Accelerating diffusion models for inverse problems through stochastic contraction

Jong Chul Ye

In collaboration with Hyungjin Chung

Professor Graduate School of Artificial Intelligence KAIST, Korea

Diffusion-based Generative Models

StyleGAN2-ADA (Karras et al., 2020)

DDPM (Ho et al., 2020)

Reverse SDE (Song et al., 2020)

Score-based Generative Models through SDE

Yang Song et al, Generative modeling by estimating gradient of the data distributions, ICLR, 2021

Score-based Generative Models through SDE

- Once the score model is trained to optimality,
 - i.e. $s_{\theta}(\mathbf{x}) \simeq \nabla_{\mathbf{x}} p(\mathbf{x})$
- Use Langevin dynamics to draw samples

$$\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \epsilon \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \sqrt{2\epsilon} \mathbf{z}_i$$

$$i = 0, 1, ..., K$$

Diffusion Denoising Probabilistic Models (DDPMs)

Ho et al. NeurIPS, 2020

$$(\mathbf{x}_T) \longrightarrow \cdots \longrightarrow (\mathbf{x}_t) \xrightarrow[r_0(\mathbf{x}_{t-1}|\mathbf{x}_t)]{\kappa_{t-1}} \xrightarrow[q(\mathbf{x}_t|\mathbf{x}_{t-1})]{\kappa_{t-1}} \longrightarrow \cdots \longrightarrow (\mathbf{x}_0)$$

- Train with variational lower bound
- Follow the reverse markov chain at inference

$$L_{\text{simple}}(\theta) \coloneqq \mathbb{E}_{t,\mathbf{x}_0,\boldsymbol{\epsilon}} \Big[\big\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \big\|^2 \Big]$$

Diffusion Models Beat GANs on Image Synthesis

Dhariwal and Nichol, NeurIPS, 2021

Equivalence between the Two Approaches

Song et al. ICLR 2022

DDPM

• Training objective:

$$L_{\text{simple}}(\theta) \coloneqq \mathbb{E}_{t,\mathbf{x}_0,\epsilon} \Big[\left\| \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right\|^2 \Big]$$

• Inference:

SGM

• Training objective:

$$\ell(\boldsymbol{\theta}; \sigma) \triangleq \frac{1}{2} \mathbb{E}_{p_{\text{data}}(\mathbf{x})} \mathbb{E}_{\tilde{\mathbf{x}} \sim \mathcal{N}(\mathbf{x}, \sigma^2 I)} \bigg[\left\| \mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}, \sigma) + \frac{\tilde{\mathbf{x}} - \mathbf{x}}{\sigma^2} \right\|_2^2 \bigg].$$

Reverse Diffusion Through Score-Matching

Noising

$$dx = \overline{f}(x,t) dt + \overline{g}(t) dw$$
Corresponding reverse SDE
Denoising

$$dx = [\overline{f}(x,t) - \overline{g}(t)^2 \nabla_x \log p_t(x)] dt + \overline{g}(t) dw$$

$$\simeq [\overline{f}(x,t) - \overline{g}(t)^2 s_\theta(x,t)] dt + \overline{g}(t) dw$$

Solve reverse SDE numerically: Image generation (denoising)

SCORE-BASED DIFFUSION MODELS FOR INVERSE PROBLEMS

Chung et al, Medical Image Analysis (in revision), 2022

A General Score-based Formula for Inverse Problems

$$\min_{\mathbf{x}} \|y - A\mathbf{x}\|^2$$

$$x_i \leftarrow x_{i+1} + \epsilon_i s_{\theta}(x_{i+1}, \sigma_{i+1}) + \sqrt{2\epsilon_i z}$$
 Denoising step (reverse SDE)
 $x_i \leftarrow x_i + \lambda A^*(y - Ax_i),$ Data consistency step (e.g. GD, POCS)

State-of-the-art Performance

Generalization Capability

Generalization Capability

Uncertainty Quantification

Very Slow Convergence

CCDF: COME CLOSER, DIFFUSE FASTER

Chung et al, CVPR, 2022

Is this part necessary?

