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A chiral antiferromagnet

Consider a square lattice of spins Si,j (on the plane) interacting via
• symmetric exchange, with energy

Eex = J
∑
i,j

Si,j · (Si+1,j + Si,j+1), J > 0,

• Dzyaloshinskii-Moriya (DM) interaction,

EDM = D
∑
i,j

[
ê2 · (Si,j × Si+1,j)− ê1 · (Si,j × Si,j+1)

]
• and easy-axis (perpendicular) anisotropy

Ea = −g
2

∑
i,j

[(Si,j)3]
2.

From the Hamiltonian, we obtain the equation of motion

∂Si,j

∂t
= −Si,j ×

∂E
∂Si,j

.
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Two sublattices
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The continuum approximation

Two sublattices (•, ◦)
Consider a tetramerization of the lattice and
define the variables (s = |Si,j|)

m = 1
4s (A+ B+ C+ D) (Magnetization)

n = 1
4s (A− B+ C− D) (Néel vector)

k = 1
4s (A+ B− C− D)

l = 1
4s (A− B− C+ D).

Assume that m, n,k, l are slowly varying in
space.

The continuum model is written entirely in terms of the Néel vector n
(a nonlinear σ-model).

n× (n̈− heff) = 0,

heff = ∆n+ 2λϵµν êµ × ∂νn+ n3ê3, λ =
D√
gJ

.
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Auxiliary variables

The derivation is based on the use of a small parameter ϵ =
√

g/J
and we have the magnetization

m =
ϵ

2
√
2
(n× ṅ)

and the auxiliary variables

k = − ϵ

2
∂1n, l = − ϵ

2
∂2n.

We need all four variables in order to reconstruct the spin lattice.
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Domain walls and skyrmions in AFM

The time-independent σ-model coincides with the time-independent
Landau-Lifshitz equation for a ferromagnet.

Domain walls, skyrmions, vortices etc that exist in a FM (in the case that the
magnetostatic field is not crucial), can also be found in an AFM.

For λ < 2
π , the Néel is the ground state. DWs and skyrmions are excited states.

For λ > 2
π , a phase transition occurs to the helical phase (spiral).

Increasing the DM parameter λ increases the skyrmion radius.

Vector plot for (n1, n2). Red means n3 < 0 and white n3 > 0.
Stavros Komineas Traveling chiral solitons
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Traveling domain walls

For a Néel wall n = nDW(x), with n2 = 0, the DM term vanishes,

n× (n̈− n′′ +�����
2λ ê2 × n′ − n3ê3) = 0.

A propagating DW is obtained by a Lorentz transformation

n(x, t; υ) = nDW
(

x−υt√
1−υ2

)
, |υ| < 1 (spinwave velocity).

• Propagation as a solitary wave (without force) is possible
- in contrast to typical FM dynamics.

• The DW is contracted (in the propagation direction) when it is traveling.

The model with DMI is not Lorentz invariant.
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Traveling domain wall and the spiral phase transition

For a traveling Néel wall, the DM term is rescaled upon a Lorentz transformation.

n×
(
n′′ − 2λ√

1− υ2
ê2 × n′ + n3ê3

)
= 0

A propagating DW is (Lorentz transformed)

n(x− υt) = nDW
(

x−υt√
1−υ2

)
, ����|υ| < 1 (spinwave velocity).

The propagating solution is valid only for the range of parameter values where
the Néel state is stable

λ√
1− υ2

<
2

π
⇒ |υ| <

√
1−

(
πλ

2

)2

≡ υc.

• The phase transition to the spiral state destabilizes the propagating DW for
υ > υc.
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Traveling skyrmions

Make the solitary wave ansatz n = n(x− υt, y). It satisfies

n×
(
heff − υ2∂2

1n
)
= 0.

We find numerically (by a relaxation algorithm) skyrmions traveling along x, for
a range of velocities υ.

The traveling skyrmions get more elongated with increasing velocity.

There is a maximum velocity υc(λ) where the skyrmion expands to infinity. For
example, for λ = 0.45, we find 0 ≤ υ < υc ≈ 0.71.
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Magnetization of traveling skyrmions

The magnetization vector is given by

m =
ϵ

2
√
2
n× ṅ.

The local magnetization

• is zero for a static AFM skyrmion.
• It is nonzero for a propagating one.

The magnetization vector m for a
traveling skyrmion.
Red for m3 > 0, blue for m3 < 0.

The net magnetization
is nonzero for a propagating skyrmion.
It increases with velocity.
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Maximum velocity and the phase transition to the spiral

The key to understanding the behavior of the maximum
velocity υc is the numerical finding that the skyrmion expands
in both the x and y directions as υ → υc.
The equation contains derivatives in the two space directions x and y,

n×
{
[(1− υ2)∂2

1n− 2λê2 × ∂1n] + [∂2
2n+ 2λê1 × ∂2n] + n3ê3

}
= 0.

