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The Dawn of Deep Learning in Public Life

Health Care

Telecommunication/
Speech RecognitionSelf-Driving Cars

Legal Issues



Impact on Mathematical Problem Settings

Some Examples:

▶ Inverse Probleme/Imaging Science (2012–)
; Denoising
; Edge Detection
; Inpainting
; Classification
; Superresolution
; Limited-Angle Computed Tomography
; ...

▶ Numerical Analysis of Partial Differential Equations (2017–)
; Black-Scholes PDE
; Allen-Cahn PDE
; Parametric PDEs
; ...
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Problem with Trustworthiness



Role of Mathematics

Two Key Challenges for Mathematics:

Mathematics for Deep Learning!

▶ Can we derive a deep mathematical understanding of deep learning?

▶ How can we make deep learning more robust?

▶ ...

Deep Learning for Mathematics!

▶ How can we use deep learning to improve imaging science?

▶ Can we develop superior PDE solvers via deep learning?

▶ ...



Delving Deeper into Deep Neural Networks...



Definition of a Deep Neural Network

Definition:
Assume the following notions:

▶ d ∈ N: Dimension of input layer.

▶ L: Number of layers.

▶ ρ : R → R: (Non-linear) function called activation function.

▶ Tℓ : RNℓ−1 → RNℓ , ℓ = 1, . . . , L, where Tℓx = W (ℓ)x + b(ℓ)

Then Φ : Rd → RNL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).



Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):
▶ Drastic improvement of computing power.

; Networks with hundreds of layers can be trained.
; Deep Neural Networks!

▶ Age of Data starts.
; Vast amounts of training data is available.

Surprising Phenomenon:

Underfitting Overfitting

(Source: Belkin, Hsu, Ma, Mandal; 2019)
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Mathematics for Deep Learning

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?

; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?

; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
▶ What is the role of depth?
▶ Why do large neural networks not overfit?

; Learning Theory, Probability Theory, Statistics, ...

▶ Explainability:
▶ Why did a trained deep neural network reach a certain decision?
▶ Which features of data are learned by deep architectures?

; Information Theory, Uncertainty Quantification, ...
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Explainability

Main Goal: We aim to understand decisions of “black-box” predictors!
map for digit 3 map for digit 8

Selected Questions:

▶ What is relevance in a mathematical sense?

▶ What about a theory for optimal relevance maps?

Rate-Distortion Explanation & CartoonX (Kolek, Nguyen, Levie, Bruna, K;
2021):

Vision for the Future:

Human-like answer to any question about a decision!
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Deep Learning for Mathematical Problem Settings

▶ Inverse Problems:
▶ How do we optimally combine deep learning with model-based

approaches?

▶ Partial Differential Equations:
▶ Why do neural networks perform well in very high-dimensional

environments?
▶ Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

Deep Microlocal Reconstruction (Andrade-Loarca, K, Öktem, Petersen;
2022):

Original Sparse Regularization/Shearlets Deep Microlocal Reconstruction
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Let’s now consider Graph Neural Networks



Collaborators:

Michael Bronstein
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Some Facts about Graph Convolutional Neural Networks

Graph convolutional neural networks
generalize classical CNNs to signals over
graph domains. [Sperduti, Starita; 1997],
[Gori, Monfardini, Scarselli; 2005], [Bruna,

Zaremba, Szlam, LeCun; 2013], [Masci,

Boscaini, Bronstein, Vandergheynst; 2015], ...

Graph signal: s : graph nodes → Rc

Graph CNN: graph signal → convolution → activation → pooling → . . .

Some Applications:
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Two Approaches to Convolution on Graphs

Spatial Approaches:

▶ Sliding window

▶ Aggregating feature information
from the neighbors of each node

Spectral Approaches:

▶ Convolution theorem

▶ Defined in frequency domain

▶ Filter = multiplication in the
frequency domain



Transferability of Spectral-based GCNNs



A Special Form of Generalization Capability

Desirable Feature:
Graph convolutional neural networks should
generalize to graphs and signals unseen in the
training set.

The Concept of Transferability:
If two graphs model the same phenomenon, a
fixed filter/Graph CNN should have
approximately the same repercussion on both
graphs.

