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Darcy’s problem

Background physics

∇ · (f∇u) = g in D

u = 0 on ∂D

Target The diffusivity/conductivity f

Observations (Xi ,Yi ), i ≤ n, with

Yi = u(Xi ) + σξi ,

Xi
iid∼ Unif(D), ξi

iid∼ N(0, 1).

The “source” g ∈ C∞(D) and the “noise level” σ are assumed known.
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The Bayesian approach to statistical inverse problems

We can recast the problem of estimating f in a more general way:

Forward map G : f 7→ G(f ) = u the solution to the PDE.

Aim Invert G in a way robust to noise: find an estimator f̂ based on n
noisy observations of G(f ) which gets close to f in some norm as
n→∞.

If we place a prior on f , we derive a posterior via Bayes’ rule

posterior ∝ prior× likelihood.

By sampling from the posterior, we posit a solution to the inverse problem.

This proposed solution only requires calls to the forward operator, not its
inverse, and so is computationally feasible.
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GP priors are computationally feasible

The posterior associated with a Gaussian process prior can generically be
computed via Markov Chain Monte Carlo methods, for example by
Metropolis–Hastings using a preconditioned Crank–Nicholson (pCN)
proposal.

The pCN algorithm

Pick θ(0) and β ∈ (0, 1), then for i ≤ k :

Propose φ(i) =
√

1− β2θ(i) + βξ(i), with ξ(i) drawn from the
prior

Set θ(i) = φ(i) with probability min
{

1, exp(`N(φ(i))− `n(θ(i)))
}

,

set θ(i) = θ(i−1) otherwise.

Output θ(0), . . . , θ(k).
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Theoretical guarantees for the posterior come from
continuity results
Key to obtaining guarantees for the posterior are continuity results for G
and G−1. Continuity properties are well understood in Darcy’s problem:

Forward continuity
‖uf1 − uf2‖L2(D) ≤ C‖f1 − f2‖(H1(D))∗ ≤ C‖f1 − f2‖L∞ .

Inverse continuity (stability) ‖f1 − f2‖L2(D) ≤ C‖uf1 − uf2‖
(β−1)/(β+1)
L2(D)

if

f1, f2 ∈ Hβ(D), β > d/2 + 1 (and mild extra conditions ensuring
uniqueness).

Consequently, Bayesian methods can be shown to work well.

Theorem (Giordano + Nickl 2020)

Let f be in Hα(D) and choose 1 ≤ β < α− d/2. For a suitable scaled
Gaussian process prior on f , the posterior mean f̂ satisfies

‖f̂ − f ‖L2(D) ≤ Cn−λ with probabality tending to 1,

λ =
(α + 1)(β − 1)

(2α + 2 + d)(β + 1)
.
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Whittle–Matérn processes model additive functions poorly
Giordano + Nickl consider priors of the form

f = Φ ◦ θ, θ = n−d/(4α+4+2d)θ′,

where θ′ is a Whittle–Matérn process with reproducing kernel Hilbert
space Hα(D), with α chosen to match the smoothness of the true
diffusivity, and where Φ is a ‘link function’ Φ : R→ (m,∞) for some
m > 0, say Φ(x) = m + ex .
Suppose the true diffusivity f0 is of the form

f0(x1, . . . , xd) = h(x1 + · · ·+ xd), h ∈ Cα(R).

Then Giordano + Nickl achieve the rate n−λ, λ = α+1
2α+2+d

β−1
β+1 .

Because h is univariate it should be possible to replace d by 1 (e.g.
Schmidt-Hieber 2020).

Proposition

No Gaussian process prior with RKHS equal to Hγ(D) for some γ is able
to achieve a rate n−λ with λ = α+1

2α+3 .
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Modelling the compositional structure can improve the rate

Note that f (x) = h(x1 + · · ·+ xd) is of the form ζ2 ◦ ζ1 with
ζ1(x) = x1 + · · ·+ xd ∈ C∞(D) and ζ2 = h ∈ Cα(R).

Proposition

Suppose the true f0 ∈ Hα(D) can be written as f0 = ζ2 ◦ ζ1 with
ζ1 ∈ Hα1(D), ζ2 ∈ Hα2(R). Consider a deep Gaussian process prior

f = Φ ◦ Z2 ◦ Z1,

Zi = N−γ1Z ′i ,

where Z ′2,Z
′
1 are Whittle-Matérn processes, with Z2 having RKHS Hα2(R)

and Z1 having RKHS Hα1(D) and where γi = d/(4αi + 2d),
γ2 = 1/(4α2 + 2). Then ‖f̂ − f ‖L∞ ≤ Cn−λ with probability tending to 1

for a constant C, where λ = β−1
β+1 max

(
α1

2α1+d ,
α2

2α2+1

)
.

Compare to λ = β−1
β+1

α+1
2α+2+d obtainable with a single GP prior.
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Deep GPs arise as limit of Bayesian neural networks

Figure: Figure 3 from Finocchio + Schmidt-Hieber 2021: schematic stacking of
two shallow neural networks.
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To do...

• Adaptivity!

• Improve the rate?
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