Efficient approximation of solutions of parametric linear transport equations by ReLU DNNs Fabian Laakmann¹ Philipp Petersen² ¹Mathematical Institute, University of Oxford, UK ²Institut für Mathematik, Universität Wien, Austria

Parametric Linear Transport Equation

The Cauchy problem for the linear parametric transport equation is given by

 $\begin{cases} \partial_t u(t, x, \eta) + V(t, x, \eta) \cdot \nabla_x u(t, x, \eta) = f(t, x, \eta), \\ u(0, x, \eta) = u_0(x), \end{cases}$

where $x \in \mathbb{R}^n, \eta \in [0, 1]^D$ and $t \in [0, T]$ for some $n, D \in \mathbb{N}$ and T > 0. The vector field $V \in C^k([0,T] \times \mathbb{R}^n \times \mathbb{R}^D; \mathbb{R}^n)$, the source term $f \in C^k([0,T] \times \mathbb{R}^n \times \mathbb{R}^D)$ and the initial condition $u_0 \in C^s(\mathbb{R}^n; \mathbb{R})$ are given with $s, k \in \mathbb{N}$.

We are especially interested in the case:

- $n \ll D$, (high-dimensional parameter space)

Regularity theory: NN complexity $\sim \varepsilon^{-d/s}, d \coloneqq 1 + D + n$, \Rightarrow Approximation suffers from **curse of dimensionality** since $s \ll d$

We utilise special form of solution given by $u_0 \circ X$, X being the solution of the characteristic system of ODEs to prove bounds for ReLU NNs with

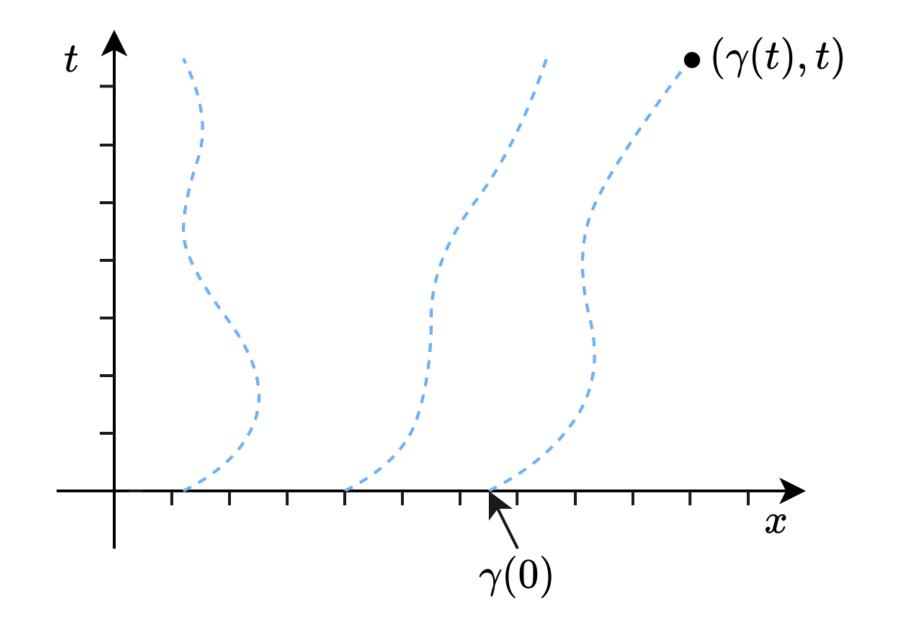
complexity $\sim \varepsilon^{-n/s} + \varepsilon^{-d/k}$

- \Rightarrow d and s have been decoupled
- Low-reg of u_0 is compensated by low-dimensionality of domain
- High regularity of X equalises high dimension d

• $s \ll k$, (smooth velocity and rhs, but unregular initial condition)

⇒ Approximation of high-dimensional functions of low regularity

Theory of transport equations



Our Approximation results

Main Result (Laakmann and Petersen 2021)

Let V satisfy assumptions (H1) and (H2) for $k, n, D \in \mathbb{N}$, and T > 0. Let $u_0 \in C^s(\mathbb{R}^n)$ and let $u \in C^{\min\{s,k\}}([0,T] \times \mathbb{R}^n \times [0,1]^D)$ denote the unique solution of the Cauchy problem for the parametric linear transport equation

 $\begin{cases} \partial_t u(t, x, \eta) + V(t, x, \eta) \cdot \nabla_x u(t, x, \eta) = 0, \\ u(0, x, \eta) = u_0(x). \end{cases}$

Then, for every $\varepsilon \in (0,1)$ and every compact subset $K \subset \mathbb{R}^n$, there exists a NN $\Phi^{\overline{u},\varepsilon}$ with d-dimensional input, where $d \coloneqq 1 + n + D$, such that for the restriction $\overline{u} \coloneqq u \Big|_{[0,T] \times K \times [0,1]^D}$ there holds that, for $c = c(n, s, d, k, K, T, \|V\|_{C^k}, u_0) > 0$,