We prove transferability
for spectral graph filters/Graph CNNs!
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Graph Theory

Notation:
We will in the following consider undirected weighted graphs
G = {V ,E ,W }, where
▶ V = {1, . . . ,N} are the vertices,

▶ E ⊂ V 2 are the edges,
▶ W is the adjacency matrix, i.e.,

wi ,j = 0, if (i , j) /∈ E ,

wi ,j > 0, if (i , j) ∈ E ,

▶ the degree matrix is given by

D = diag

∑
j ̸=i

wi ,j


N

i=1

.



Graph Laplacian: Oscillations on Graphs

Definition: Let D be the degree matrix and W the adjacency matrix.
Then the unnormalized Graph Laplacian is defined by

∆u = D −W

and the normalized Graph Laplacian is given by

∆n = D−1/2∆uD
−1/2.

As a generic notation, we will in the following use ∆.

Remark: The Graph Laplacian ∆ is self-adjoint. We will denote its

▶ eigenvalues by {λj}j ; Frequencies,
▶ eigenvectors by {uj}j ; Fourier modes.

The graph Laplacian ∆ encapsulates the geometry of the graph!
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Spectral Graph Convolution

Definition:
Letting {uj}j denote the eigenvectors of the graph Laplacian, we define
the spectral graph convolution operator by

Cf =
∑
j

cj ⟨f , uj⟩ uj .

Problem with the Implementation:
▶ Computationally demanding

▶ Eigendecomposition is slow.
▶ No general FFT for graphs.

▶ Not transferable
▶ The eigendecomposition is not stable to graph perturbations.
▶ A fixed filter has different repercussions on similar graphs.

Solution: Implement convolution using functional calculus!
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Functional Calculus

Definition:
Let T be a self-adjoint operator with discrete spectrum

Tv =
∑
j

λj ⟨v , uj⟩ uj .

A function g : R → C of T is then defined via

g(T )v =
∑
j

g(λj) ⟨v , uj⟩ uj .

Remark:

If g(λ) =
∑L

l=0 clλ
l∑L

l=0 dlλ
l
, then g(T ) =

(∑L
l=0 clT

l
)(∑L

l=0 dlT
l
)−1

.
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Spectral Filtering using Functional Calculus

Functional Calculus Filters:
The functional calculus for g : R → C applied to the graph Laplacian yields

g(∆)f =
∑
j

g(λj) ⟨f , uj⟩ uj .

Recall:
The previous implementation used

Cf =
∑
j

cj ⟨f , uj⟩ uj .

Advantages of Functional Calculus Viewpoint:
This approach...

▶ ...solves the instability problem (Levie, Isufi, K; 2019).

▶ ...solves the computational problem, if g is a rational function.



Spectral Filtering using Functional Calculus

Functional Calculus Filters:
The functional calculus for g : R → C applied to the graph Laplacian yields

g(∆)f =
∑
j

g(λj) ⟨f , uj⟩ uj .

Recall:
The previous implementation used

Cf =
∑
j

cj ⟨f , uj⟩ uj .

Advantages of Functional Calculus Viewpoint:
This approach...

▶ ...solves the instability problem (Levie, Isufi, K; 2019).

▶ ...solves the computational problem, if g is a rational function.



Towards Transferability



Three Approaches to Transferability

Stability under Perturbation [Levie, Isufi, K; 2019], [Kenlay, Thanou,

Dong; 2021]:

▶ Two graphs which are small perturbations of each other.

Topological Space Sampling [Levie, Huang, Bucci, Bronstein, K;

2019],[Keriven, Bietti, Vaiter; 2020]:

▶ Two graphs which sample the same underlying continuous space.

Graphon Approach [Ruiz, Chamon, Ribeiro; 2020], [Maskey, Levie, K;

2021]:

▶ Two graphs that come from the same sequence that converges to a
graphon in a homomorphism density sense.



Topological Space Sampling

Interpretation:

▶ Weighted graphs:
; Points and strength of correspondence between

pairs of points.

▶ Metric spaces:
; Points and distances.

Our Viewpoint:
Think of graphs as discretizations of metric spaces

distance ↗ ⇐⇒ edge weight ↘

Graphs that represent the same phenomenon are
discretizations of the same metric space!
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Comparing the Repercussion of a Filter on Two Graphs



DSP Framework akin to the Nyquist–Shannon Approach

Our New Setting:

▶ Analogue domain: Borel space M, with Laplacian L.
▶ Digital domains: Graphs G with graph Laplacians ∆.

