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A chiral antiferromagnet

Consider a square lattice of spins S;; (on the plane) interacting via

® symmetric exchange, with energy

Eex = sti,/' (Si+1,/ +si,j+1)7 J>0,
ij

® Dzyaloshinskii-Moriya (DM) interaction,

EDM == DZ [62 * (S,d X S,'+1J) _/e\l * (SIJ X Si,j+1):|
ij

® and easy-axis (perpendicular) anisotropy

g9 2
E, = -3 [(Si))s]”
ij
From the Hamiltonian, we obtain the equation of motion
0S; OE
J - _SI;/ X —.
ot 0S;;
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Two sublattices
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The continuum approximation

Consider a tetramerization of the lattice and

Two sublattices (e, o) define the variables (s = |S,-J|)
D D D m= i(A + B+ C+ D) (Magnetization)
Aase n= 4%('4 —B+C—D) (Néel vector)
g T k=_(A+B—-C—D)
1
Bois Acs Bas Aciip 1 E (A B C + D)
Dot Copt

Assume that m,n, K, 1 are slowly varying in
space.

The continuum model is written entirely in terms of the Néel vector n

(a nonlinear o-model).

n X ( eff) 0

hetp = An + 2)\€uuéu X Oyn + n3€3, A=

g
k.
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Auxiliary variables

The derivation is based on the use of a small parameter € = /g/J

and we have the magnetization

and the auxiliary variables

k= —galn, 1= —gagn.

We need all four variables in order to reconstruct the spin lattice.
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Domain walls and skyrmions in AFM

The time-independent o-model coincides with the time-independent

Landau-Lifshitz equation for a ferromagnet.

Domain walls, skyrmions, vortices etc that exist in a FM (in the case that the
magnetostatic fleld is not crucial), can also be found in an AFM.

For A\ < % the Néel is the ground state. DWSs and skyrmions are excited states.

For A > % a phase transition occurs to the helical phase (spiral).

Increasing the DM parameter A increases the skyrmion radius.

jars -2 0 2 jary i) 0 2 4

Vector plot for (nl,n2). Red means n3 < 0 and white ng ><0.
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Traveling domain walls

For a Néel wall n = nDW(X), with no = 0, the DM term vanishes,

nx (h—n" + 2 \8r<n —nzes) = 0.

A propagating DW is obtained by a Lorentz transformation

n(x,t;v) = npw (%) , |u] <1 (spinwave velocity).

® Propagation as a solitary wave (without force) is possible
- in contrast to typical FM dynamics.

® The DW is contracted (in the propagation direction) when it is traveling.

The model with DMI is not Lorentz invariant.
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Traveling domain wall and the spiral phase transition

For a traveling Néel wall, the DM term is rescaled upon a Lorentz transformation.

1" 20 ’ ~ \ _
nX|n —ﬁegxrl—i-ngeg =0

A propagating DW is (Lorentz transformed)

n(x — vt) = npy (\/"%) , Jul<T (spinwave velocity).

The propagating solution is valid only for the range of parameter values where
the Néel state is stable

A 2 A\ 2
<;=>|U|< 1— (=] =w.

V1 — 2 2
® The phase transition to the spiral state destabilizes the propagating DW for
v > V..
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Traveling skyrmions

Make the solitary wave ansatz n = n(x — vt,y). It satisfies
n X (heff — ’Ugafn) =0.

We find numerically (by a relaxation algorithm) skyrmions traveling along x, for
a range of velocities v.

4 4 4
v=0.4.

The traveling skyrmions get more elongated with increasing veloci

There is a maximum velocity v.(A) where the skyrmion expands to infinity. For
example, for A = 0.45, we find 0 < v < v, = 0.71.
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Magnetization of traveling skyrmions

The magnetization vector is given by

The local magnetization

® is zero for a static AFM skyrmion.

® |t is nonzero for a propagating one.

4 N
The magnetization vector m for a
,,,,,,,,, traveling skyrmion.
2l T LI
~‘n~ - Red for mg > 0, blue for mg < 0.
. NN
e B\ \
i Hf—
0 el b . L.
> v gl The net magnetization
5 oo
T VNN s
1 ' 1A is nonzero for a propagating skyrmion.
ol T
S S It increases with velocity.
2 -2 2 4

Stavros Komineas Traveling chiral solitons



Maximum velocity and the phase transition to the spiral

The key to understanding the behavior of the maximum

velocity ¥, is the numerical finding that the skyrmion expands

in both the x and y directions as v — U,.

The equation contains derivatives in the two space directions x and y,
n x {[(1 —v?)32n — 2X€y x O1n] + [03n + 2)e; x Oon] + n3§3} =0.