(i) $L(\Phi^{\overline{u},\varepsilon}) \leq c \cdot (\ln(1/\varepsilon) + 1)$, (ii) $W(\Phi^{\overline{u},\varepsilon}) \le c \cdot \left(\varepsilon^{-n/s} + \varepsilon^{-d/k}\right) \cdot \left(\ln(1/\varepsilon) + 1\right),$ (iii) $\|\overline{u} - \mathrm{R}\left(\Phi^{\overline{u},\varepsilon}\right)\|_{L^{\infty}([0,T]\times K\times [0,1]^{D})} < \varepsilon$,

The characteristic curve of the transport operator $\partial_t + V(x,t,\eta) \cdot \nabla_x$ passing trough x at time s = t is given by the set

 $\{(s, \gamma(s)) \mid s \in [0, T]\},\$

where γ is the solution of the characteristic system of ODEs

 $\begin{cases} \dot{\gamma}(s) = V(s, \gamma(s), \eta), \\ \gamma(t) = x. \end{cases}$

u is constant along characteristic curves: Assume $V(t, x, \eta) = v, v \in \mathbb{R}^n$. Then (drop η -dependency) $\frac{\mathrm{d}}{\mathrm{d}t}u(t,\gamma(t)) = \partial_t u(t,\gamma(t)) + \nabla_x u(t,\gamma(t)) \cdot \dot{\gamma}(t)$ $= \partial_t u(t, \gamma(t)) + \nabla_x u(t, \gamma(t)) \cdot v$ $= (\partial_t + V(t, x) \cdot \nabla_x) u(t, \gamma(t)) = 0.$

Solution at (t, x) = initial data evaluated at $\gamma(0)$

Assumptions

(H1) For some $k \in \mathbb{N}_{>1}$ there holds

 $V \in C^k([0,T] \times \mathbb{R}^n \times [0,1]^D; \mathbb{R}^n).$

(H2) There exists a C > 0 s.t.

 $|V(t, x, \eta)| \le C(1 + |x|)$ for all $(t, x, \eta) \in [0, T] \times \mathbb{R}^n \times [0, 1]^D$.

Generalisations and Extensions

- **Weak solutions:** An analogous statement to the Main Result can be derived for weak solutions with initial data $u_0 \in W_{loc}^{1,\infty}$.
- **O Conservative Form:** A similar statement to the Main Result can be derived for classical solutions for the conservative formulation given by

 $\begin{cases} \partial_t u(t, x, \eta) + \operatorname{div}_x(V(t, x, \eta)u(t, x, \eta)) = 0, \\ u(0, x, \eta) = u_0(x). \end{cases}$

- **Source terms and amplification factors:** A similar statement to the Main Result can be derived for appropriate assumptions on the source term $f(t, x, \eta)$ and an additional amplification term $a(t, x, \eta)u(t, x, \eta)$.
- **Bounded domains:** Results can extended to pure characteristic boundaries, periodic boundary conditions and inflow boundary conditions.

Example for Application (Radiative transfer models)

A core constituent of radiative transfer models is given by $\partial_t u(t, x, \eta) + \eta \cdot \nabla_x u(t, x, \eta) + a(t, x, \eta)u(x, t, \eta) = f(t, x, \eta),$ $u(0,x,\eta)=u_0(x),$ $u(t, x, \eta) = u_b^-(t, x, \eta), \quad \text{ for } (x, \eta) \in \partial \Omega^-,$ with $\partial \Omega^{-} \coloneqq \left\{ (x, \eta) \in \partial \Omega \times [0, 1]^{D} : \eta \cdot \nu < 0 \right\}$

Theorem (Classical Solution)

Let V satisfy the assumptions (H1) and (H2) and $u_0 \in C^s(\mathbb{R}^n)$. Then the Cauchy problem for the parametric linear transport equation

 $\begin{cases} \partial_t u(t, x, \eta) + V(t, x, \eta) \cdot \nabla_x u(t, x, \eta) = 0, \\ u(0, x, \eta) = u_0(x), \end{cases}$

has a unique solution $u \in C^{\min\{s,k\}}([0,T] \times \mathbb{R}^n \times [0,1]^D)$, which is given by

 $u(t, x, \eta) = u_0(X(0, t, x, \eta)).$

The map X is given by

 $X(s, t, x, \eta) \coloneqq \gamma(s)$ with regularity $C^k([0,T] \times [0,T] \times \mathbb{R}^n \times [0,1]^D)$.

- Describes the propagation of particles in a collisional medium
- η can describe a unit direction vector taken from the (n-1)-dimensional unit sphere
- For $V(t, x, \eta) = \eta$, obviously all assumptions are fulfilled with $k = \infty$

References

Laakmann, F. and P. Petersen (2021). "Efficient approximation of solutions of parametric linear transport equations by ReLU DNNs". In: Advances in Computational Mathematics 47.1.

Fabian Laakmann, Philipp Petersen Efficient approximation of solutions of parametric linear transport equations by ReLU DNNs