▶ Paley Wiener spaces: Band-limited spaces corresponding to L.
▶ Sampling operators: Sλ : PW (λ) → L2(G ).

▶ Interpolation operator:

Rλ := (SλP(λ))∗ := (SλPPW (λ))
∗ : L2(G ) → PW (λ).



What is Transferability precisely?

Definition:
The transferability error of the filter f on the signal s ∈ L2(M), is now
defined by

∥f (L)s − Rλf (∆)Sλs∥,

the transferability error of the Laplacian is defined by

∥Ls − R l∆Sλs∥,

and the consistency error is defined by

∥s − RλSλs∥.

(Informal Version) Theorem (Levie, Huang, Bucci, Bronstein, K;
2020):

Transferability of Filter
≤ Transferability of Laplacian + Consistency Error
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Transferability of Functional Calculus GCNNs

Theorem (Levie, Huang, Bucci, Bronstein, K; 2020):
Consider two graphs Gj , j = 1, 2 and two graph Laplacians ∆j , j = 1, 2,
approximating the same Laplacian L in M, and consider a ReLU graph CNN with
Lipschitz filters. Further, let Gj,l be the graph in layer l with graph Laplacians
∆j,l . Also, assume that, for all layers l , bands λl , and j = 1, 2,

∥Sλl

j,lLP(λl)−∆j,lS
λl

j,lP(λl)∥ ≤ δ

and
∥P(λL)− RλL

j,LS
λL

j,LP(λL)∥ ≤ δ

for some 0 < δ < 1. Then, for all output-channels k and mappings Φk
j,L given by

the graph CNN,

∥RλL

1,LΦ
k
1,LS

λ0
1,1P(λ0)− RλL

2,LΦ
k
2,LS

λ0
2,1P(λ0)∥

≤ 2
(
LD

√
dim(PW (λ)) + L+ 1

)
δ.



Further Results on Generalization Ability of GNNs

Graph Convolutional Neural Networks:

▶ Similar results on transferability for the
graphon setting (Maskey, Levie, K; 2021).

▶ This builds on (Ruiz, Wang, Ribeiro; 2021).

Message Passing Graph Neural Networks:

▶ Non-asymptotic generalization bounds, only
depending on the regularity of the network
and space (Maskey, Levie, Lee, K; 2021).

▶ Builds on (Garg, Jegelka, Jaakkola; 2020), (Verma, Zhang; 2019),
(Yehudai, Fetaya, Meirom, Chechik, Maron; 2022).
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A Word of Caution: Computability Aspects

Collaborators:

Holger Boche
(TU Munich)

Adalbert Fono
(LMU Munich)



Problem with Computability

Computability on Digital Machines (informal):

A computable problem (function) is one for which the input-output
relation can be computed on a digital machine for any given accuracy.

Theorem (Boche, Fono, K; 2022):
The solution of a finite-dimensional inverse problem is not
(Banach-Mazur/Turing-)computable (by a deep neural network).

Illustration of the Problem:
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Some Thoughts on the Result

Remarks:

▶ No algorithm exists, which on digital hardware derives neural networks
approximating the solution for any given accuracy.

▶ The output of trained neural networks not reliable (no guarantees).

▶ This result could point towards why instabilities and non-robustness
occurs for deep neural networks.

General Barrier:

▶ Limits of computability on today’s hardware



What now?

Today computations performed almost exclusively on digital hardware!

Other Models of Computations:
▶ New emerging hardware

▶ Neuromorphic computing: Elements of computer modeled after systems
in the human brain and nervous system.

▶ Biocomputing: Living cells as the substrate for performing
human-defined computations

▶ Different models of computation required

Key Future Question:

Does the non-computability result also hold for different
computation models such as analog computers as well?

Theorem (Boche, Fono, K; 2022):
The solution of a finite-dim. inverse problem is computable
(by a deep neural network) on an analog machine!
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Conclusions



What to take Home...?

Deep Learning:

▶ Stability is a major concern!

▶ The amazing generalization capability is still a mystery!

Transferability of Graph Convolutional Neural Networks:

▶ Transferability is a special type of generalization.

