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Parametric Linear Transport Equation

The Cauchy problem for the linear parametric transport equation is given by{
∂tu(t, x, η) + V (t, x, η) · ∇xu(t, x, η) = f (t, x, η),

u(0, x, η) = u0(x),

where x ∈ Rn, η ∈ [0, 1]D and t ∈ [0, T ] for some n,D ∈ N and T > 0. The vector
field V ∈ Ck([0, T ]×Rn ×RD;Rn), the source term f ∈ Ck([0, T ]×Rn ×RD) and
the initial condition u0 ∈ Cs(Rn;R) are given with s, k ∈ N.

We are especially interested in the case:

• n ≪ D, (high-dimensional parameter space)

• s ≪ k, (smooth velocity and rhs, but unregular initial condition)

⇒ Approximation of high-dimensional functions of low regularity

Regularity theory: NN complexity ∼ ε−d/s, d := 1 +D + n,
⇒ Approximation suffers from curse of dimensionality since s ≪ d

We utilise special form of solution given by u0 ◦X , X being the solution of the
characteristic system of ODEs to prove bounds for ReLU NNs with

complexity ∼ ε−n/s + ε−d/k

⇒ d and s have been decoupled

• Low-reg of u0 is compensated by low-dimensionality of domain

• High regularity of X equalises high dimension d

Theory of transport equations

Figure 1. Characteristic curves

Characteristic curves

The characteristic curve of the transport operator ∂t + V (x, t, η) · ∇x passing trough
x at time s = t is given by the set

{(s, γ(s)) | s ∈ [0, T ]},
where γ is the solution of the characteristic system of ODEs{

γ̇(s) = V (s, γ(s), η),

γ(t) = x.

u is constant along characteristic curves:
Assume V (t, x, η) = v, v ∈ Rn. Then (drop η−dependency)

d

dt
u(t, γ(t)) = ∂tu(t, γ(t)) +∇xu(t, γ(t)) · γ̇(t)

= ∂tu(t, γ(t)) +∇xu(t, γ(t)) · v
= (∂t + V (t, x) · ∇x)u(t, γ(t)) = 0.

Solution at (t, x) = initial data evaluated at γ(0)

Assumptions

(H1) For some k ∈ N≥1 there holds

V ∈ Ck([0, T ]× Rn × [0, 1]D;Rn).

(H2) There exists a C > 0 s.t.

|V (t, x, η)| ≤ C (1 + |x|) for all (t, x, η) ∈ [0, T ]× Rn × [0, 1]D.

Theorem (Classical Solution)

Let V satisfy the assumptions (H1) and (H2) and u0 ∈ Cs(Rn). Then the Cauchy
problem for the parametric linear transport equation{

∂tu(t, x, η) + V (t, x, η) · ∇xu(t, x, η) = 0,

u(0, x, η) = u0(x),

has a unique solution u ∈ Cmin{s,k}([0, T ]× Rn × [0, 1]D), which is given by

u(t, x, η) = u0(X(0, t, x, η)).

The map X is given by

X(s, t, x, η) := γ(s)

with regularity Ck([0, T ]× [0, T ]× Rn × [0, 1]D).

Our Approximation results

Main Result (Laakmann and Petersen 2021)

Let V satisfy assumptions (H1) and (H2) for k, n,D ∈ N, and T > 0. Let
u0 ∈ Cs(Rn) and let u ∈ Cmin{s,k}([0, T ]× Rn × [0, 1]D) denote the unique solution
of the Cauchy problem for the parametric linear transport equation∂tu(t, x, η) + V (t, x, η) · ∇xu(t, x, η) = 0,

u(0, x, η) = u0(x).

Then, for every ε ∈ (0, 1) and every compact subset K ⊂ Rn, there exists a NN Φu,ε

with d-dimensional input, where d := 1 + n +D, such that for the restriction
u := u

∣∣∣
[0,T ]×K×[0,1]D

there holds that, for c = c(n, s, d, k,K, T, ∥V ∥Ck, u0) > 0,

(i) L (Φu,ε) ≤ c · (ln(1/ε) + 1),

(ii) W (Φu,ε) ≤ c ·
(
ε−n/s + ε−d/k

)
· (ln(1/ε) + 1),

(iii) ∥u− R (Φu,ε)∥L∞([0,T ]×K×[0,1]D) < ε,

Generalisations and Extensions

1 Weak solutions: An analogous statement to the Main Result can be derived for
weak solutions with initial data u0 ∈ W 1,∞

loc .
2 Conservative Form: A similar statement to the Main Result can be derived for
classical solutions for the conservative formulation given by∂tu(t, x, η) + divx(V (t, x, η)u(t, x, η)) = 0,

u(0, x, η) = u0(x).

3 Source terms and amplification factors: A similar statement to the Main
Result can be derived for appropriate assumptions on the source term f (t, x, η) and
an additional amplification term a(t, x, η)u(t, x, η).

4 Bounded domains: Results can extended to pure characteristic boundaries,
periodic boundary conditions and inflow boundary conditions.

Example for Application (Radiative transfer models)

A core constituent of radiative transfer models is given by
∂tu(t, x, η) + η · ∇xu(t, x, η) + a(t, x, η)u(x, t, η) = f (t, x, η),

u(0, x, η) = u0(x),

u(t, x, η) = u−b (t, x, η), for (x, η) ∈ ∂Ω−,

with
∂Ω− :=

{
(x, η) ∈ ∂Ω× [0, 1]D : η · ν < 0

}

• Describes the propagation of particles in a collisional medium

• η can describe a unit direction vector taken from the (n− 1)-dimensional unit
sphere

• For V (t, x, η) = η, obviously all assumptions are fulfilled with k = ∞
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