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Weather and climate models and the role of parametrizations

• The atmosphere is divided into millions of "grid-boxes“, with dimensions of ~ 50 x 50 x 0.5 km

• Each grid box carries several “prognostic variables”, such as temperature, wind and pressure for which the primitive 

equations are solved numerically using a finite elements/volumes time stepping
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Weather and climate models and the role of parametrizations

• Many processes happen on scales much smaller than the “resolved” model grid yet have important implications for the 

large-scale evolution of the atmosphere.

• These processes are typically represented by “parametrizations”, which are statistical, empirical or theoretical sub-

models, e.g., representing cloud and precipitation formation, radiative transfer, land-atmosphere interactions etc.
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Weather and climate models and the role of parametrizations

• Many processes happen on scales much smaller than the “resolved” model grid yet have important implications for the 

large-scale evolution of the atmosphere.

• These processes are typically represented by “parametrizations”, which are statistical, empirical or theoretical sub-

models, e.g., representing cloud and precipitation formation, radiative transfer, land-atmosphere interactions etc.

Parametrization 

(linking large-scale state to sub-grid-turbulence, 

and a Gaussian sub-grid moisture distribution)

Large-scale state 

(water content and cloud fraction in grid box)
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Weather and climate models and the role of parametrizations

• Many processes happen on scales much smaller than the “resolved” model grid yet have important implications for the 

large-scale evolution of the atmosphere.

• These processes are typically represented by “parametrizations”, which are statistical, empirical or theoretical sub-

models, e.g., representing cloud and precipitation formation, radiative transfer, land-atmosphere interactions etc.

→ Parametrizations can add considerable cost (~ 35%) to the model integration 

time, and are typically a large source of uncertainty, due to their crude 

approximations, empiricism with limited observational data, or lack of 

theoretical framework.

→ Parametrizations are indispensable to correctly represent how the 

atmosphere evolves over time in climate and weather forecasting models.

→We could use machine learning to replace complete parametrizations:

→ Learn on data from existing parametrizations to just speed up the model

→ Learn on observational data sets (relating various observed variables)

→ Learn on high-resolution model data (where parametrizations should 

start having a smaller impact)

→We could use machine learning to replace parts of parametrizations
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Examples of machine learning application in 

the Atmospheric Processes and 

Parametrizations Team
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Gravity wave drag (van Niekerk, Hardiman, Prudden, Scaife)

Data-Wave: Five-year international project, funded by the Virtual Earth System Research Institute 
(VESRI), to enhance and improve gravity wave representation in climate simulations using machine 
learning.

Gravity waves seen in the vertical velocity field of the Met Office climate model

Aim to: 

• emulate existing non-orographic gravity wave scheme

• improve on existing scheme (i.e. descent of the Quasi 

Biennal Oscillation – a common and important bias in 

climate models).
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Gravity wave drag: Sensitivity to ML algorithm
(van Niekerk, Hardiman, Prudden, Scaife)

test MSE

linear: 0.1876

dense convolution: 0.0962

random forest: 0.0380

fully connected: 0.0238

dilated convolution: 0.0092

Trained convolutional neural network to 

output non-orographic GW acceleration, 

with zonal wind as input.
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Gravity wave drag: QBO (van Niekerk, Hardiman, Prudden, Scaife)

• Simulate QBO in simple 1D model
• enables us to optimize the network

• gives hope that scheme will work when coupled to climate model

• Train on two years of data, containing QBOE and QBOW phases, and NH winter stratosphere 

with SSW and strong polar vortex.

QBO simulated by neural 

network coupled to 1D model.

QBO simulated by offline NOGWD 

scheme coupled to 1D model.

• Neural net coupled to 1D 

model reproduces a QBO 

with correct period, 

amplitude and structure.
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Full radiation calculations are very expensive and hence are highly simplified in weather and climate 
models: 

• Two-stream fluxes:
− up, down (diffuse / direct), 

net, heating rates

• Gaseous absorption:
− Correlated-K sorting of spectrum for limited number of bands

• Cloud representation:
− Monte-Carlo Independent Column Approximation (McICA)

Two configurations:
• GA7 (operational weather climate model, broad-band)

− 9 bands in longwave

− 6 bands in shortwave

− 81 McICA sub-columns for clouds

• NB (narrow-band, expensive 'truth')
− 300 bands in longwave

− 260 bands in shortwave

− 5897 McICA sub-columns for clouds

Radiation (Dunstan, Manners)
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Full radiation calculations are very expensive and hence are highly simplified in weather and climate 
models: 

Radiation (Dunstan, Manners)

Example of shortwave direct NIR (near infra-

red) surface fluxes

NN output is more accurate and less noisy 

than GA7 configuration than NB output
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Radiation (Dunstan, Manners)

Full radiation calculations are very expensive and hence are highly simplified in weather and climate 
models: 

Error profiles (a-c) for mean error (bias) and mean absolute error (MAE) of net flux and net flux divergence

Error distribution for LW net surface fluxes (d) (All errors are w.r.t. narrow-band SOCRATES output)
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Convection (Morcrette, Giles, Guillas, Van Weverberg, Xie, Zhang, Lin)

Machine learning of the PDF of Convection Available Potential Energy (CAPE) from lots of coarse-grained 
kilometre-scale numerical weather prediction model simulations, distributed around the globe. This PDF can 
be used in convective parametrizations