▶ We consider graphs as discretizations of metric spaces.

▶ We show spectral GCNNs (based on functional calculus) are transferable.

▶ Similar results: Graphs as arising from a graphon.

Generalization of Message Passing Graph Neural Networks:

▶ We consider graphs as sampled from (continuous) models.

▶ We derive non-asymptotic generalization bounds, only depending on the
regularity of the network and space.

Caution: Problems with computability on digital hardware!



THANK YOU!

References available at:
www.ai.math.lmu.de/kutyniok

Survey Paper (arXiv:2105.04026):
Berner, Grohs, K, Petersen, The Modern Mathematics of Deep Learning.

Check related information on Twitter at:
@GittaKutyniok

Upcoming Book:
▶ Grohs and K, eds.

Mathematical Aspects of Deep Learning
Cambridge University Press, to appear.



Convergence of ∆ to Metric-Measure Laplacians

Transferability of Filter
≤ Transferability of Laplacian + Consistency Error

Question:
Is it reasonable to assume that the transferability error

of the Laplacian is small?

Informal Statement (Levie, Huang, Bucci, Bronstein, K; 2020):
If graphs are constructed by sampling random points from M, then graph
Laplacians ∆ approximate the continuous Laplacian L with high
probability ⇒ Transferability in high probability!
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Towards Transferability:

Graphon Approach



Graphons

Definition:
A graphon is a symmetric measurable function W : [0, 1]2 → [0, 1].

Intuition:
A graphon is understood as defining an exchangeable random graph
model:

▶ Each vertex j of the graph is assigned an
independent random value xj ∼ U[0, 1].

▶ Edge (i , j) is independently included in
the graph with probability W (xi , xj).



Examples of Graphons

Graphs, Empirical Graphons, and Limits:



Local Convergence: Homomorphism Density

Definition:
For F ,G simple graphs, let t(F ,G ) the probability that a random map
V (F ) → V (G ) is a homomorphism. Then a sequence Gn is convergent to
a graphon W , if

t(F ,Gn) → t(F ,W ) :=

∫
[0,1]v(F )

∏
i ,j∈E

W (xi , xj)
∏
i∈V

dxi

for all simple graphs F . For a graph G , the induced kernel WG is defined by

WG (u, v) :=
∑
i ,j≤n

∆(i , j)χIi (u)χIj (v)

and the Hilbert-Schmidt operator TW associated to a kernel W is given by

TWψ(v) :=

∫ 1

0
W (u, v)ψ(u)du, ψ ∈ L2(0, 1).

; We can use functional calculus (filters)!



Transferability of Continuous Filters

Theorem (Maskey, Levie, K; 2021):
Let (Gn)n be a sequence of graphs with uniformly bounded Laplacians.
Suppose that there exists a graphon W such that

Gn → W

in homomorphism density. Let h be a continuous function. Then, there
exists a sequence of permutations (πn)n such that

h(TWπn(Gn)
) → h(TW )

in operator norm.



Numerical Results



Rethinking Transferability

Graph CNNs can manage transferability in different ways!

▶ Concept-Based Transferability:
▶ Multi-graph training set
▶ The network learns “concepts” that promote transferability.

▶ Principle Transferability:
▶ Single or multi-graph training set
▶ A built-in capability of graph CNNs, independent of their specific

filters, which requires no training.

The success of spectral graph CNNs in multi-graph settings
relies on both types of transferability!



Some Examples

Isolate principle transferability from concept-based transferability:
Train the network on one single graph and test on other graphs.



Transferability under Graph Perturbation



Transferability under Graph Perturbation



An Experimental Study of Transferability

Spectral method were tested only in single-graph settings.

Benchmark ChebNet (Defferrard et al. 2016) in multi-graph
settings:

▶ Graph benchmarks:
Hu et al. Open Graph Benchmark: Datasets for Machine Learning on Graphs.

2020.

Dwivedi et at. Benchmarking Graph Neural Networks. 2020.

▶ Tasks: graph regression, graph classification, node classification.

▶ Rules: different for each benchmark, e.g., budget of parameters, fixed
number of layers, fixed hyperparameters, no specialized data
augmentation techniques.

→ ChebNet reaches state-of-the-art results (Nilsson, Bresson; 2020)
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