’s task is to diagnose the fraction of the grid box that will be cloudy

Without a cloud parameterisation: cloud fraction in a grid box is 0O or 1

2 a4
Organisation of clouds is
also critical, but currently
not taken into account I/ —_’/'
- The more cloud edge, the
faster cloud evaporation

www.metoffice.gov.uk © Crown Copyright 2020, Met Office
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Clouds: sub-grid organisation (van weverberg et al)

== Met Office

Cloud parametrization’s task is to diagnose the fraction of the grid box that will be cloudy

Without a cloud parameterisation: cloud fraction in a grid box is O or 1

| 1

o Organisation of clouds is

e orgsnlselier epenes also critical, but currentl
on lots of environmental ! y |
not taken into account %— — /

conditions, e.g. turbulence, _\I*¥8 |
surface properties, _ ﬂ ‘
atmospheric state —>Plays a very important role
when taking into account 3D /__ / N
radiation
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Clouds: sub-grid organisation (van weverberg et al)
US Department of Energy Clouds Optically Gridded by Stereo (COGS) Product

Kansas |

200 km
Kansas Okdahoma State of the art product using 3D reconstructed cloud locations over US
) e . Ponca Great Plains supersite, using digital cameras and stereophotogrammetry.
T i City
Oklahoma : : 6 digital cameras installed around supersite, covering a 6 by 6 km area
torth | with a 50m grid spacing and samples every 20s.
E.'d. ‘ .‘
Texas m Available for few years running now, with collocated information about the
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Clouds: sub-grid organisation (van weverberg et al)
US Department of Energy Clouds Optically Gridded by Stereo (COGS) Product

== Met Office

Stratocumulus (15 October 2018) Shallow cumulus (5 May 2019)
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Clouds: sub-grid organisation (van weverberg et al)
US Department of Energy Clouds Optically Gridded by Stereo (COGS) Product

Calculate cloud perimeter for each “grid box” and use deep
Stratocumulus (15 October 2018) learning to link this with other observed variables in the domain:
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Clouds: parametrization learning (van weverberg et al)

Machine learning of the cloud cover from lots of coarse-grained kilometre-scale numerical weather prediction
model simulations, distributed around the globe. Replace the cloud fraction parametrization in coarse-
resolution global circulation model

30 B |

Use e.g. 30x30
averaging to coarse-
grain 1.5 km data to

45 km
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« Machine learning has many potential applications in parametrization
development for Numerical Weather Prediction and climate modelling

 Direct learning of parametrization to expedite the model integration time

» Learning of parts of the parametrization that are not well founded in theory (parameter
optimisation)

* Learning on high-resolution models or observations to improve coarse-resolution models

 Many projects ongoing within the Atmospheric Processes and
Parametrizations team at the Met Office:

* Learning of the radiation and gravity wave drag parametrization
» Learning of Convective Available Potential Energy

» Learning of Ensemble Forecasts

* Learning of cloud organisation and the cloud parametrization

www.metoffice.gov.uk © Crown Copyright 2020, Met Office
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Thank you

Kwinten.vanweverberg@ metoffice.gov.uk
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