
Joint reconstruction-segmentation on graphs
Jeremy Budd 1 Yves van Gennip 2 Jonas Latz 3 Simone Parisotto 4 Carola-Bibiane Schönlieb 5

1Universität Bonn 2Technische Universiteit Delft 3Heriot-Watt University 4siHealth Photonics 5University of Cambridge

The problem
The task of image segmentation concerns locating the key parts of an image x∗ : Y → Rℓ. However, in practice images are typically observed indirectly. That is, for some forward model T and noise e, we have observations:

y = T (x∗) + e. (1)
Thus, our segmentation task is a reconstruction-segmentation task. Given y and an already reconstructed and segmented reference image xd : Z → Rℓ with a priori segmentation f : Z → {0, 1}, we seek to reconstruct
and segment x∗. (N.B. Our focus is primarily on the accuracy of the segmentation.)

Background
Following (Tikhonov, 1963), a major approach to inverting (1) is via variational methods. Traditionally,
reconstruction-segmentation was performed sequentially: first reconstruct, then segment that reconstruction.
On the other extreme are end-to-end methods, which learn a map from observations to a segmentation. The
method of joint reconstruction-segmentation lies between these extremes: we reconstruct and segment
simultaneously, using each to guide the other. For a detailed overview of these methods, see (Adler et al., 2018)
and (Corona et al., 2019). In this work, we incorporate the powerful graph-based segmentation methods
pioneered by (Bertozzi, Flenner, 2012) into this joint reconstruction-segmentation framework.

Analysis on graphs, and the graph Ginzburg–Landau energy

A graph G is a (finite) set of vertices V linked by edges E.
We assign each edge (i, j) a weight ωij and each vertex a degree di :=

∑
j ωij.

Define spaces V := {u : V → R} and E := {φ : E → R} with inner products

⟨u, v⟩V :=
∑
i∈V

diuivi and ⟨φ, ϕ⟩E := 1
2

∑
i,j∈V

ωijφijϕij.

Define graph variants of the gradient and Laplacian:

(∇u)ij :=

{
uj − ui, (i, j) ∈ E

0, otherwise
and (∆u)i := d−1

i

∑
j∈V

ωij(ui − uj).

We define a graph analogue of the Ginzburg–Landau functional, for W a double-well potential

GLε,µ,f (u, ω) = 1
2

||∇u||2E + 1
ε

⟨W ◦ u, 1⟩V + 1
2

∣∣∣∣∣∣µ1
2 ⊙ (u − f )

∣∣∣∣∣∣2
V

.

The ODE for the gradient flow of GLε,µ,f with respect to u is the Allen–Cahn equation
du

dt
= −∆u − 1

ε
W ′ ◦ u − µ ⊙ (u − f ).

An iterative scheme for joint reconstruction-segmentation
We will model our reconstruction-segmentation task as the following variational problem:

min
x∈RN×ℓ,u∈V

R(x) + α||T (x) − y||2F + β GLε,µ,f (u, Ω(x)) (2)

where R is a convex regulariser. The first two terms in the objective functional are a standard Tikhonov
reconstruction energy, and the final Ginzburg–Landau term is the segmentation energy.
This joint problem is a lot to solve all at once, so we will use the following alternating iterative scheme to
approach solutions (where α, β, ηn, νn are parameters):

xn+1 = argmin
x∈RN×ℓ

R(x) + α||T (x) − y||2F + β GLε,µ,f (un, Ω(x)) + ηn||x − xn||2F , (3a)

un+1 = argmin
u∈V

β GLε,µ,f (u, Ω(xn+1)) + νn||u|Y − un|Y ||2V . (3b)

We can understand this scheme intuitively as iterating the following steps:

I. Given the current segmentation, update the reconstruction using the segmentation energy as an extra
regulariser and the previous reconstruction as a momentum term.

II. Given the current reconstruction, update the segmentation using the previous segmentation of the image to
be reconstructed as a momentum term.

Convergence analysis
We analyse the convergence of (3) to (2) using the theory of (Attouch et al., 2010). If we assume that R is
sub-analytic, then it follows that the joint energy in (2) has the Kurdyka–Łojasiewicz (KŁ) property. It
therefore follows that, if T is coercive and the ηn, νn are bounded both above and away from zero:

The joint energy monotonically decreases with each iteration.
For all feasible (u0, x0), (un, xn) converges to a critical point of the joint energy.
If (u0, x0) is near a global minimum, then (un, xn) converges to a global minimum.

Furthermore, there are provable convergence rates if the KŁ exponent of the joint energy is known.
N.B. To prove these results, we had to restrict the feasibility set so that u|Z = f .

Conclusions
We formulated joint reconstruction-segmentation, with graph-based segmentation, as a variational problem.
We devised an iterative scheme for this problem, and developed algorithms for computing this scheme.
We proved that this iterative scheme converges to critical points of the joint energy.
We tested this scheme for a deblurring/denoising-segmentation task, with very promising results.
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Turning an image into a graph
Let V := Y ∪ Z be the set of pixels in our images. Then our combined image (x, xd) is a function from V to
Rℓ. To each pixel i ∈ V we assign a feature vector zi ∈ Rq, via some (linear) feature map. These feature
vectors will encode the “key information” about the pixel. Then we build our graph by defining the weight on
edge (i, j) ∈ V 2 according to the similarity of the feature vectors zi and zj. For example:

if i ̸= j ωij = e−||zi−zj||22/σ2
, if i = j ωij = 0.

We summarise all of this as ω = Ω(x), where Ω is the “image-to-graph” map.

Solving (3a)

It is highly computationally challenging to solve (3a), because of the Ginzburg–Landau term. We therefore
linearise that term. Let G(x) := GLε,µ,f (un, Ω(x)). Then linearising G around xn, (3a) becomes:

argmin
x

R(x) + α||T (x) − y||2 + β⟨x, ∇xG(xn)⟩ + ηn||x − xn||2

or equivalently,
argmin

x
R(x) + α||T (x) − y||2 + ηn||x − x̃n||2 (4)

where x̃n := xn − 1
2βη−1

n ∇xG(xn) is a segmentation-driven adjustment of the previous reconstruction.
We can solve (4) by e.g. primal-dual methods, so it remains to compute ∇xG(xn). For the choice of Ω above,
this can be reduced to computing matrix-vector products with Ω(x). That matrix is too large to compute these
products directly, but they can be approximated using the Nyström extension.

Solving (3b)

Because µ and f are zero on Y , we can rewrite the objective function in (3b) as:
β GLε,µ′,f ′(u, Ω(xn+1))

where µ′ := µ + 2νnβ−1χY and f ′ := f + un ⊙ χY . We minimise this in u by numerically solving the
Allen–Cahn equation, using the SDIE scheme described in (Budd, van Gennip, Latz, 2021).

Deblurring/denoising-segmentation results

Figure 1. Observations y. The y is obtained by ap-
plying a 25 pixel motion blur, then adding Gaussian
noise with mean 0 and standard deviation 0.7. The
PSNR of this relative to the original image is 6.55
dB. The image is 480 × 640 pixels.

Figure 2. Reference image xd. f (not shown) is a
hand-drawn label of the cows in this image. The
image is 480 × 640 pixels.

Figure 3. x8 masked with the best segmentation u8.
The pixel accuracy of the segmentation is 95.53%,
with Dice score 0.8237. The PSNR of the re-
construction was 17.93 dB. The computation time
(on a basic laptop) to compute this reconstruction-
segmentation was 158.56 seconds.
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