Use e.g. 30x30 

averaging to coarse-

grain 1.5 km data to 

45 km

Use convoluted neural network to learn 

mean and PDF of CAPE in the global 

model from large-scale state
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1st quartile

2nd quartile

3rd quartile

4th quartile

n channels:

T, 800, 500, 300 hPa

u, 800, 500, 300 hPa

v, 800, 500, 300 hPa

Quartiles of temperature 
(we used centiles in the paper)

Hence can produce global maps (5 deg lat/lon grid) of 

PDF of centiles of T850 or Z500 at day+3 and day+5

Ensemble Forecasting (Clare, Jamil, Morcrette)

Data-driven (no model involved). Learning uncertainty 3 and 5 days ahead in Z500 and T850 using ResNets
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Six separate CNNs trained using 500 hPa geopotential and 800 hPa T 

and several other fields of …

Hence can produce global maps (5 deg lat/lon grid) of 

PDF of centiles of T850 or Z500 at day+3 and day+5

… potential vorticity

… specific humidity

… orog,lat,,land-sea mask

CNN
CNN

CNN

CNN

A meta-learner, that 

combines the output 

from each of the other 

CNNs. PDF at each lat/lon
… zonal wind CNN

… temperature CNN

CNN… geopotential

Ensemble Forecasting (Clare, Jamil, Morcrette)
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Hind-cast for Storm Ophelia
(00 UTC on 17 Oct 2017)

Using expectation (mean) value of geopotential from the predicted PDF.

Ensemble Forecasting (Clare, Jamil, Morcrette)
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Cloud parametrization’s task is to diagnose the fraction of the grid box that will be cloudy

Without a cloud parameterisation: cloud fraction in a grid box  is 0 or 1

qs
qt

Sub-saturated mean state

Clouds: sub-grid organisation (Van Weverberg et al)
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Cloud parametrization’s task is to diagnose the fraction of the grid box that will be cloudy

qs

qt

Without a cloud parameterisation: cloud fraction in a grid box  is 0 or 1

Saturated mean state

Clouds: sub-grid organisation (Van Weverberg et al)
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Cloud parametrization’s task is to diagnose the fraction of the grid box that will be cloudy

Without a cloud parameterisation: cloud fraction in a grid box  is 0 or 1

qs

qt

Need for sub-grid variability

→Important for radiation

→Important for precipitation

Clouds: sub-grid organisation (Van Weverberg et al)
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Cloud parametrization’s task is to diagnose the fraction of the grid box that will be cloudy

Without a cloud parameterisation: cloud fraction in a grid box  is 0 or 1

Organisation of clouds is 

also critical, but currently 

not taken into account

→The more cloud edge, the 

faster cloud evaporation

Clouds: sub-grid organisation (Van Weverberg et al)
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Cloud parametrization’s task is to diagnose the fraction of the grid box that will be cloudy

Without a cloud parameterisation: cloud fraction in a grid box  is 0 or 1

Organisation of clouds is 

also critical, but currently 

not taken into account

→Plays a very important role 

when taking into account 3D 

radiation

The organisation depends

on lots of environmental

conditions, e.g. turbulence,

surface properties,

atmospheric state

Clouds: sub-grid organisation (Van Weverberg et al)
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US Department of Energy Clouds Optically Gridded by Stereo (COGS) Product

State of the art product using 3D reconstructed cloud locations over US 

Great Plains supersite, using digital cameras and stereophotogrammetry.

6 digital cameras installed around supersite, covering a 6 by 6 km area 

with a 50m grid spacing and samples every 20s.

Available for few years running now, with collocated information about the 

atmospheric state (temperature, humidity, turbulence …)

Clouds: sub-grid organisation (Van Weverberg et al)
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US Department of Energy Clouds Optically Gridded by Stereo (COGS) Product

Stratocumulus (15 October 2018) Shallow cumulus (5 May 2019)

Clouds: sub-grid organisation (Van Weverberg et al)
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Stratocumulus (15 October 2018)
Calculate cloud perimeter for each “grid box” and use deep 

learning to link this with other observed variables in the domain:

US Department of Energy Clouds Optically Gridded by Stereo (COGS) Product

Clouds: sub-grid organisation (Van Weverberg et al)
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Machine learning of the cloud cover from lots of coarse-grained kilometre-scale numerical weather prediction 
model simulations, distributed around the globe. Replace the cloud fraction parametrization in coarse-
resolution global circulation model

Use e.g. 30x30 

averaging to coarse-

grain 1.5 km data to 

45 km

Clouds: parametrization learning (Van Weverberg et al)
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Conclusions

• Machine learning has many potential applications in parametrization 
development for Numerical Weather Prediction and climate modelling

• Direct learning of parametrization to expedite the model integration time

• Learning of parts of the parametrization that are not well founded in theory (parameter 
optimisation) 

• Learning on high-resolution models or observations to improve coarse-resolution models

• Many projects ongoing within the Atmospheric Processes and 
Parametrizations team at the Met Office:

• Learning of the radiation and gravity wave drag parametrization

• Learning of Convective Available Potential Energy

• Learning of Ensemble Forecasts

• Learning of cloud organisation and the cloud parametrization
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Thank you

Kwinten.vanweverberg@metoffice.gov.uk


