Deep Gaussian processes for PDE inverse problems

Kweku Abraham Joint work in progress with Neil Deo

University of Cambridge

Outline

Why use Bayesian methods for inverse problems?



3 Why use deep Gaussian process priors?

Darcy's problem

Background physics

$$abla \cdot (f
abla u) = g \quad \text{in } D$$

 $u = 0 \quad \text{on } \partial D$

Target The diffusivity/conductivity f**Observations** (X_i, Y_i) , $i \le n$, with

$$Y_i = u(X_i) + \sigma \xi_i,$$

$$X_i \stackrel{iid}{\sim} \text{Unif}(D), \quad \xi_i \stackrel{iid}{\sim} N(0, 1).$$

The "source" $g \in C^{\infty}(D)$ and the "noise level" σ are assumed known.

The Bayesian approach to statistical inverse problems

We can recast the problem of estimating f in a more general way:

Forward map $\mathcal{G} : f \mapsto \mathcal{G}(f) = u$ the solution to the PDE.

Aim Invert \mathcal{G} in a way robust to noise: find an estimator \hat{f} based on n noisy observations of $\mathcal{G}(f)$ which gets close to f in some norm as $n \to \infty$.

The Bayesian approach to statistical inverse problems

We can recast the problem of estimating f in a more general way:

Forward map $\mathcal{G} : f \mapsto \mathcal{G}(f) = u$ the solution to the PDE.

Aim Invert \mathcal{G} in a way robust to noise: find an estimator \hat{f} based on n noisy observations of $\mathcal{G}(f)$ which gets close to f in some norm as $n \to \infty$.

If we place a prior on f, we derive a posterior via Bayes' rule

posterior \propto prior \times likelihood.

By sampling from the posterior, we posit a solution to the inverse problem.

The Bayesian approach to statistical inverse problems

We can recast the problem of estimating f in a more general way:

Forward map $\mathcal{G} : f \mapsto \mathcal{G}(f) = u$ the solution to the PDE.

Aim Invert \mathcal{G} in a way robust to noise: find an estimator \hat{f} based on n noisy observations of $\mathcal{G}(f)$ which gets close to f in some norm as $n \to \infty$.

If we place a prior on f, we derive a posterior via Bayes' rule

posterior \propto prior \times likelihood.

By sampling from the posterior, we posit a solution to the inverse problem. This proposed solution only requires calls to the forward operator, not its inverse, and so is computationally feasible.

GP priors are computationally feasible

The posterior associated with a Gaussian process prior can generically be computed via Markov Chain Monte Carlo methods, for example by Metropolis–Hastings using a preconditioned Crank–Nicholson (pCN) proposal.

The pCN algorithm Pick $\theta^{(0)}$ and $\beta \in (0, 1)$, then for $i \leq k$: Propose $\phi^{(i)} = \sqrt{1 - \beta^2} \theta^{(i)} + \beta \xi^{(i)}$, with $\xi^{(i)}$ drawn from the prior Set $\theta^{(i)} = \phi^{(i)}$ with probability min $\{1, \exp(\ell_N(\phi^{(i)}) - \ell_n(\theta^{(i)}))\}$, set $\theta^{(i)} = \theta^{(i-1)}$ otherwise. Output $\theta^{(0)}, \dots, \theta^{(k)}$.

Theoretical guarantees for the posterior come from continuity results

Key to obtaining guarantees for the posterior are continuity results for \mathcal{G} and \mathcal{G}^{-1} . Continuity properties are well understood in Darcy's problem: Forward continuity

 $||u_{f_1} - u_{f_2}||_{L^2(D)} \le C ||f_1 - f_2||_{(H^1(D))^*} \le C ||f_1 - f_2||_{L^{\infty}}.$

Inverse continuity (stability) $\|f_1 - f_2\|_{L^2(D)} \leq C \|u_{f_1} - u_{f_2}\|_{L^2(D)}^{(\beta-1)/(\beta+1)}$ if

 $f_1, f_2 \in H^{\beta}(D), \beta > d/2 + 1$ (and mild extra conditions ensuring uniqueness).

Theoretical guarantees for the posterior come from continuity results

Key to obtaining guarantees for the posterior are continuity results for \mathcal{G} and \mathcal{G}^{-1} . Continuity properties are well understood in Darcy's problem: **Forward continuity**

 $||u_{f_1} - u_{f_2}||_{L^2(D)} \le C ||f_1 - f_2||_{(H^1(D))^*} \le C ||f_1 - f_2||_{L^{\infty}}.$

Inverse continuity (stability) $\|f_1 - f_2\|_{L^2(D)} \leq C \|u_{f_1} - u_{f_2}\|_{L^2(D)}^{(\beta-1)/(\beta+1)}$ if

 $f_1, f_2 \in H^{\beta}(D)$, $\beta > d/2 + 1$ (and mild extra conditions ensuring uniqueness).

Consequently, Bayesian methods can be shown to work well.

Theorem (Giordano + Nickl 2020)

Let f be in $H^{\alpha}(D)$ and choose $1 \leq \beta < \alpha - d/2$. For a suitable scaled Gaussian process prior on f, the posterior mean \hat{f} satisfies

$$\|\hat{f} - f\|_{L^{2}(D)} \leq Cn^{-\lambda} \text{ with probabality tending to } 1$$
$$\lambda = \frac{(\alpha + 1)(\beta - 1)}{(2\alpha + 2 + d)(\beta + 1)}.$$

Whittle–Matérn processes model additive functions poorly Giordano + Nickl consider priors of the form

$$f = \Phi \circ \theta, \quad \theta = n^{-d/(4\alpha + 4 + 2d)} \theta',$$

where θ' is a Whittle–Matérn process with reproducing kernel Hilbert space $H^{\alpha}(D)$, with α chosen to match the smoothness of the true diffusivity, and where Φ is a 'link function' $\Phi : \mathbb{R} \to (m, \infty)$ for some m > 0, say $\Phi(x) = m + e^x$. Suppose the true diffusivity for is of the form

Suppose the true diffusivity f_0 is of the form

$$f_0(x_1,\ldots,x_d)=h(x_1+\cdots+x_d), \quad h\in C^{\alpha}(\mathbb{R}).$$

Then Giordano + Nickl achieve the rate $n^{-\lambda}$, $\lambda = \frac{\alpha+1}{2\alpha+2+d} \frac{\beta-1}{\beta+1}$.

Whittle–Matérn processes model additive functions poorly Giordano + Nickl consider priors of the form

$$f = \Phi \circ \theta, \quad \theta = n^{-d/(4\alpha + 4 + 2d)} \theta',$$

where θ' is a Whittle–Matérn process with reproducing kernel Hilbert space $H^{\alpha}(D)$, with α chosen to match the smoothness of the true diffusivity, and where Φ is a 'link function' $\Phi : \mathbb{R} \to (m, \infty)$ for some m > 0, say $\Phi(x) = m + e^x$. Suppose the true diffusivity for is of the form

Suppose the true diffusivity f_0 is of the form

$$f_0(x_1,\ldots,x_d) = h(x_1+\cdots+x_d), \quad h \in C^{\alpha}(\mathbb{R}).$$

Then Giordano + Nickl achieve the rate $n^{-\lambda}$, $\lambda = \frac{\alpha+1}{2\alpha+2+d} \frac{\beta-1}{\beta+1}$. Because *h* is univariate it should be possible to replace *d* by 1 (e.g. Schmidt-Hieber 2020).

Proposition

No Gaussian process prior with RKHS equal to $H^{\gamma}(D)$ for some γ is able to achieve a rate $n^{-\lambda}$ with $\lambda = \frac{\alpha+1}{2\alpha+3}$.

Modelling the compositional structure can improve the rate

Note that $f(x) = h(x_1 + \dots + x_d)$ is of the form $\zeta_2 \circ \zeta_1$ with $\zeta_1(x) = x_1 + \dots + x_d \in C^{\infty}(D)$ and $\zeta_2 = h \in C^{\alpha}(\mathbb{R})$.

Proposition

Suppose the true $f_0 \in H^{\alpha}(D)$ can be written as $f_0 = \zeta_2 \circ \zeta_1$ with $\zeta_1 \in H^{\alpha_1}(D), \zeta_2 \in H^{\alpha_2}(\mathbb{R})$. Consider a deep Gaussian process prior

$$f = \Phi \circ Z_2 \circ Z_1,$$

$$Z_i = N^{-\gamma_1} Z'_i,$$

where Z'_2 , Z'_1 are Whittle-Matérn processes, with Z_2 having RKHS $H^{\alpha_2}(\mathbb{R})$ and Z_1 having RKHS $H^{\alpha_1}(D)$ and where $\gamma_i = d/(4\alpha_i + 2d)$, $\gamma_2 = 1/(4\alpha_2 + 2)$. Then $\|\hat{f} - f\|_{L^{\infty}} \leq Cn^{-\lambda}$ with probability tending to 1 for a constant C, where $\lambda = \frac{\beta-1}{\beta+1} \max\left(\frac{\alpha_1}{2\alpha_1+d}, \frac{\alpha_2}{2\alpha_2+1}\right)$.

Compare to $\lambda = \frac{\beta-1}{\beta+1} \frac{\alpha+1}{2\alpha+2+d}$ obtainable with a single GP prior.

Deep GPs arise as limit of Bayesian neural networks

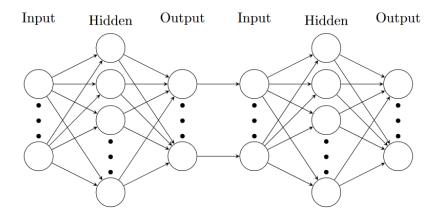


Figure: Figure 3 from Finocchio + Schmidt-Hieber 2021: schematic stacking of two shallow neural networks.

To do...

- Adaptivity!
- Improve the rate?