In the limit υ → υc, the skyrmion is very elongated primarily in the y direction,
and we may neglect the y derivatives.
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Maximum velocity and the spiral phase transition

The key to understanding the behavior of the maximum
velocity υc is the numerical finding that the skyrmion expands
in both the x and y directions as υ → υc.
The equation contains derivatives in the two space directions x and y,

n×
{
[(1− υ2)∂2

1n− 2λê2 × ∂1n] +(((((((((
[∂2

2n+ 2λê1 × ∂2n] + n3ê3
}
= 0.

In the limit υ → υc, the skyrmion is very elongated in the y direction, and we
may neglect the y derivatives.

The 1D equation

n×
[
(1− υ2)∂2

1n− 2λê2 × ∂1n+ n3ê3
]
= 0

supports the Néel state only for dimensionless DM parameter smaller than 2
π , or

λ√
1− υ2

<
2

π
⇒ |υ| <

√
1−

(
πλ

2

)2

≡ υc.
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Comparison with numerics
• Blue line shows

υc =

√
1−

(
πλ

2

)2

.

• Red dots give the numerically calculated
values (obtained when the traveling
skyrmion size diverges).

The origin of the maximum skyrmion velocity is the topological phase transition
from the Néel to the spiral state.

• For λ → 0, the maximum velocity υc → 1, i.e., it goes to the value of the
Lorentz invariant model (spinwave velocity).

• For λ → 2
π (large DM), the maximum velocity is small, υc → 0.
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Particle-like character of a skyrmion. The skyrmion mass.

Energy of a traveling skyrmion (solitary wave)

E =
1

2

∫
ṅ2 dxdy+ E0 =

υ2

2

M0︷ ︸︸ ︷∫
(∂1n0)2 dxdy+E0

n0 a static skyrmion, E0 its energy.
It is a Newtonian particle with mass M0

E(υ) =
1

2
M0υ

2 + E0, υ ≪ υc.

Linear momentum

P = −
∫

ṅ · ∂1n dxdy = υ

∫
(∂1n)2 dxdy︸ ︷︷ ︸

M

.

For small υ,

P = υ

∫
(∂1n0)2 dxdy = M0υ, υ ≪ υc.
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Energy-Momentum relation

For small velocities

E ≈ E0 +
P2

2M0
, υ ≪ υc

For large momenta, we set υ ≈ υc in the group velocity relation

υ =
dE
dP

⇒ υc ≈
dE
dP

⇒ E ≈ υcP+ Ec, υ → υc, Ec ≈ 4.5.

Solid lines show numerical data.
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Energy and mass

Let us look into the energy-mass relation,{
E ≈ υcP+ Ec

P = Mυ
⇒ E ≈ Mυ2

c + Ec, υ → υc.

From virial relations (omitted here), we find

E = M+ λ

∫
êy · (∂1n× n)dxdy.

Relativistic dynamics for chiral particles
• The dispersion relation is shifted by a constant in the relativistic limit.
• The Energy is shifted with respect to the mass by a chiral term.
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DM interaction and easy-plane anisotropy

For a one-dimensional magnet, we have two phase transitions.

Néel

λNF =
1
2

nonflat spiral

λF ≈ 0.705

flat spiral

λ

We have the respective ground states
• Néel state.
• A nonflat spiral (with energy lower than the

flat spiral).
• The (usual) spiral with n2 = 0 [a ”flat” spiral

on the (13) plane].
[Chovan, Papanicolaou, Komineas, PRB (2002)]
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Vortex in a stripe

We consider a stripe geometry as this is suitable for shifting of magnetic
information (it will also give rise to interesting effects).

A hybrid vortex

We have competition between
• boundary conditions (at y = ±L/2) that favour canting of n2,
• DM interaction that favours Néel type skyrmion.

Stavros Komineas Traveling chiral solitons



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Propagating vortex in a stripe

A propagating vortex (for
λ = 0.4, υ = 0.60)

A mixture of nonflat spiral configuration
and edge vortices (υ = 0.78).

A vortex chain (υ = 0.79).

A flat spiral (υ = 0.90).
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Dynamical phase transitions

We expect the following three phases (and two critical velocities).

• The Néel state for λ√
1−υ2

< λNF (= 0.5) ⇒ υ <

√
1−

(
λ
λNF

)2

≡ υNF.

• The flat spiral for λ√
1−υ2

> λF (≈ 0.7) ⇒ υ >

√
1−

(
λ
λF

)2

≡ υF.

• The non-flat spiral for λNF <
λ√

1−υ2
< λF ⇒ υNF < υ < υF.

Flat spiral
Vortex chain
Nonflat spiral
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Summary

• Traveling domain walls, skyrmions and vortices exist in antiferromagnets.

• The dynamics of topological solitons in antiferromagnets is dramatically
different than that of their ferromagnetic counterparts.

• Vortex phases arise due to dynamics in a stripe geometry.

• The maximum velocity for solitons is lower than the spinwave velocity.

• The topological phase transition from the Néel to the spiral phases is crucial
for fast soliton dynamics.
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