Intuition of CCDF

Intuition of CCDF

Intuition of CCDF

CCDF: The Algorithm

Algorithm 1 Accelerated Super-resolution / inpainting (VP, Markov)

Require:
$$x_0, \hat{x}_0, N', \{\alpha_i\}_{i=1}^{N'}, \{\sigma_i\}_{i=1}^{N'}, s_\theta$$

1: $z \sim \mathcal{N}(\mathbf{0}, I)$
2: $x_{N'} \leftarrow \sqrt{\bar{\alpha}_{N'}} x_0 + \sqrt{1 - \bar{\alpha}_{N'}} z$ > Forward diffusion
3: for $i = N'$ to 1 do > Reverse diffusion
4: $x'_{i-1} \leftarrow \frac{1}{\sqrt{\alpha_i}} (x_i + (1 - \alpha_i) s_\theta(x_i, i))$
5: $z \sim \mathcal{N}(\mathbf{0}, I)$
6: $x_{i-1} \leftarrow x'_{i-1} + \sigma_i z$ > Unconditional update
7: $z \sim \mathcal{N}(\mathbf{0}, I)$
8: $\hat{x}_i \leftarrow \sqrt{\bar{\alpha}_i} \hat{x}_0 + \sqrt{1 - \bar{\alpha}_i} z$
9: $x_{i-1} = (I - P) x_{i-1} + \hat{x}_i$
> Measurement consistency
10: end for

11: return x_0

CCDF: The Algorithm

General form

$$\boldsymbol{x}_{N\prime} = a_{N\prime}\boldsymbol{x}_0 + b_{N\prime}\boldsymbol{z}$$

$$x'_{i-1} = f(x_i, i) + g(x_i, i)z_i$$
$$x_{i-1} = Ax'_{i-1} + b$$

: 1-step noising

- : Iterative denoising
 - **Denoising step** (reverse SDE)
 - Data consistency step (e.g. GD, POCS)

Constraint

$$||Ax - Ax'|| \le ||x - x'|| \quad \forall x, x' \quad \cdot \quad \text{Non-expansive mapping}$$

Key Idea: Stochastic Contraction

Contraction on \mathbb{R}^n

A function $f: \mathbb{R}^n \mapsto \mathbb{R}^n$ contraction mapping,

if there exists $0 \le \lambda < 1$ s.t. $\forall x, y \in \mathbb{R}^n$

Theorem A.1. (Pham et al. 2008)

 $\boldsymbol{x}_{i+1} = f(\boldsymbol{x}_i, i) + g(\boldsymbol{x}_i, i)\boldsymbol{z}$

• f is contracting with λ

Then,
$$\mathbb{E} \|x_i - \tilde{x}_i\|^2 \le \frac{2C}{1 - \lambda^2} + \lambda^{2i} \mathbb{E} \|x_0 - \tilde{x}_0\|^2$$

• $\operatorname{Tr}(g(\boldsymbol{x},i)\boldsymbol{I}g(\boldsymbol{x},i)) \leq \boldsymbol{C} \quad \forall \boldsymbol{x},i$

$$\|f(x) - f(y)\| \leq \lambda \|x - y\|$$

$$\sigma_{\max}\left(\frac{\partial \boldsymbol{f}(\boldsymbol{x})}{\partial \boldsymbol{x}}\right) \leq \boldsymbol{\lambda} < 1$$

Reverse SDE is Contracting!

Proof of Theorem 1. (VE-SDE; SMLD)

Forward $x_i = x_0 + \sigma_i z$ $f(x_i, i)$ Reverse SDE $x'_{i-1} = x_i + (\sigma_i^2 - \sigma_{i-1}^2)s_\theta(x_i, i) + \sqrt{\sigma_i^2 - \sigma_{i-1}^2}z$: Stochastically contracting

Proof.

$$\frac{\partial \boldsymbol{f}^{T}(\boldsymbol{x}_{i},i)}{\partial \boldsymbol{x}_{i}} = I + \left(\sigma_{i}^{2} - \sigma_{i-1}^{2}\right) \frac{\partial s_{\theta}(\boldsymbol{x}_{i},i)}{\partial \boldsymbol{x}_{i}} = \frac{\sigma_{i-1}^{2} - \sigma_{0}^{2}}{\sigma_{i}^{2} - \sigma_{0}^{2}} \boldsymbol{I}$$

$$\lambda = \max_{i \in [N']} \frac{\sigma_{i-1}^2 - \sigma_0^2}{\sigma_i^2 - \sigma_0^2} < 1$$
$$C = \max_{i \in [N']} \sigma_i^2 - \sigma_{i-1}^2$$

Non-expansiveness is Sufficient!

Corollary 1.

$$\mathbf{x}_{i+1}' = f(\mathbf{x}_i, i) + g(\mathbf{x}_i, i)\mathbf{z}_i$$

$$x_{i+1} = Ax'_{i+1} + b$$
Non-expansive mapping

$$\mathbb{E} \|x_i - \tilde{x}_i\|^2 \le \frac{2C\tau}{1 - \lambda^2} + \lambda^{2i} \mathbb{E} \|x_0 - \tilde{x}_0\|^2$$
$$\tau = \frac{\operatorname{Tr}(A^T A)}{n}$$

Proof.

