Traveling skyrmions and vortices in chiral antiferromagnets

Stavros Komineas^{1,2}, Nikos Papanicolaou¹, Riccardo Tomasello^{2,3}

¹University of Crete, Heraklion, Greece ²Institute of Applied and Computational Mathematics, FORTH, Heraklion, Greece ³Politecnico di Bari, Italy

Topological Patterns in Magnetic Materials, University of Bath, U.K., 13-14/1/2022

Stavros Komineas

Traveling chiral solitons

A chiral antiferromagnet

Consider a square lattice of spins $S_{i,i}$ (on the plane) interacting via

symmetric exchange, with energy

$$E_{\text{ex}} = J \sum_{i,j} \boldsymbol{S}_{i,j} \cdot (\boldsymbol{S}_{i+1,j} + \boldsymbol{S}_{i,j+1}), \qquad J > 0,$$

Dzyaloshinskii-Moriya (DM) interaction,

$$E_{\text{DM}} = D \sum_{i,j} \left[\widehat{\mathbf{e}}_2 \cdot (\mathbf{S}_{i,j} \times \mathbf{S}_{i+1,j}) - \widehat{\mathbf{e}}_1 \cdot (\mathbf{S}_{i,j} \times \mathbf{S}_{i,j+1}) \right]$$

• and easy-axis (perpendicular) anisotropy

$$E_{\rm a} = -\frac{g}{2} \sum_{i,j} [(\mathbf{S}_{i,j})_3]^2.$$

From the Hamiltonian, we obtain the equation of motion

$$rac{\partial oldsymbol{\mathcal{S}}_{i,j}}{\partial t} = -oldsymbol{\mathcal{S}}_{i,j} imes rac{\partial oldsymbol{\mathcal{E}}}{\partial oldsymbol{\mathcal{S}}_{i,j}}.$$

Stavros Komineas

Traveling chiral solitons

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シベ()

Two sublattices

0	•	0	٠	0	٠
٠	0	•	0	٠	0
0	٠	S i,j+1	Si+1,j+1 ●	0	٠
٠	0	● Si.j	⊖ S i+1,j	٠	0
0	٠	0	•	0	٠
•	0	•	0	•	0

Stavros Komineas Trav

Traveling chiral solitons

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The continuum approximation

The continuum model is written entirely in terms of the Néel vector \boldsymbol{n} (a nonlinear σ -model).

$$\begin{split} \mathbf{n} \times (\ddot{\mathbf{n}} - \mathbf{h}_{\text{eff}}) &= 0, \\ \mathbf{h}_{\text{eff}} &= \Delta \mathbf{n} + 2\lambda \epsilon_{\mu\nu} \hat{\mathbf{e}}_{\mu} \times \partial_{\nu} \mathbf{n} + n_3 \widehat{\mathbf{e}}_3, \qquad \lambda = \frac{D}{\sqrt{gJ}}. \end{split}$$

イロト イヨト イヨト イヨト

The derivation is based on the use of a small parameter $\epsilon=\sqrt{g/J}$

and we have the magnetization

$$\mathbf{m} = \frac{\epsilon}{2\sqrt{2}} \left(\mathbf{n} \times \dot{\mathbf{n}} \right)$$

and the auxiliary variables

$$m{k}=-rac{\epsilon}{2}\partial_1m{n}, \qquad m{l}=-rac{\epsilon}{2}\partial_2m{n}.$$

We need all four variables in order to reconstruct the spin lattice.

(日) (四) (王) (王) (王)

Domain walls and skyrmions in AFM

The time-independent σ -model coincides with the time-independent Landau-Lifshitz equation for a ferromagnet.

Domain walls, skyrmions, vortices etc that exist in a FM (in the case that the magnetostatic field is not crucial), can also be found in an AFM.

Increasing the DM parameter λ increases the skyrmion radius.

Traveling domain walls

For a Néel wall $\mathbf{n} = \mathbf{n}_{DW}(\mathbf{x})$, with $n_2 = 0$, the DM term vanishes,

$$\mathbf{n} \times (\ddot{\mathbf{n}} - \mathbf{n}'' + 2\lambda \widehat{\mathbf{e}}_2 \times \mathbf{n}' - n_3 \widehat{\mathbf{e}}_3) = 0.$$

A propagating DW is obtained by a Lorentz transformation

$$m{n}(x,t;\upsilon) = m{n}_{DW}\left(rac{x-\upsilon t}{\sqrt{1-\upsilon^2}}
ight), \qquad |\upsilon| < 1$$
 (spinwave velocity).

- Propagation as a solitary wave (without force) is possible
 - in contrast to typical FM dynamics.
- The DW is contracted (in the propagation direction) when it is traveling.

The model with DMI is not Lorentz invariant.

