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Outline

@ Why use Bayesian methods for inverse problems?

© Why use Gaussian process priors?

© Why use deep Gaussian process priors?

@ Work still to be done
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Darcy’s problem

Background physics

V- (fVu)=g inD
u=0 onoD

Target The diffusivity/conductivity
Observations (X;, Y;), i < n, with
W - U(Xi) + U£i7
X; % unif(D), & " N(O,1).

The “source” g € C>°(D) and the “noise level” o are assumed known.
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The Bayesian approach to statistical inverse problems

We can recast the problem of estimating f in a more general way:
Forward map G : f — G(f) = u the solution to the PDE.

Aim Invert G in a way robust to noise: find an estimator f based on n

noisy observations of G(f) which gets close to f in some norm as
n— oo.
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If we place a prior on f, we derive a posterior via Bayes' rule
posterior o prior X likelihood.

By sampling from the posterior, we posit a solution to the inverse problem.
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The Bayesian approach to statistical inverse problems

We can recast the problem of estimating f in a more general way:
Forward map G : f — G(f) = u the solution to the PDE.

Aim Invert G in a way robust to noise: find an estimator f based on n

noisy observations of G(f) which gets close to f in some norm as
n— oo.

If we place a prior on f, we derive a posterior via Bayes' rule
posterior ox prior X likelihood.
By sampling from the posterior, we posit a solution to the inverse problem.

This proposed solution only requires calls to the forward operator, not its
inverse, and so is computationally feasible.
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GP priors are computationally feasible

The posterior associated with a Gaussian process prior can generically be
computed via Markov Chain Monte Carlo methods, for example by

Metropolis—Hastings using a preconditioned Crank—Nicholson (pCN)
proposal.

The pCN algorithm
Pick #(®) and 3 € (0,1), then for i < k:
Propose ¢() = /1 — 3200) + B¢ with £€) drawn from the

prior
Set () = () with probability min{l,exp(ﬁN(qS(i)) - E,,(Q(i)))},
set () = 9U=1) otherwise.
Output 8O ... (k).
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Theoretical guarantees for the posterior come from
continuity results

Key to obtaining guarantees for the posterior are continuity results for G

and G~1. Continuity properties are well understood in Darcy's problem:
Forward continuity

lus, — ugllizpy < Clla = L2ll(H1(py) < Cllf — |1~

Inverse continuity (stability) [|f — fl|,2(p) < Cllug — ug {3 5) "1 if
fi,» € H3(D), B > d/2 +1 (and mild extra conditions ensuring
uniqueness).
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Theoretical guarantees for the posterior come from
continuity results

Key to obtaining guarantees for the posterior are continuity results for G

and G~1. Continuity properties are well understood in Darcy's problem:
Forward continuity

lur — upllizoy < Cllf — fall(wi(pyy+ < CllA — £l 1o~
Inverse continuity (stability) [|fi — f|;2(p)y < Cllug — u,cZH(ﬁ 1))/(ﬁ+1) if

fi,f, € H3(D), B> d/2+ 1 (and mild extra conditions ensuring
uniqueness).

Consequently, Bayesian methods can be shown to work well.
Theorem (Giordano + Nickl 2020)

Let f be in H*(D) and choose 1 < 3 < a — d/2. For a suitable scaled
Gaussian process prior on f, the posterior mean f satisfies
I — flleipy < Cn—*  with probabality tending to 1,
_ (a+1(-1)
(2a+2+d)(B+1)
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Whittle-Matérn processes model additive functions poorly
Giordano + Nickl consider priors of the form

f=dol, @=nd/(Gatst2d)g

where 6’ is a Whittle-Matérn process with reproducing kernel Hilbert
space H*(D), with « chosen to match the smoothness of the true
diffusivity, and where ® is a ‘link function” ® : R — (m, co) for some
m >0, say ®(x) = m+ e*.

Suppose the true diffusivity fy is of the form

fb(Xl,...,Xd):h(X1+"'—|—Xd), h e CQ(R)

Then Giordano + Nickl achieve the rate n=*, \ = 2a‘ff5},rd%.
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Whittle-Matérn processes model additive functions poorly
Giordano + Nickl consider priors of the form

f—do 97 H = n—d/(4o¢+4+2d)0/’

where 0 is a Whittle~Matérn process with reproducing kernel Hilbert
space H*(D), with « chosen to match the smoothness of the true
diffusivity, and where ® is a ‘link function” ® : R — (m, co) for some
m >0, say ®(x) = m+ e*.

Suppose the true diffusivity fy is of the form

fo(xt,...,xa) = h(xi +--- +xq), he C*R).

; ; ; A )= _atl [B-1
Then Giordano + Nickl achieve the rate =%, A = ﬁmm.
Because h is univariate it should be possible to replace d by 1 (e.g.

Schmidt-Hieber 2020).

Proposition

No Gaussian process prior with RKHS equal to HY(D) for some y is able

: . _ ol
to achieve a rate n=" with \ = a3
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Note that f(x) = h(x1 + - - - + x4) is of the form (3 o (; with
G(x)=x1+ -+ x4 € C°(D) and {2 = h € C*(R).
Proposition

Suppose the true fy € H*(D) can be written as fy = (2 o (1 with
(1 € H* (D), ¢ € H*2(R). Consider a deep Gaussian process prior

f=®02/ 02,
Zi=N"MZ,

where Z5, Z| are Whittle-Matérn processes, with Z, having RKHS H*?(R)
and Zy having RKHS H*'(D) and where ~; = d/(4a; + 2d),

v2 = 1/(4an + 2). Then ||f — f||i= < Cn~ with probability tending to 1
for a constant C, where A = % max mofﬁ’ ﬁzﬁ :

Compare to A = %% obtainable with a single GP prior.
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Deep GPs arise as limit of Bayesian neural networks

Input Hidden Output Input Hidden Output

Figure: Figure 3 from Finocchio + Schmidt-Hieber 2021: schematic stacking of
two shallow neural networks.
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To do...

e Adaptivity!

e Improve the rate?
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