$$\mathbf{x}_{i+1} = \mathbf{A}f(\mathbf{x}_i, i) + \mathbf{b} + \sigma(\mathbf{x}_i, i)\mathbf{A}\mathbf{z}_i$$
$$\underbrace{\tilde{f}(\mathbf{x}_i, i)}_{\tilde{f}(\mathbf{x}_i, i)}$$

$$\sigma_{\max}\left(\frac{\partial \tilde{f}(x,i)}{\partial x}\right) \leq \sigma_{\max}(A)\sigma_{\max}\left(\frac{\partial f(x,i)}{\partial x}\right) \leq \lambda$$

 $\operatorname{Tr}(g(\mathbf{x},i)\mathbf{A}^{T}\mathbf{A}g(\mathbf{x},i)) = g(\mathbf{x},i)^{2}\operatorname{Tr}(\mathbf{A}^{T}\mathbf{A}) = C\tau$

Theoretical Findings

Error decreases exponentially with reverse diffusion!

$$\lambda = \begin{cases} \max_{i \in [N']} \sqrt{\alpha_i} \left(\frac{1 - \bar{\alpha}_{i-1}}{1 - \bar{\alpha}_i} \right) & (DDPM) \\ \max_{i \in [N']} \frac{\sigma_{i-1}^2 - \sigma_0^2}{\sigma_i^2 - \sigma_0^2} & (SMLD) \\ \max_{i \in [N']} \frac{\sigma_{i-1}}{\sigma_i} & (DDIM) \end{cases}$$

$$\mathbf{C} = \begin{cases} n(1 - \alpha_N) & (DDPM) \\ n \max_{i \in [N']} \sigma_i^2 - \sigma_{i-1}^2 & (SMLD) \\ 0 & (DDIM) \end{cases}$$

$$\tau = \frac{\mathrm{Tr}(A^T A)}{n}$$

Theoretical Findings

• For any $0 < \mu \le 1$, there exists a minimum N' s.t.

$$\bar{\varepsilon}_{0,r} \leq \mu \varepsilon_0$$

• Optimal N' decreases as ε_0 gets smaller

Come Closer, Diffuse Faster

t = T

t = 0

Come Closer, Diffuse Faster

Come Closer, Diffuse Faster

Experimental Results: SR

20 step diffusion

- ILVR, SR3
 - $N = 20, t_0 = 1.0$
- proposed

 $N = 100, \quad t_0 = 0.2$

0.05	0.1	0.2	0.5	0.75	1.0 [5]
63.90	60.90	60.91	64.04	64.14	63.31
85.21	78.13	75.76	79.34	79.67	77.34
116.37	101.79	92.59	88.09	92.12	88.49
	0.05 63.90 85.21 116.37	0.05 0.1 63.90 60.90 85.21 78.13 116.37 101.79	0.05 0.1 0.2 63.90 60.90 <u>60.91</u> 85.21 78.13 75.76 116.37 101.79 92.59	0.05 0.1 0.2 0.5 63.90 60.90 <u>60.91</u> 64.04 85.21 78.13 75.76 79.34 116.37 101.79 92.59 88.09	0.05 0.1 0.2 0.5 0.75 63.90 60.90 <u>60.91</u> 64.04 64.14 85.21 78.13 75.76 79.34 79.67 116.37 101.79 92.59 88.09 92.12

Table 1. FID(\downarrow) scores on FFHQ test set for SR task with N = 1000, and varying t_0 values. $t_0 = 1.0$ is the baseline method without any acceleration used in [5]. Numbers in boldface, and underline indicate the best, and the second best scores.

Experimental Results: SR

	SR factor	ESRGAN [36]	SR3* [25]	ILVR [5]	CCDF (ours)
	×4	81.14	66.79	63.14	60.90
FFHQ	×8	108.96	80.27	81.85	75.76
	×16	143.80	99.46	92.32	88.39
	×4	24.52	20.68	18.70	15.53
AFHQ	×8	51.84	30.23	34.85	32.30
	×16	98.22	60.76	47.28	48.77

Table 2. Comparison of FID(\downarrow) scores on FFHQ and AFHQ test set. t_0 values used for the proposed method is 0.1, 0.2, 0.3 for $\times 4, \times 8, \times 16$ SR, respectively. Numbers in boldface represent the best results among the row. (*unofficial re-implementation)

Experimental Results: Inpainting

20 step diffusion

- Score-SDE
 - $N = 20, t_0 = 1.0$
- proposed

$$N = 100, t_0 = 0.2$$

Experimental Results: Fast MRI

20 step diffusion

• Chung et al.

 $N = 1000, \quad t_0 = 1.0$

proposed

 $N = 1000, \quad t_0 = 0.02$

Summary

- Diffusion models: Exciting new path for solving inverse problems
- Universal solver without knowledge about the problem a priori
- Great generalization capacity
- Acceleration through stochastic contraction theory