イロト イポト イモト イモト 三日

Traveling domain wall and the spiral phase transition

For a traveling Néel wall, the DM term is rescaled upon a Lorentz transformation.

$$\mathbf{n} imes \left(\mathbf{n}'' - \frac{2\lambda}{\sqrt{1 - v^2}} \hat{\mathbf{e}}_2 imes \mathbf{n}' + n_3 \widehat{\mathbf{e}}_3
ight) = 0$$

A propagating DW is (Lorentz transformed)

$$\mathbf{n}(x - vt) = \mathbf{n}_{DW}\left(\frac{x - vt}{\sqrt{1 - v^2}}\right), \qquad |v| < 1$$
 (spinwave velocity).

The propagating solution is valid only for the range of parameter values where the Néel state is stable

$$\frac{\lambda}{\sqrt{1-\upsilon^2}} < \frac{2}{\pi} \Rightarrow |\upsilon| < \sqrt{1 - \left(\frac{\pi\lambda}{2}\right)^2} \equiv \upsilon_c.$$

• The phase transition to the spiral state destabilizes the propagating DW for $\upsilon > \upsilon_c$.

Traveling skyrmions

Make the solitary wave ansatz $\mathbf{n} = \mathbf{n}(x - \upsilon t, y)$. It satisfies

$$\mathbf{n} \times \left(\mathbf{h}_{\text{eff}} - \upsilon^2 \partial_1^2 \mathbf{n} \right) = 0.$$

We find numerically (by a relaxation algorithm) skyrmions traveling along x, for a range of velocities v.

The traveling skyrmions get more elongated with increasing velocity.

There is a maximum velocity $v_c(\lambda)$ where the skyrmion expands to infinity. For example, for $\lambda = 0.45$, we find $0 \le v < v_c \approx 0.71$.

Magnetization of traveling skyrmions

The magnetization vector is given by

$$\mathbf{m} = rac{\epsilon}{2\sqrt{2}}\,\mathbf{n} imes\dot{\mathbf{n}}.$$

The local magnetization

- is zero for a static AFM skyrmion.
- It is nonzero for a propagating one.

The magnetization vector m for a traveling skyrmion. Red for $m_3 > 0$, blue for $m_3 < 0$.

The net magnetization

is nonzero for a propagating skyrmion. It increases with velocity.

イロト イヨト イヨト イヨト

Stavros Komineas

Maximum velocity and the phase transition to the spiral

The key to understanding the behavior of the maximum velocity v_c is the numerical finding that the skyrmion expands in both the x and y directions as $v \rightarrow v_c$.

The equation contains derivatives in the two space directions x and y,

$$\mathbf{n} \times \left\{ \left[(1 - v^2) \partial_1^2 \mathbf{n} - 2\lambda \widehat{\mathbf{e}}_2 \times \partial_1 \mathbf{n} \right] + \left[\partial_2^2 \mathbf{n} + 2\lambda \widehat{\mathbf{e}}_1 \times \partial_2 \mathbf{n} \right] + n_3 \widehat{\mathbf{e}}_3 \right\} = 0.$$

In the limit $v \rightarrow v_c$, the skyrmion is very elongated primarily in the y direction, and we may neglect the y derivatives.

イロト イヨト イヨト イヨト 三日

Maximum velocity and the spiral phase transition

The key to understanding the behavior of the maximum velocity
$$v_c$$
 is the numerical finding that the skyrmion expands in both the x and y directions as $v \rightarrow v_c$.

The equation contains derivatives in the two space directions x and y,

$$\mathbf{n} \times \left\{ \left[(1 - v^2) \partial_1^2 \mathbf{n} - 2\lambda \widehat{\mathbf{e}}_2 \times \partial_1 \mathbf{n} \right] + \left[\partial_2^2 \mathbf{n} + 2\lambda \widehat{\mathbf{e}}_1 \times \partial_2 \mathbf{n} \right] + n_3 \widehat{\mathbf{e}}_3 \right\} = 0.$$

In the limit $v \rightarrow v_c$, the skyrmion is very elongated in the y direction, and we may neglect the y derivatives.

The 1D equation

$$\mathbf{n} \times \left[(1 - v^2) \partial_1^2 \mathbf{n} - 2\lambda \widehat{\mathbf{e}}_2 \times \partial_1 \mathbf{n} + n_3 \widehat{\mathbf{e}}_3 \right] = 0$$

supports the Néel state only for dimensionless DM parameter smaller than $\frac{2}{\pi}$, or

$$\frac{\lambda}{\sqrt{1-\upsilon^2}} < \frac{2}{\pi} \Rightarrow |\upsilon| < \sqrt{1 - \left(\frac{\pi\lambda}{2}\right)^2} \equiv \upsilon_c$$

Stavros Komineas

Traveling chiral solitons

Comparison with numerics

Blue line shows

$$v_{\rm c} = \sqrt{1 - \left(\frac{\pi\lambda}{2}\right)^2}.$$

• Red dots give the numerically calculated values (obtained when the traveling skyrmion size diverges).

・ コ ア ・ 雪 ア ・ 画 ア ・ 一

The origin of the maximum skyrmion velocity is the topological phase transition from the Néel to the spiral state.

- For $\lambda \to 0$, the maximum velocity $\upsilon_c \to 1$, i.e., it goes to the value of the Lorentz invariant model (spinwave velocity).
- For $\lambda \to \frac{2}{\pi}$ (large DM), the maximum velocity is small, $v_c \to 0$.