In the limit v — v, the skyrmion is very elongated primarily in the y direction,
and we may neglect the y derivatives.
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Maximum velocity and the spiral phase transition

The key to understanding the behavior of the maximum

velocity v, is the numerical finding that the skyrmion expands

in both the x and y directions as v — v,.

The equation contains derivatives in the two space directions x and y,
n X {[(1 —0v3)0?n — 2)e; x Oin| + [03n €7 X Oqn] + ngEg} =0.

In the limit v — v, the skyrmion is very elongated in the y direction, and we
may neglect the y derivatives.

The 1D equation

n X [(1 — v2)8fn — 2)\/8\2 X 81n 4 ng/e\g] =0

supports the Néel state only for dimensionless DM parameter smaller than % or

#<g:>|v|< 1-— ™ 2:v
VvV1i—0vZ2 7 2 -
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Lo Comparison with numerics

® Blue line shows

2
TA
Y05 ve=1/1- (2> :

® Red dots give the numerically calculated
values (obtained when the traveling

skyrmion size diverges).

0.0
0.2 0.4 2/n

The origin of the maximum skyrmion velocity is the topological phase transition

from the Néel to the spiral state.

e For A — 0, the maximum velocity v. — 1, i.e., it goes to the value of the
Lorentz invariant model (spinwave velocity).

® For A\ — % (large DM), the maximum velocity is small, v, — 0.
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Particle-like character of a skyrmion. The skyrmion

Energy of a traveling skyrmion (solitary wave)

Mo

——
2

E= %/f@ dxdy + Eg = % /(5‘1n0)2dxdy+E0
ng a static skyrmion, Eq its energy.
It is a Newtonian particle with mass Mg
E(v) = %M0U2 + Ej, v <K V.
Linear momentum

P= —/h-alndxdy: U/(@ln)gdxdy.

~—_—
M

For small v,
P= U/(81n0)2 dxdy = Mo, (R V
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Energy-Momentum relation

For small velocities

2
E~Ey+ RV
2M0 9 c
For large momenta, we set v & v, in the group velocity relation
dE dE
v=—=>v~ —=>Ex~vP+E, v—uv, E.x4.5.
dP dP
30 30
20
10 £
P
0 0
0.0 0.2 0.4 0.6 0.8 [t 10 20 30
v P

Solid lines show numerical data.
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Energy and mass

Let us look into the energy-mass relation,

éEszC2+EC, U — .

E ~vP+E.
P = Mv

From virial relations (omitted here), we find

E=M +>\/’éy - (O1n x n)dxdy.

Relativistic dynamics for chiral particles
® The dispersion relation is shifted by a constant in the relativistic limit.

® The Energy is shifted with respect to the mass by a chiral term.
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DM interaction and easy-plane anisotropy

For a one-dimensional magnet, we have two phase transitions.

Néel nonflat spiral flat spiral

Ar = 0.705

1
ANF = 5

We have the respective ground states -
e Néel state. E ¢"/\\
® A nonflat spiral (with energy lower than the g,
flat spiral). 3 ° N
® The (usual) spiral with ng = 0 [a "flat” spiral ;?
on the (13) plane]. .

[Chovan, Papanicolaou, Komineas, PRB (2002)] 1o
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Vortex in a stripe

We consider a stripe geometry as this is suitable for shifting of magnetic
information (it will also give rise to interesting effects).

A hybrid vortex
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We have competition between
® boundary conditions (at y = #L/2) that favour canting of no,

® DM interaction that favours Néel type skyrmion.
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Propagating vortex in a stripe
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A flat spiral (v = 0.90).
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Dynamical phase transitions

We expect the following three phases (and two critical velocities).

2
® The Néel state for ﬁ <Mr(=05)=>v <y /11— (%NF) = Unr-

2
® The flat spiral for ﬁ > A (=07)=>v>4/1— (%F) = Uf.

e The non-flat spiral for Ayg < ﬁ < AF = Unr < U < Up.

1.0
0.8 -
i Analytical v,
0.6 - b f
N | Analytical v, Flat splral
0.4 - ™ Numerical v Vortex chain
A Numerical v, Nonflat spiral
0.2 - ® Numerical v
0.0 P T R R A
0.0 0.1 0.2 0.3 0.4 0.5
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Summary

® Traveling domain walls, skyrmions and vortices exist in antiferromagnets.

® The dynamics of topological solitons in antiferromagnets is dramatically
different than that of their ferromagnetic counterparts.

® Vortex phases arise due to dynamics in a stripe geometry.
® The maximum velocity for solitons is lower than the spinwave velocity.

® The topological phase transition from the Néel to the spiral phases is crucial
for fast soliton dynamics.
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