Particle-like character of a skyrmion. The skyrmion mass.

Energy of a traveling skyrmion (solitary wave)

$$E = \frac{1}{2} \int \dot{\boldsymbol{n}}^2 \, d\boldsymbol{x} d\boldsymbol{y} + E_0 = \frac{v^2}{2} \underbrace{\int (\partial_1 \boldsymbol{n}_0)^2 \, d\boldsymbol{x} d\boldsymbol{y}}_{\mathcal{H}} + E_0$$

 \mathbf{n}_0 a static skyrmion, E_0 its energy. It is a Newtonian particle with mass \mathcal{M}_0

$$E(v) = \frac{1}{2}\mathcal{M}_0v^2 + E_0, \qquad v \ll v_c.$$

Linear momentum

$$P = -\int \dot{\boldsymbol{n}} \cdot \partial_1 \boldsymbol{n} \, dx dy = \upsilon \underbrace{\int (\partial_1 \boldsymbol{n})^2 \, dx dy}_{\mathcal{M}}.$$

For small v,

$$P = \upsilon \int (\partial_1 \mathbf{n}_0)^2 \, d\mathbf{x} d\mathbf{y} = \mathcal{M}_0 \upsilon, \qquad \upsilon \ll \upsilon_c.$$

Stavros Komineas

Energy-Momentum relation

For small velocities

$$E pprox E_0 + rac{P^2}{2\mathcal{M}_0}, \qquad v \ll v_c$$

For large momenta, we set $v \approx v_c$ in the group velocity relation

$$v = \frac{dE}{dP} \Rightarrow v_c \approx \frac{dE}{dP} \Rightarrow E \approx v_c P + E_c, \quad v \to v_c, \quad E_c \approx 4.5.$$

Stavros Komineas

Traveling chiral solitons

Energy and mass

Let us look into the energy-mass relation,

$$\begin{cases} E \approx v_c P + E_c \\ P = \mathcal{M}v \end{cases} \Rightarrow E \approx \mathcal{M}v_c^2 + E_c, \qquad v \to v_c. \end{cases}$$

From virial relations (omitted here), we find

$$E = \mathcal{M} + \lambda \int \widehat{\mathbf{e}}_{\mathbf{y}} \cdot (\partial_1 \mathbf{n} imes \mathbf{n}) d\mathbf{x} d\mathbf{y}.$$

Relativistic dynamics for chiral particles

- The dispersion relation is shifted by a constant in the relativistic limit.
- The Energy is shifted with respect to the mass by a chiral term.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

DM interaction and easy-plane anisotropy

For a one-dimensional magnet, we have two phase transitions.

We have the respective ground states

- Néel state.
- A nonflat spiral (with energy lower than the flat spiral).
- The (usual) spiral with $n_2 = 0$ [a "flat" spiral on the (13) plane].

[Chovan, Papanicolaou, Komineas, PRB (2002)]

イロン スピン メヨン メヨン

Vortex in a stripe

We consider a stripe geometry as this is suitable for shifting of magnetic information (it will also give rise to interesting effects).

A hybrid vortex

We have competition between

- boundary conditions (at $y = \pm L/2$) that favour canting of n_2 ,
- DM interaction that favours Néel type skyrmion.

イロト イポト イヨト イヨト

Propagating vortex in a stripe

A propagating vortex (for $\lambda = 0.4, v = 0.60$)

A mixture of nonflat spiral configuration and edge vortices (v = 0.78).

A vortex chain (v = 0.79).

A flat spiral (v = 0.90).

Dynamical phase transitions

We expect the following three phases (and two critical velocities).

- The Néel state for $\frac{\lambda}{\sqrt{1-v^2}} < \lambda_{NF} (=0.5) \Rightarrow v < \sqrt{1 \left(\frac{\lambda}{\lambda_{NF}}\right)^2} \equiv v_{NF}.$
- The flat spiral for $\frac{\lambda}{\sqrt{1-\upsilon^2}} > \lambda_F (\approx 0.7) \Rightarrow \upsilon > \sqrt{1 \left(\frac{\lambda}{\lambda_F}\right)^2} \equiv \upsilon_F$.
- The non-flat spiral for $\lambda_{NF} < \frac{\lambda}{\sqrt{1-v^2}} < \lambda_F \Rightarrow v_{NF} < v < v_F$.

Flat spiral Vortex chain Nonflat spiral

・ロト ・回 ト ・ヨト ・ヨト

Summary

- Traveling domain walls, skyrmions and vortices exist in antiferromagnets.
- The dynamics of topological solitons in antiferromagnets is dramatically different than that of their ferromagnetic counterparts.
- Vortex phases arise due to dynamics in a stripe geometry.
- The maximum velocity for solitons is lower than the spinwave velocity.
- The topological phase transition from the Néel to the spiral phases is crucial for fast soliton dynamics.

References

- Komineas, Papanicolaou, SciPost 8, 086 (2020).
- Tomasello, Komineas, Phys. Rev. B 104, 064438 (2021).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのへで