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Abstract
The deformation module approach introduced by [Gri16] is a generic framework for
integrating prior knowledge about desired deformation fields in shape and image regis-
tration. Deformation modules allow to build diffeomorphic deformations that satisfy a
given structure, for example locally affine transformations, scalings and rotations, or a
combination. The diffeomorphisms are built by integrating a flow of constrained velocity
fields.
However, in applications such as modeling of respiratory motion in abdominal im-

ages for operation planning, one often encounters situations where a single deformation
model is not adequate. While it makes sense to consider diffeomorphic deformations of
the seperate organs, breathing motion results in a non-smooth and possibly discontin-
uous displacement field at organ boundaries. To be able to use different constrained
deformations for different organs, we combine the model with a framework to introduce
region boundary constraints for multiple interacting objects in a shape or image, as in-
troduced in [Arg14]. Deformation fields are built for each object separately, while their
interaction is incorporated by constraints on the deformation of the object boundaries.
We derive theoretical results on the existence of optimal trajectories for the constrained

registration problem and provide numerical results to demonstrate the potential of our
approach.

Kurzfassung
Der in [Gri16] eingeführte Deformationsmodul-Ansatz berücksichtigt Vorwissen über
gewünschte Deformationsfelder in der Form- und Bildregistrierung. Deformationsmod-
ule ermöglichen es, diffeomorphe Deformationen zu generieren, die einer bestimmten
Struktur entsprechen: zum Beispiel lokal affine Transformationen, lokale Skalierungen
und Rotationen oder deren Kombination. Die Diffeomorphismen ergeben sich als Lösung
der Flussgleichung zeitabhängiger eingeschränkter Geschwindigkeitsfelder.
In einigen Anwendungen wie der Modellierung der Atembewegung in Bildern des Ab-

domens zur Operationsplanung reicht ein einziges Deformationsmodell jedoch nicht aus,
um eine plausible Deformation zu erhalten. Während diffeomorphe Deformationen in-
nerhalb einzelner Organe plausibel sind, führt die Atembewegung zu einem nichtglat-
ten, möglicherweise diskontinuierlichen Verschiebungsfeld an den Organgrenzen. Um
für verschiedene Organe verschiedene Vorgaben formulieren zu können, kombiniert die
hier vorgestellte Methode das Modell mit dem Ansatz in [Arg14], der Deformationen
an den Grenzen mehrerer interagierender Objekte einschränkt. Deformationsfelder wer-
den für jedes Objekt separat bestimmt und anschließend unter Berücksichtigung der
Einschränkungen an den Objektgrenzen zusammengefügt.
Inhalt dieser Arbeit sind theoretische Ergebnisse zur Existenz von Minimierern des

aufgestellten Registrierungsproblems sowie numerische Ergebnisse, die das Potenzial des
Ansatzes aufzeigen.
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Notation

Shapes and Deformations
O Shape space (Def. 2.1)
q : [0, 1] 7→ O Time-evolving shape
qt Shape at time t
q̇t Derivative with respect to time at t
TqtO Tangent space of O at qt
ξ : O × C l0(Rd,Rd)→ TO Infinitesimal action (Def. 2.1)
V ⊂ C l0(Rd,Rd) Space of vector fields
v : [0, 1] 7→ V Time-dependent velocity field
vt The velocity at time t
φ̇t = vt ◦ φt Flow equation of deformations (Def. 2.4)
q̇t = ξqt(vt) Evolution the shape defined by the flow

equation
φv Diffeomorphism defined by the flow of v
Diff l0(Rd) Set of diffeomorphisms acting on Rd that

are of class C l with inverse of class C l,
converging to identity at infinity

(p. 9)

DiffV Group of diffeomorphisms associated with
the admissible Banach space V

(Def. 2.7)

Image and Shape Registration
qS Source Shape (to be deformed)
qT Target Shape (to be reached)
J Energy functional of the registration

problem
(p. 9)

U Data similarity term, depending on the
deformed shape and the target

R Regularization term depending on the
deformation

H Hamiltonian function used for geodesic
shooting

(Def. 2.10)

H Reduced Hamiltonian function (Th. 3.13)

Deformation Modules (Def. 2.18)
M Deformation module
H Space of controls
ζ : O ×H→ V Field generator
c : O ×H→ R+ Cost function
Zq : H→ H∗ Cost operator satisfying the property

(Zqh|h)H∗,H = cq(h)



Multi-Shape and Constrained Registration
Mmulti Multi-shape combination of deformation

modules
(Def. 3.1)

Cstate
q : V → Y State constraints (Def. 2.13)

Cq := Ckin
q : V → Y Kinetic constraints values (Def. 2.13)

Y Space of constraints (Banach space)

Reproducing Kernel Hilbert Spaces (RKHS) and Kernels (Def. 2.6)
K Reproducing kernel
K̃(x, y) the d× d kernel matrix for x, y ∈ Rd

k(x, y) = exp (−‖x−y‖
σ2 ) Gaussian distribution

K̃a,b :=K̃(a, b)∈ Rdn1×n2 with a = (a1, ..., an1) ∈ (Rd)n1 ,
b = (b1, ..., bn2) ∈ (Rd)n2 the dn1 × dn2
kernel matrix with values(
K̃(a, b)

)
i,j

= k(ai, bj)
δx(v) := v(x) the point evaluation functional

General Notation
C l0 Space of l-times continuously differentiable

functions that converge to zero at infinity
X∗ Dual space of a space X
〈·, ·〉X Scalar product in the Hilbert space X
(µ|x)X∗,X = µ(x) Dual pairing of an element µ ∈ X∗ in the

dual space X∗ of X, with x ∈ X
∂x Derivative with respect to x (p.9)



Chapter 1: Introduction
In this thesis we derive an approach for incorporating prior knowledge of deformation
and object boundary motion in image and shape registration. The proposed framework
is an extension of the deformation modules introduced in [Gri16] and makes use of the
idea of multiple shape registration presented in [ATTY15a]. The goal is to provide a
framework for medical image registration that makes it possible to incorporate prior
knowledge about the structure of deformations of different organs and tissues in the
human body.

1.1 Image Registration

In image analysis one is often not only interested in the analysis of a single image, but
in comparing the information given in different images. For this reason, image regis-
tration is an important field in image analysis. The applications range from astro- and
geophysics over computer vision to medicine and biology [Mod04]. In medical appli-
cations, imaging can help to monitor tumor growth, facilitate treatment verification,
improve interventions, or compare patient’s data to an anatomical atlas. The general
image registration problem can be stated as follows.
Problem 1.1. [Mod04] Image Registration

Find a reasonable transformation such that a transformed version of a template
image is similar to a reference image.

The essential question mathematical models adress in image registration is to provide
a mathematical formulation for the terms reasonable and similar for a given application.
Because of the varying nature of images and represented objects in a wide range of
applications there is no common technique of registration applicable to all registration
tasks. Registration methods are unique to each problem. For example in medical imaging
a reasonable transformation of bones would be a rigid or affine one, while for soft tissues a
non-rigid transformation is considered. The similarity measure of the images can depend
on the represented objects as well as on the modality.
The choice of the mathematical model depends on the given information about the

represented objects. When prior knowledge is given, the model can be adapted in the
mathematical setting. This leads to precise but more complex models. Complex models
will usually lead to a high computation time and memory requirements. Some applica-
tions require fast and cost efficient computations. For example shape changes that arise
during a surgery due to intervention have to be corrected numerically in real-time.
Therefore, a compromise between accuracy and cost (in terms of time, storage, or other

limited resources) has to be made. Research literature shows many different approaches
to the problem 1.1, taking into account specific prior knowledge and requirements of
limited resources for computation.
In general, one can distinguish between parametric and non-parametric image regis-

tration techniques. In parametric image registration, the transformation is composed
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Introduction

from a finite number of basic deformations. Thus the transformation can be described
by a finite number of parameters, that are interpretable for the given setting. In non-
parametric image registration, the deformation is given by a vector at each transformed
point. This allows for a richer variety of deformations, as they are not restricted to
certain basis functions.

1.1.1 Large Diffeomorphic Deformations

An example for non-parametric registration techniques is the Large Deformation Diffeo-
morphic Metric Mapping. Three advantages of this model are referenced in the name of
this method:

• it can produce large deformations,

• deformations are continuously differentiable and have a continuously differentiable
inverse (i.e., they are diffeomorphic),

• it provides a metric dV on the space of deformations.

Elastic deformation models pioneered in [Bro81] generated a deformation φ(x) of x ∈
Rd by perturbations v(x) from the identity,

φ(x) = Id(x) + v(x). (1)

However, [CRM+96] pointed out that elastic deformation cannot guarantee diffeomor-
phisms for large vector fields v(x). They proposed a transformation on the basis of a
fluid flow of vector fields, described by the flow equation

φ̇t = vt(φt(x)) (2)

In general, the deformation φ(x) resulting from equation (1) is not invertible. Beg et.
al [BMTY05] further developed this approach to a framework that provides a metric for
the image orbit.
Since then, the underlying theory of Riemannian geometry has been extensively stud-

ied [MM07, Arg14, BBM14]. A further development resulting from the Riemanian geo-
metric viewpoint is the shooting method. The metric dV is a right-invariant Riemannian
metric and therefore allows to formulate a principle of least action for the flow. By the
principle of least action the possible flows of velocity fields are selected to be geodesic
flows. They describe the shortest path from an initial deformation φ0 to a deforma-
tion φ1. [DGM98] and [MTY02] described a Euler-Lagrange formulation of the shooting
equations. Equivalently a Hamiltonian reduction can be formulated, as in [MTY15],
[MM07].
Furthermore, several extensions of the LDDMM model exist. For example, in the

metamorphosis model, the points transformed by the deformations are allowed to vary
in intensity values, allowing for a mass-preserving deformation. Moreover, S. Arguil-
lère proposed a framework for multiple interacting objects in a common background
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1.1 Image Registration

φ0 = Id(x) φ1(x)

v0(φ0(x))

t = 0

vt1(φt1(x))

t = t1

vt2(φt2(x))

t = t2

Figure 1: The deformation φ is evolving over time as the flow of the time-dependent vector field v. The flow
equation (2) is a central tool for the construction of diffeomorphic deformations in LDDMM as well as in our
proposed framework. The figure shows the deformation φ0 equal to the identity at time t = 0, the vector fields vt
applied to the deformation φt at intermediate time points t1, t2 ∈ [0, 1], and the resulting deformation φ1. The
gradient φ̇ of the deformation φ is equal to the vector field vt(φt(x)) at each time point t. The deformation φ is
the solution of the flow equation which amounts to the integral of φ̇.

[ATTY15b]. This framework makes it possible to build a combination of deformations
that are diffeomorphisms of different segmented regions in the ambient space that still
leads to a coherent global deformation. The contribution of the thesis at hand is an exten-
sion of Arguillère’s multi-shape registration framework. We will refer to this framework
as multi-shape LDDMM, opposed to the multi-shape modular approach that we propose.
The modular approach provides parametric deformations, as opposed to LDDMM as a
non-parametric framework.

1.1.2 Parametric Diffeomorphic Deformations

For specific medical applications the non-parametric image registration approach can
have two drawbacks. (1) The resulting deformation is not easily interpretable, and (2)
the deformation can be implausible in the real world. Therefore approaches have been
developed that rely on the theory of LDDMM, that provide the advantages pointed out
in the previous section, and at the same time parameterize the deformations beforehand
with meaningful variables.
The poly-affine and poly-rigid diffeomorphic deformations introduced in [ACAP09] and

[APA03] provide locally rigid and affine deformations. The framework has been applied
to registration of bones [SPR12] and cardiac motion [MSBP15], [RDSP15]. The GRID
model (Growth by random iterated diffeomorphisms) [GSS06] aims to model biological
growth as a parameterized diffeomorphic deformation. A diffeomorphism is generated by
a sequence of local small deformations around seed points where the growth is located.
Another approach for parametric diffeomorphic image registration is the Diffeons model
[You12]. Here, the velocity field belongs to an object-dependent Hilbert subspace of
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a Hilbert space of finite energy velocities. The Hilbert subspace is finitely generated
by basis functions called diffeons. This setting allows to design a metric that induces
different amounts of deformations inside and outside a shape.
These approaches only incorporate a certain type of prior knowledge, such as rigidity

or growth. To combine different types of local deformations into a diffeomorphism,
B. Gris introduced the deformation modules approach in [Gri16]. Deformation modules
generalize the previous approaches, as modules for locally rigid deformations or a growing
deformation can be defined. They require few conditions on the constraints (i.e., the
prior knowledge one wants to incorporate). The modular approach allows very easy
parametrization of certain deformations which can be combined to arbitrary complex
deformations.
In a deformation module, a vector field is generated by a field generator depending on a

low-dimensional parameter. As in LDDMM, the final deformation is built by the flow of a
time-dependent vector field. In the GRID and Diffeons model, the same deformation can
potentially arise from different parameters. Because the regularization cost is the norm
of the vector field, generators that build the same deformation are associated with the
same cost. This is not coherent in a setting where one generator is more plausible than
another. Opposed to that, the cost for deformation modules is dependent on the object
as well as the generator and therefore can be defined coherent with priors. Following
some weak restrictions on the cost, it also defines a metric on the space of deformations,
which allows to describe geodesics and apply the shooting method.

1.1.3 Constrained Diffeomorphic Deformations for Multiple Shapes

The frameworks of deformation modules and multi-shape LDDMM both provide im-
portant features for the application to medical image registration. Using deformation
modules, prior knowledge of deformations can be modeled. However, the resulting de-
formation is always a diffeomorphism, which is not plausible when considering different
organs in an image. The deformation of organs in the human body is supposed to be
diffeomorphic inside the organs but can be discontinuous at organ boundaries. To model
this setting, the framework is lacking a way to combine different modules in a way that
the deformations inside and outside the organs are not influencing each other but are
still coherent at their boundaries.
In the framework of multi-shape registration such a combination is given. However, the

framework has been formulated only for unparameterized diffeomorphic deformations.
To make use of the advantages of these two frameworks, we propose the combination
of both kinds of constraints. This will allow to build constrained diffeomorphisms by
deformation modules that are linked at object boundaries.

1.2 Outline

The thesis is organized as follows. In chapter 2 we lay out the mathematical foundations
for the framework. We explain concepts of diffeomorphism groups, reproducing ker-
nel Hilbert spaces and geodesic shooting for the LDDMM registration problem. Then

6



1.2 Outline

we introduce the constrained optimal control problem for multiple interacting shapes.
Furthermore, we explain the idea and central theoretical results from the modular de-
formation approach.
Chapter 3 covers the newly developed framework where the ideas of constrained multi-

shape matching and deformation modules are combined. We define the setting and give
a motivational example. Then we provide a proof of existence of minimizers of the
matching problem. Furthermore, we derive the Hamiltonian system of equations for
geodesic shooting.
In chapter 4, we present numerical results on a synthetic data set and compare our

model to the multi-shape LDDMM setting as well as to the standard LDDMM setting
without any boundary constraints and a compound modular deformation.
Chapter 5 will summarize and evaluate our contributions and give an outlook to pos-

sible future work.
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Chapter 2: Mathematical Background
We will use the following notation throughout the thesis.
For a mapping f : Rd → X of class C l with compact support, following [ATTY15b]

we define the norm

‖f‖l = sup
{∣∣∣∂l1+···+ldf(x)

∂xl11 ...∂x
ld
d

∣∣∣
X
|x ∈ Rd, (l1, ..., ld) ∈ Nd, l1 + · · · ld ≤ l

}
. (3)

Let d ∈ N be fixed. A mapping φ : Rd → Rd is called a C l-diffeomorphism if it is a
bijective mapping of class C l with an inverse of class C l. We consider C l-diffeomorphisms
that converge to identity at infinity with respect to the norm ‖ · ‖l. The space of such
diffeomorphisms is denoted by Diff l0(Rd). Analogously we define C l0(Ω,Rd) the space of
functions from Ω to Rd of class C l that converge to zero at infinity.
We will denote (µ|δ)V ∗,V := µ(δ) the dual pairing for µ ∈ X∗, δ ∈ X. In order

to compute optimality conditions for the energy functional (2.9), we need to compute
its variations in the following sense. For a Banach space X, a ∈ X and a functional
F : X → R, we define ∂xF (a) ∈ X∗ in the dual space of X by

(
∂xF (a)

∣∣δ) := d
dtF (a+ tδ)∣∣

t=0
(4)

if it exists. For a function g : [0, 1] × X → Y , we denote ġ := d
dtg its derivative with

respect to the first variable (time).

2.1 Large Deformation Diffeomophic Metric Mapping

2.1.1 The Registration Problem

Consider two images qS ∈ O and qT ∈ O in the space O := C l0(Ω,R), where Ω ⊂ Rd is a
domain of Rd. We will refer to qS as the reference image or source shape, and qT as the
template image or target shape. The image registration problem is to find a plausible
deformation φ, that maps the reference image as close as possible to the target image.
A common way to model this problem is to consider the minimization of an energy
functional

J (φ; qS , qT ) := U(φ · qS , qT ) +R(φ) (5)

over the deformation φ. Here, the functional U : O × O → R is a distance in the space
of images, that models the similarity between two images. The functional R : D → R
models the plausibility of the deformation φ in the considered space of deformation D.
Many approaches for choices of U and R are proposed in the literature. The choice

depends on the setting of the problem, including for example modalities of the images
and the nature of the represented objects. While we will not go into details of the
distance measure U , we will in this work focus on a way of regularizing the deformation
of the images.
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Mathematical Background

For many applications it is desirable to have a deformation φ that is invertible, and
both φ and φ−1 should be sufficiently smooth. This prevents the deformation from creat-
ing holes or foldings when applied to an image and preserves the local topology. Under
this assumption the deformation φ is a diffeomorphism. The set of diffeomorphisms
forms a group with the identity mapping as neutral element. The group of diffeomor-
phisms is essential in the Large Deformation Diffeomorphic Metric Mapping (LDDMM)
framework. Our proposed framework makes use of the basic ideas of LDDMM, which is
why this chapter is dedicated to the introduction to diffeomorphism groups, LDDMM
and geodesic shooting.
Although the motivation for the registration problem considered in this thesis is medi-

cal image registration, we will use the notion of shapes instead of images. Shapes provide
a more general framework to the problem. The image registration problem can be seen
as a special case of the shape registration problem, so all derived results can be applied
to images. Since images are mathematically modeled as functions on Rd, they are of
infinite dimension. In order to provide example demonstrations we will later consider the
special case of landmarks as elements of a finite-dimensional shape space. This will make
the derivation of explicit formulations easier and should help to get a better intuition of
the framework.
In the following section we introduce the notion of shapes as introduced in [Arg14].

2.1.2 Shape Spaces

Definition 2.1. [ATTY15b, Def. 2] Shape Space

Let O be an open subspace of a Banach space X, d ∈ N and k ∈ N. Assume
that the group of diffeomorphisms Diff l0(Rd) acts continuously on O, according to
the action · denoted by

Diff l0(Rd)×O → O
(φ, q)→ φ · q.

(6)

Then O is a Ck-shape space of order l on Rd if the following conditions are satisfied:

1. For each q ∈ O, φ ∈ Diff l0(Rd) 7→ φ · q is Lipschitz continuous, i.e.

∀q ∈ Rd ∃γq > 0: ‖φ1 · q − φ2 · q‖O ≤ γq‖φ1 − φ2‖l. (7)

2. For all q ∈ O, φ 7→ φ ·q is differentiable at φ = IdRd . This differential is denoted
by ξ and is called the infinitesimal action of C l0(Rd).

3. The mapping (q, v) ∈ O × C l0(Rd) 7→ v · q is continuous and its restriction to
O × C l+k0 (Rd) is of class Ck.

An element q of O is called a shape, and Rd is referred to as the ambient space.

10



2.1 Large Deformation Diffeomophic Metric Mapping

In particular, we will consider shapes as a functions q : M → Rd, whereM is a compact
manifold. Then O is equal to the Banach space X = Cp(M,Rd) and for any q ∈ X,
x ∈M , the diffeomorphism φ acts on q according to

(φ · q)(x) := φ(q(x)). (8)

Example 2.2

1. Let M = {1, ..., n}. Then q is the set of n points in Rd and O is the space of
landmarks.

2. Let M = [0, 1]. Then q is a curve in Rd.

3. Let M = (cos(t), sin(t)), t ∈ [0, 1]. Then q is a closed curve in Rd.

For the shapes we will consider, φ · q should only be supported on a compact subset K
of Rd. This property will be required for the existence of minimizers for the registration
problem. The shapes satisfy the following definition:

Definition 2.3. [Arg14, Th. 10.1] Compactly Supported Shape

A shape q ∈ O is of compact support, if there exists a compact subset K of Rd, such
that for some γq > 0 and for φ1, φ2 ∈ Diff l0 we have

‖φ1 · q − φ2 · q‖O ≤ γq‖φ1
|K − φ

2
|K‖l, (9)

where φ|K denotes the restricion of φ on K.

Note that the example shapes in 2.2 are all of compact support, as the manifold
M ⊂ Rd is compact for each example.

2.1.3 The Diffeomorphism Group

As motivated in section 2.1.1, we will consider diffeomorphisms φ ∈ Diff l0(Rd) as defor-
mations for the shape registration framework, i.e, continuously differentiable maps that
have countinuously differentiable inverses. Motivated by the concept of fluid dynamics,
diffeomorphisms are built by the evolution of time-dependent flow of vector fields, ac-
cording to the following evolution equation.

Definition 2.4. [You10, 8.2.1] The Flow Equation
Let v : Ω × [0, 1] → Ω, vt(x) := v(x, t) be a time-dependent vector-field. The flow
equation reads

φ̇t = vt ◦ φt,

and v is called the flow of φ.

11



Mathematical Background

To ensure that the evolved deformation φvt is a diffeomorphism, it is necessary for vt
to satisfy strong enough smoothness constraints [You10].

Definition 2.5. [You10, Def. 8.12] Admissible Space

V is an admissible space if it is continuously embedded in C1
0 (Ω,Rd), or equivalently

if there exists a constant c > 0, such that ‖u‖1,∞ ≤ c‖u‖V for all v ∈ V .

Note that the diffeomorphism generated by a given flow field is unique, while one
diffeomorphism can generally evolve from more than one flow field.
As a sufficient condition for the well-posedness of the flow equation, one assumes vt

to be in an admissible space [You10]. Moreover, [You10, Theorem 8.7] states that the
solution of the flow equation is a diffeomorphism. The concept of reproducing kernel
Hilbert spaces (RKHS) yields a family of such spaces and will be introduced in the
following section.

2.1.4 Reproducing Kernel Hilbert Spaces

In this section we will introduce reproducing kernel Hilbert spaces (RKHS). They fall
into the class of admissible spaces and thus ensure the well-posedness of the flow equa-
tion for time-dependent vector fields in the space. The following definition summarizes
the assumptions in [You10, chapter 9.1].

Definition 2.6. Reproducing Kernel Hilbert Space

Let Ω ⊂ Rd, and let V ⊂ L2(Ω,Rd)∩C0(Ω,Rd) be a Hilbert space with inner product
〈·, ·〉V . V is a Reproducing Kernel Hilbert Space (RKHS) if the point evaluation
functional δx : V → Rd, δx(v) := v(x) is continuous on V for all x ∈ Rd.

This property allows the definition of the reproducing kernel of V . The Riesz repre-
sentation theorem [You10, Theorem A.10] states that, for every element µ in the dual
space V ∗, there exists a unique h ∈ V with µ(v) = 〈h, v〉V , for all v ∈ V ; moreover
there exists a unique linear operator K: V ∗ → V with

(
µ
∣∣v)

V ∗,V
= 〈Kµ, v〉V . Defining

δαx ∈ V ∗, v 7→ 〈α, v(x)〉Rd for x, α ∈ Rd, it follows

∀v ∈ V : 〈Kδαx , v〉V = 〈v(x), α〉Rd . (10)

The function α 7→ δαx is linear and the kernel K is unique. So Kδαx is linear in α. Let
x, y ∈ Rd and consider the function α 7→ (Kδαx )(y). This is a linear function mapping
from Ω ⊂ Rd to Rd, thus there exists a kernel matrix K̃(x, y) ∈ Rd × Rd :

K̃(x, y)α = (Kδαx )(y). (11)

The kernel K has the reproducing property in the following sense: For every function
v ∈ V the point evaluation at x ∈ Rd can be performed by taking an inner product
with a function determined by the kernel. Moreover, one can show that every symmetric
positive definite kernel K defines such a Hilbert space [Aro50, p.347].

12



2.1 Large Deformation Diffeomophic Metric Mapping

Several choices of reproducing kernels haev been proposed. In this work we will use the
Gaussian kernel. For the choice of a Gaussian kernel, the matrix K̃(x, y) can be written
as K̃(x, y) = k(x, y)Id, where k(x, y) = exp (−‖x−y‖

σ2 ) is the Gaussian distribution. The
framework can be easily adapted to the choice of other kernels.

2.1.5 The LDDMM Registration Problem for Shapes

For the regularization term R(φ) it is useful to have a metric on the space of defor-
mations. Here we will conclude that for a subgroup of Diff l0(Ω) that is defined by an
admissible space V in the following definition, the norm on V determines a metric on
the associated space of diffeomorphisms.

Definition 2.7
Let V be an admissible space of vector fields. We denote φv the solution of the flow
equation, with

v ∈ XV :=
{
v : [0, 1]× Ω→ Rd

∣∣∣vt ∈ V ∀t ∈ [0, 1],

‖v‖XV :=
∫ 1

0
‖vt‖V dt <∞

}
.

(12)

Then we define DiffV (Ω) := {φv, v ∈ XV (Ω)} the group of diffeomorphisms associated
to V .

Then DiffV (Ω) is a subgroup of Diff l0(Ω), as proven in [You10, Theorem 8.14] and
[You10, Theorem 8.5]. The group DiffV naturally comes with a metric as the next the-
orem taken from [You10] states.

Theorem 2.8. [You10, Th. 8.15] A Metric on DiffV

Let V be an admissible Banach space. For ψ, ψ̄ ∈ DiffV and φv ∈ DiffV the solution
of the flow equation for a given time-dependent vector field v,

dV (ψ, ψ̄) = inf
vt∈V

{∫ 1

0
‖vt‖V dt, ψ = ψ̄ ◦ φvt=1

}
(13)

is a metric on DiffV and (DiffV , dV ) is a complete metric space.

As the metric dV provides a measure of distances in DiffV , or equivalently a measure
of lengths of paths in DiffV , we can use it as a regularization term in the registration
problem. In the following formulation of the registration problem we minimize not over
the deformation φ itself, but over its flow v of velocity fields. By adding the flow equation
as a constraint for the problem, this amounts to the same solution.

Problem 2.9
Let q : [0, 1] → O, v : [0, 1] → V , and qS , qT ∈ O. Consider the minimization of the

13
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φ0

φ1

v1

v2

v∗

DiffV (Rd)

Figure 2: Different paths on the manifold DiffV (Rd) starting at φ0 and ending at φ1. The endpoint φ1 can be
reached from φ0 by the flows of v1, v2 or v∗. In the shooting method only the shortest (i.e. geodesic) paths are
considered, here indicated by v∗. The flows of v1 and v2 are longer in the sense that the energy

∫ 1
0 ‖vt‖V dt is

higher.

functional
J (q, v) = 1

2

∫ 1

0
‖vt‖V dt+ U(q1, qT ) (14)

s.t. q̇t = ξqtvt

q0 = qS
(15)

Here, qS represents the source shape and qT the target shape that is aimed to be
reached. The time-dependent shape q is evolving from the source shape over time ac-
cording to the flow equation of the velocity field v. Moreover, ξqt(vt) is the infinitesimal
action of vt on qt, giving the speed of the shape at time t, see definition 2.1.
First approaches attempted to solve this problem by optimizing over the time-depen-

dent velocity fields, see for example the studies of [DGM98] and [MTY02]. However,
this problem is very high-dimensional because (1) the velocity fields are continuous and
(2) the flow of vector fields has to be computed over time. One diffeomorphism can be
evolved from different time-dependent velocity fields, so there is more than one tuple
(q, v) satisfying the flow equation with the same endpoint q1 at time t = 1. The data
term U(q1, qT ) in the functional J has the same value for each of those tuples, while the
values of the regularization term differ. If we fix the endpoint q1, and therefore the data
term U(q1, qT ), the minimizer of J is also a minimizer of the regulization term. Since it
defines a metric, the minimizer of the regularization term is unique.
Therefore, instead of optimizing over all possible flows, we can consider the subspace

of optimal flows for a given diffeomorphism. This amounts to considering geodesics on
the space of diffeomorphisms, or equivalently on the orbit of the reference shape qS .
The concept of geodesics on the DiffV (Rd) is visualized in figure 2. Indeed it can be
shown that the optimal flow can be described only by the momentum at initial time.
The idea of geodesic shooting takes advantage of this fact and will be introduced in the
next section.

14



2.1 Large Deformation Diffeomophic Metric Mapping

2.1.6 Geodesic Shooting

One can differentiate between two types of shooting equations, the Lagrangian and the
Hamiltonian shooting equations. Originally the shortest geodesic paths on the diffeo-
morphisms were defined via a Lagrangian function given by the kinetic energy of the
vector field v [BMTY05]. The geodesic controls are here the momentum mt ∈ V ∗ as-
sociated to vt in the space V , given by mt = K−1vt. The shooting method is based on
the fact that the geodesic controls satisfy a conservation law. This conservation law is a
special case of the principle of least action [MTY15] which is a cornerstone in geometric
and fluid mechanics [HSS09, MR13].
Seen as in the initial configuration, the momentum is a constant of motion [BH15, sec.

2.6, 2.11]. Through the conservation law, the momentum and therefore the velocity field
over the whole time interval [0, 1] is encoded. Adding this as a constraint to the problem
2.9 allows optimization over the initial momenta instead of time-dependent velocity field,
which reduces the parameter space.
Opposed to the Lagrangian approach, one can consider the Hamiltonian reduction of

the Lagrangian on Rd. While the momentum mt ∈ V ∗ has the same dimension as the
diffeomorphic flow φv, the momentum in the Hamiltonian reduction has the advantage of
reduced dimensionality: the momentum mt is replaced by the costate pt which lies in the
cotangent space TqtO∗ of the state qt ∈ O [MTY15]. Considering shapes qt ∈ Cp(M,Rd),
the costate pt has the same dimension as the manifold M . This is despite the fact that
the diffeomorphism is extended to act on the entire space Rd. For landmarks, curves or
surfaces this significantly reduces the dimensionality.
Both approaches of geodesic shooting are widely used. In this thesis we will use the

Hamiltonian reduction, as all problems are formulated in terms of shapes and can be
applied to landmark, curve or image registration. In the next section, we will derive the
shooting equations for the Hamiltonian framework.

2.1.7 Hamiltonian Geodesic Equations

In the following definition we introduce the Hamiltonian function for our particular
setting. The definition is adapted from [MTY15, 3.4] to our framework. The costate
pt ∈ T∗qtO is in the cotangent space of the shape space O.

Definition 2.10. Hamiltonian Function
The Hamiltonian function H : O ×T∗qtO × V → R for the minimization problem 2.9
is defined as

H(pt, qt, vt) := (pt|ξqtvt)T ∗
qt
O,TqtO −

1
2(K−1vt|vt)V ∗,V . (16)

The Pontryagin-Maximum-Principle (PMP) yields geodesic equations for the Hamil-
tonian system, that are equivalent to the conservation laws of the Lagrangian system
described in the previous section [MTY15, 3.5]. For our setting, the PMP gives the
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following system of equations. The theorem is adapted from [MTY15, theorem 1] to our
notation.

Theorem 2.11. Hamiltonian Geodesic Equations
If v is an optimal solution for the minimization problem 2.9, there exists a time-
dependent costate pt such that the system

q̇t = ∂pH(pt, qt, vt) (17)
ṗt = −∂qH(pt, qt, vt) (18)
vt = Kξ∗qtpt (19)

with the endpoint condition

p1 = −∂qU(q1, qT ) (20)

is satisfied.

As this is a well known result we don’t provide a rigorous proof here, but show its
general procedure in order to get an intuition of the meaning of equations (19). It
follows the proof provided in [MTY15]. Adding a Lagrange multiplier for the condition
q̇t − ξqtvt = 0 in the functional J (q, v) in problem 2.9 gives us the functional

J̄ (q, p, v) = U(q1, qT ) + 1
2

∫ 1

0
‖vt‖2dt+

∫ 1

0
(pt|q̇t − ξqtvt)dt. (21)

Then
J̄ (q, p, v) = U(q1, qT ) +

∫ 1

0
(pt|q̇t)−H(qt, pt, vt)dt, (22)

the minimizer (q∗, p∗, v∗) of 2.9 is a stationary point of J̄ and must satisfy

∂qJ̄ (q∗, p∗, v∗) = 0
∂pJ̄ (q∗, p∗, v∗) = 0
∂vJ̄ (q∗, p∗, v∗) = 0.

(23)

In the following we will compute the expression for ∂qJ̄ (q∗, p∗, v∗), ∂pJ̄ (q∗, p∗, v∗) and
∂vJ̄ (q∗, p∗, v∗).

Variation of J̄ with respect to p. Let δ : [0, 1] → TqtO, and δt := δ(t) be of compact
support for all t ∈ [0, 1]. Taking the variation of J̄ with respect to p yields(

∂pJ̄ (q, p, v)
∣∣∣δ) = d

dx
∣∣
x=0

J̄ (q, p+ xδ, v)

= d
dx
∣∣
x=0

[
U(q1, qT ) +

∫ 1

0
(pt + xδt|q̇t)−H(qt, pt + xδt, vt)

]
dt

(24)
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2.1 Large Deformation Diffeomophic Metric Mapping

The dat term U(q1, qT ) is independent of p and therefore the term d
dxU(q1, qT ) is zero.

Because (pt + xδt|q̇t) −H(qt, pt + xδt, vt) is continuously differentiable in t and in x we
can apply the Leibniz integral rule. We have(

∂pJ̄ (q, p, v)
∣∣∣δ) =

∫ 1

0

d
dx
∣∣
x=0

[
(pt + xδt|q̇t)−H(qt, pt + xδt, vt)

]
dt

=
∫ 1

0
(δt|q̇t)−

d
dx
∣∣
x=0

H(qt, pt + xδt, vt)dt

=
∫ 1

0
(δt|q̇t)−

(
∂pH(qt, pt, vt)

∣∣δt)dt
=
∫ 1

0

(
δt
∣∣q̇t − ∂pH(qt, pt, vt)

)
dt.

(25)

This gives the expression

∂pJ̄ (q, p, v) =
∫ 1

0
q̇t − ∂pH(qt, pt + xδt, vt)dt. (26)

Because
(
∂pJ̄ (q, p, v)

∣∣∣δ) = 0 holds for every δ of compact support, we deduce

q̇t − ∂pH(qt, pt + xδt, vt) = 0 (27)

for almost all t ∈ [0, 1].
Variation of J̄ with respect to v. Now let δ : [0, 1] → V . Taking the variation of J̄

with respect to v yields( ∂
∂v
J̄ (p, q, v)

∣∣∣δ) = d
dx
∣∣
x=0

J̄ (q, p, v + xδ)

= d
dx
∣∣
x=0

[
U(q1, qT ) +

∫ 1

0
(pt|q̇t)−H(qt, pt, vt + xδt)

]
dt

= d
dx
∣∣
x=0

∫ 1

0
−H(qt, pt, vt + xδt)dt

(28)

Again, since U(q1, qT ) and (pt|q̇t) are independent of v the terms cancel. Now inserting
the expression for H(qt, pt, vt) leads to
( ∂
∂v
J̄ (p, q, v)

∣∣∣δ) =
∫ 1

0

d
dx
∣∣
x=0

[(
pt
∣∣ξqt(vt + xδt)

)
− 1

2
(
K−1(vt + xδt)

∣∣vt + xδt
)]

dt

=
∫ 1

0
(ξ∗qtpt|δt)− (K−1vt|δt)dt.

(29)

This yields the result
ξ∗qtpt −K−1vt = 0 (30)

for almost all t ∈ [0, 1].
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Variation of J̄ with respect to q. Let δ : [0, 1] → O with δ0 = 0. This ensures that
qt + xδt satisfies the boundary condition q0 + xδ0 = qS , if q satisfies q0 = qS . Taking the
variation of J̄ with respect to q yields(

∂qJ̄ (p, q, v)
∣∣∣δ) = d

dx
∣∣
x=0

J̄ (q + xδ, p, v)

= d
dx
∣∣
x=0

[
U(q1, qT ) +

∫ 1

0
(pt|q̇t)−H(qt + xδt, pt, vt)

]
dt

(31)

Partial integration of the term
∫ 1

0 (pt|q̇t) yields∫ 1

0
(pt|q̇t)dt =

[
(pt|qt)

]1
t=0 −

∫ 1

0
(ṗt|qt)dt, (32)

which yields, together with (31),
(
∂qJ̄ (p, q, v)

∣∣∣δ) = d
dx
∣∣
x=0

[
U(q1, qT ) + (p1|q1 + xδ1)− (p0|q0 + xδ0)

+
∫ 1

0
−(ṗt|qt + xδt)−H(qt + xδt, pt, vt)dt

]
=
(
∂qU(q1, qT )

∣∣∣δ1
)

+ (p1, δ1)− (p0|δ0)

−
∫ 1

0
(ṗt|δt) +

(
∂qH(qt, pt, vt)

∣∣∣δt)dt.

(33)

This gives
(ṗt|δt) + ∂qH(qt, pt, vt) = 0 (34)

for all t ∈ [0, 1], and the boundary condition

p1 = −∂qU(q1, qT ). (35)

Let us take a closer look at what the geodesic equations (19) mean. Computing
∂pH(qt, pt, vt) yields(

∂pH(qt, pt, vt)
∣∣∣δt) = d

dx
∣∣
x=0

[(
pt + xδt

∣∣ξqtvt)− 1
2
(
K−1vt

∣∣vt)]
=
(
δt
∣∣ξqtvt). (36)

We see that the condition q̇t = ∂pH(pt, qt, vt) corresponds to the flow equation q̇t = ξqtvt.
The equation

vt = Kξ∗qtpt (37)

gives the relation between the costate pt and the velocity field vt. The terms K−1vt and
ξ∗qtpt are both elements of V ∗. While mt := K−1vt is of same dimension as the velocity
field vt, we see from

K−1vt = ξ∗qtpt (38)
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that it is supported only on qt(x) ⊂ Rd. This is why it is possible to reduce dimensionality
by minimizing over the costate p instead of the momentum m = ξ∗qtp. This will also be of
importance when we consider the LDDMM framework as a special case of deformation
modules in chapter 2.3. The condition ṗt = ∂qH(qt, pt, vt) gives the conservation law for
the costate p.

2.2 Constrained LDDMM for Multi-Shapes

In the LDDMM setting described in chapter 2.1, a global diffeomorphism of the whole
ambient space is considered. This corresponds to assuming the ambient space to rep-
resent one homogeneous medium, with the same regularity assumptions over the whole
space. In some applications this assumption may not be appropriate. In medical appli-
cations the shapes often correspond to different organs in the human body. The organs
lie very close to each other in the human body. At the same time the organs might have
different physical properties. This amounts to diffeomorphisms of different regularities
acting on the shapes. Associating independent diffeomorphisms for each of the shapes
will in general lead to inconsistencies of the overall deformation: Without taking the
deformations of all shapes into account, overlapping of the shapes will be possible.
In [ATTY15a], this is solved by embedding the shapes into a background, that cor-

responds to the complement of the shapes. The background is deformed by a new
deformation that is linked to the deformations of the shapes by linear boundary con-
straints. Through the boundary constraints the background boundaries can be forced
to move with the shapes. This setting is modeled as the following constrained optimal
control problem, that we adapted to our setting from [ATTY15a].

Problem 2.12. Constrained Registration Problem for Multi-Shapes

Let O1, ...,On be shape spaces, where Diff li0 (Rd) act smoothly with order li on
Oi for i = 1, ..., n. Let qS , qT ∈ O. Let V 1, ..., V k be reproducing kernel Hilbert
spaces of vector fields on Rd of class C li+ki0 with kernels Ki. Let ξ : O × V → TqtO
be the infinitesimal action on O as in definition 2.1. Let Y be a Banach space
and C : O → L(V,Y) a bounded linear operator from V to Y. The multi-shape
q = (q1, ..., qn) is an element of the shape space O = O1 × ...×On.
Consider the minimization of the energy functional

J (q, v) =
n∑
i=1

∫ 1

0
‖vi(t)‖2V idt+

n∑
i=1
U i(qi1, qT ) (39)

over the time-dependent vector fields vi, i = 1, ..., n such that

q̇it = ξiqit
vt

q0 = qS

Cqtvt = 0
(40)

for all i = 1, ..., n for almost all t ∈ [0, 1].

19



Mathematical Background

Compared to problem 2.9, the constraints are extended by the linear constraints
Cqtvt = 0, which links the velocities and therefore the deformations of different shapes.
The interaction of the shapes is modeled by the continuous operator C : O → L(V, Y )
that takes values in the space of bounded linear operators from V :=

∏k
i=1 V

k to Y .
Two special cases of constraints are introduced in the following definition. The state
constraints depend only on the state of the shape q ∈ O while the kinetic constraints
depend on the associated vector field v ∈ V .

Definition 2.13. State Constraints and Kinetic Constraints
Let Y be a Banach space. Let

Cstate : O → Y (41)

be a continuous linear and differentiable function. We say the state constraints are
satisfied for q ∈ O, if Cstate(q) = 0.
Moreover, let C : O× V → Y be a continuous function that is linear in v for every

q ∈ O, and
Ckin
q : V → Y, v 7→ Ckin

q (v) = C(q, v) (42)

The kinetic constraints are satisfied for v ∈ V , if Ckin
q (v) = 0.

Remark 2.14
For state constraints, there exists an equivalent formulation of kinetic constraints,
which was pointed out in [Arg14]. The state constraints Cstate are equivalent to
the kinetic constraints Ckin

q : V → Y, v 7→ C(q, v) with C : O × V → Y, (q, v) 7→
∂qCstateξq(v) [Arg14, p. 157].
This can be shown as follows: We recall that the vector field v satisfies the flow

equation
q̇ = ξqv. (43)

Taking the derivative of Cstate(qt) with respect to time gives

d
dtC

state(q) = ∂qCstate(q̇) = ∂qCstateξq(v) = Ckin
q (v). (44)

So given Cstate(q0) = 0, the state constraints Cstate(q) = 0 are equivalent to the
kinetic constraints Ckin

q (v) = 0.

For the examples we will examine, it is intuitive to express the constraints as state
constraints. However, for the implementation it is more convenient to have constraints
on the velocity fields, which is the reason why we cover both in this thesis. In the
following, two examples of constraints will be discussed.
Example 2.15. Identity Constraints

The identity constraints model the case that certain points of different shapes are
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forced to coincide.
Assume that we want to study a cat’s shape. The cat’s body and the tail have very

different properties, so it is sensible to assign them with different spaces of vector
fields. In the model they are considered two distinct shapes q1 ∈ O1 and q2 ∈ O2.
In order to attach the cat’s tail to the body, the contact points of both shapes must
be equal. Let q̄1 ⊂ q1, q̄2 ⊂ q2 be the subsets of the shapes q1, q2 that correspond to
these contact points. Let vi be the velocity field acting on qi for i = 1, 2.
The corresponding state constraints function Cstate is

Cstate(q) = q̄1 − q̄2. (45)

The kinetic constraints are given by

Ckin
q (v) = ξ1

q̄1(v1)− ξ2
q̄2(v2)

= v1(q̄1)− v2(q̄2)
(46)

This enforces that the tail and body of the cat are deformed in the same way at the
contact points.

Example 2.16. Sliding Constraints
Another possible kind of constraints are sliding constraints. Especially for the ap-
plication of modeling breathing motion in abdominal images these are of interest.
In the setting of abdominal organs modeling, the organs are not stitched to each
other at their boundaries. Instead, the organs can slide along the surrounding tis-
sue. In [ATTY15a] sliding constraints that allow this kind of motion are introduced.
The idea behind the sliding constraints is that the normals of the boundaries slid-
ing along each other have the same direction. So the constraints are implemented
forcing the normals of the deformed shapes to have the same direction. The sliding
constraints are not yet implemented in our new proposed framework, but would be of
high interest for future work. We refer to [Arg14] and [ATTY15a] for further details.

The latter example motivates the definition of the setting where shapes are embedded
in a background. This was proposed in [Arg14], defining the background space as the
product space of all shape spaces. Then the boundaries of the shapes are forced to
coincide with the corresponding boundaries in the background. We will use this setting
later in our examples.
The next theorem regarding existence of minimizers for problem 2.12 is taken from

[Arg14] and adapted to our notation. We assume that q ∈ O is differentiable and
q̇t = ξqtvt has a unique solution.
Theorem 2.17. Existence of Minimizers for Multi-Shape Registration

Assume that V is a RKHS of vector fields of class C l+1 on Rd, q 7→ Cq is continuous
and that U is bounded below and lower semi-continuous. If q0 has compact support,
then problem 2.12 has at least one solution.
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Proof : The theorem is a direct consequence of [Arg14, Theorem 10.1].

2.3 Deformation Modules

In this section we will define the notion of deformation modules as introduced in [Gri16].
We will explain the intuition behind the framework and then formally define it. More-
over, we cover some assumptions that have to be made in order to ensure the existence
of optimal deformations.
Deformation modules allow to build vector fields satisfying certain constraints, for

example allowing only local translations or local scalings. These vector fields are built by
a generator function ζ, that depends on a geometrical descriptor and a control variable.
The geometrical descriptor gives information about the geometry of the vector field. For
the example of local translations, the geometrical descriptor corresponds to the points
where the local translations are based. The control variables are coefficients defining the
vectorfield. For the example of local translations, they correspond to translation vectors
for each point of the geometrical descriptor. For the case of a rotation the control
variable would correspond to a scalar defining the rotation angle.
The control variables are optimized so that the shape deformed by the resulting diffeo-

morphism fits the target. For each geometrical descriptor q, a cost function depending
on the control variable h corresponds to the cost it takes to deform the geometrical
descriptor by the resulting vector field ζq(h). The cost function will serve as a regulari-
sation term in the registration problem. Since the geometrical descriptors move with the
application of the vector field, a mechanism to update their positioning will be defined.
The following definition formalises this intuition.

Definition 2.18. [Gri16, Def. 18] Deformation Module

Let k, l ∈ N. M := (O,H, ζ, ξ, c) is a Ck-deformation module of order l with
geometrical descriptors in O, controls in H, field generator ζ, infinitesimal action ξ
and cost c, if

• O ⊂ Rm is a Ck-shape space on Rd of order l with infinitesimal action ξ : O ×
C l0(Rd)→ TO,

• H is a finite-dimensional Euclidean space,

• ζ : (q, h) ∈ O × H → ζq(h) ∈ C l0(Ω,Rd) is continuous, with h 7→ ζq(h) linear
and q 7→ ζq of class C l,

• c : (q, h) ∈ O × H → cq(h) ∈ R+ is a continuous mapping such that q 7→ cq is
smooth and for all q ∈ O, h 7→ cq(h) is a positive quadratic form on H, thus
defining a smooth metric on O ×H.

Figure 3 visualizes how the deformed shape is obtained by the given initial shape and
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control
ht ∈ H

field generator ζ

shape
qt ∈ O

vector field
vt = ζqt(ht)

∈ V ⊂ C l0(Rd,Rd)

infinitesimal action ξ

speed
ξq(vt) ∈ TqtO

deformed
shape
qt+δ =

qt + δξqt(vt)

Flow Equation
q̇ = ξqt(vt)

t←− t+ δ

Figure 3: Evolution of the shape during time by a deformation module. Given a shape and control at time t, the
field generator builds a velocity field v = ζqt (ht). Then the infinitesimal action gives the speed ξqt (vt), which is
an element of the tangent shape space, specifying how the velocity field acts on the shape qt. The speed of qt at
time t is used in the shooting method to obtain the deformed shape at the next time step in the iteration. The
control at time t+ δ is updated depending on the shape qt + δ.

deformation module. For a given time point t ∈ [0, 1], the control ht and shape qt are
passed to the field generator to obtain the velocity field vt. Then the vector field is lifted
to the tangent space TqtO by the infinitesimal action, which is also dependent on the
shape. This gives the speed of the shape time point t. The deformation φt is obtained
by integration of the flow equation and applied to the shape.
Notice that the shape and control are different for each time point. The shape evolves

with the deformation in time. We will refer to a deformation φ that can be obtained by
the flow created by a deformation module, as a modular deformation.

Example Collection of Deformation Modules
In the following we will present some examples of deformation modules. All examples
are considered in two dimensions. For a broader overview we refer to [Gri16].
Example 2.19. Sum of Local Translations

A simple example is the sum of local translations, shown in figure 4. We consider a
finite number of translation vectors attached to points. The points are called geomet-
rical descriptors. If we consider a shape that is a set of landmarks, the geometrical
descriptors can be the same as the points of the shape. A different possibility is where
the geometrical descriptors are a certain subset of the ambient space, for example
the mean point.
The velocity field results from the control vectors by convolution with the kernel

K. If the geometrical descriptors are close to each other compared to the scale of
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(a) Geometrical descriptors qt
(red crosses) and controls ht
(vectors) for a local translation
deformation module

(b) The resulting vector field vt
at time t = 0.

(c) The deformed grid at time
t = 1. The red crosses indicate
the location of the transported
geometrical descriptors.

Figure 4: Example of a local translation deformation module. The geometrical descriptors consist of three
landmarks. The control variables are three translation vectors.

the reproducing kernel, the velocities generated by them will influence each other. If
they are distant from each other the velocities still sum up, but the influence is very
small.

Example 2.20. Local Scaling
A more structured deformation module is a local scaling, shown in figure 5. For a
local scaling the geometrical descriptor qt is one point that gives the scaling center.
Then on a circle of radius σ/3 we set three equally distributed points z1(qt), z2(qt)
and z3(qt) that build the support for the translation vectors of direction zi(qt)− qt.
By convolution with the kernel K, a velocity field results where velocities pointing
away from the geometrical descriptor are getting smaller with increased distance from
the scaling center. The control variable ht is a scalar that determines the amount of
scaling. By setting a negative value for the control variable, reduction can also be
generated.

Example 2.21. LDDMM as a special case of Deformation Modules
In the case of LDDMM, the considered vector fields lie in a RKHS Vσ. Consider the
space of controls

H := Vσ (47)

with the field generator

ζ : O ×H→ Vσ, (q, h) 7→ ζq(h) = h. (48)

Then for v = ζq(h), the cost function c : O ×H→ R+ can be defined by

cq(h) = ‖ζq(h)‖2Vσ = ‖h‖2Vσ . (49)

This definition is equivalent to the LDDMM setting. Considering H = Vσ does not
satisfy the definition of a deformation module in the sense of definition 2.18, where
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2.3 Deformation Modules

(a) The resulting vector field at
time t = 0 for a positive control
variable h = 1.

(b) The deformed grid for the pos-
itive control at time t = 1. The
red crosses indicate the location
of the transported geometrical de-
scriptors.

(c) The geometrical descriptor
(red cross) defines the support and
direction of three translation vec-
tors used as intermediate tools to
model a local scaling.

(d) The resulting vector field for a
negative control h = −1 at time
t = 0.

(e) The deformed grid at time
t = 1 for a negative control. The
red crosses indicate the location
of the transported geometrical de-
scriptors.

Figure 5: Example of a local scaling deformation module. The geometrical descriptors consist of one landmark.
The control variables are three translation vectors located around the geometrical descriptor. The scale of the
Gaussian reproducing kernel is set to 1. By chosing a positive or a negative control either a growing or a shrinking
of the region around the geometrical descriptor can be modeled.

the space of controls is restricted to be finite-dimensional. However it is legitimate
to consider this module because existence of optimal trajectories and minimizers has
been shown and widely studied. With an abuse of notation we will write M =
(O, Vσ, IdH, ξ, ‖ · ‖Vσ) and consider it as the LDDMM deformation module.
Following the idea of dimensionality reduction of the momentum in the Hamil-

tonian framework, we can define another deformation module that does satisfy
the conditions of definition 2.18 for a finite-dimensional shape space. From the
geodesic equations (19), we know that the geodesic velocity fields v lie in the sub-
space Hqt := {Kξ∗qtpt, pt ∈ TqtO}. The momentum K−1vt is supported only on qt, .
The elements of Hqt can be seen as sums of local translations carried by the points
qt(x), qt ∈ O. In section 3.6 this is proved when we consider the background module
for the multi-shape setting. This definition is not equivalent to the LDDMM setting,
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as not the whole space Vσ of vector fields is considered. But since we know that
the optimal velocity field lies in the subspace Hqt , the solution of the minimization
problem is the same for both settings.

In order to find optimal deformations for the registration problem, it has to be verified
that optimal deformations between shapes that minimize the cost cqt(ht) exist. The
following definition gives constraints on the choice of the cost. It gives a relation of the
cost with the generated vector field. This will be the constraint ensuring existence of
optimal deformations.

Definition 2.22. [Gri16, Def. 19] Uniform Embedding Condition

Let M = (O,H, ζ, ξ, c) be a Ck-deformation module of order l. M satisfies the
Uniform Embedding Condition (UEC) if there exists a Hilbert space of vector fields
V continuously embedded in C l+k0 (Rd), and a constant γ > 0, such that, for all q ∈ O
and for all h ∈ H, ζq(h) ∈ V ,

|ζq(h)|2V ≤ γcq(h). (50)

Now large deformations φv can be built by integrating a trajectory of vector fields
v : t ∈ [0, 1] 7→ vt ∈ V . Here, V is the same Hilbert space as in the definition of the
UEC. The considered vector fields are assumed to be modular, so they can be built by
vt = ζqt(ht), where (qt, ht) ∈ O×H. As the geometrical descriptor is transported by the
flow, we assume for each t ∈ [0, 1] that vt ∈ ζqt(H), where qt = φvt (q0) is the transported
geometrical descriptor. The following definition gives the set of trajectories that will be
considered for the registration problem.

Definition 2.23. [Gri16, Def. 21] Controlled Path of Finite Energy
Let M = (O,H, ζ, ξ, c) be a deformation module. Let a, b ∈ O. We denote Ωa,b

the set of measurable curves t 7→ (qt, ht) ∈ O ×H, where qt is absolutely continuous
starting at a and ending at b, such that for almost every t ∈ [0, 1], q̇t = ξqt(ζqt(ht))
and

E(q, h) :=
∫ 1

0
cqt(ht)dt ≤ ∞. (51)

Ωa,b is called a controlled path of finite energy starting at a and ending at b.

An essential question is the existence of optimal paths in Ωa,b. The following propo-
sition states existence of geodesics for the deformation module framework. A proof can
be found in [Gri16], chapter 4 proposition 20.

Proposition 2.24. [Gri16, Prop. 20] Existence of Large Deformations
LetM be a deformation module satisfying the UEC, with V being the corresponding
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2.3 Deformation Modules

Hilbert space of vector fields. Let (q, h) ∈ Ωa,b and vt = ζqt(ht) for each t ∈ [0, 1].
Then v ∈ L2([0, 1], V ), the flow φv exists, h ∈ L2([0, 1],H) and qt = φvt · q0 for all
t ∈ [0, 1].

We will use this proposition later to prove the existence of large deformations for the
multi shape framework. Moreover we will examine the existence of minimizers, where we
will make use of the following theorem. The theorem states the existence of minimizing
flows of the energy E, which is necessary for existence of minimizers of the registration
problem.

Theorem 2.25. [Gri16, Th. 5] Existence of Geodesics
Let M be a deformation module that satisfies the UEC. If Ωa,b is non-empty, the
energy E(q, h) reaches its minimum on Ωa,b.

The registration problem for the deformation modules framework can be stated as
follows:

Problem 2.26. Registration Problem for Deformation Modules

Let M = (O,H, ζ, ξ, c) be a Ck deformation module of order l. Let qS , qT ∈ O.
Consider the minimization of the functional

J (q, h) =
∫ 1

0
cqt(ht)dt+ U(q1, qT ) (52)

over the (q, h) ∈ Ω := ∪a,b∈OΩa,b, such that

q0 = qS

q̇t = ξqtζqt(ht).
(53)

The regularity term is now the integral over the cost, replacing the norm of the velocity
fields in the LDDMM framework. As previously, the problem is constrained with the
initial value q0 = qS and the shape evolution induced by the flow equation. In the
shape evolution the velocity field vt in the LDDMM setting is replaced by the generated
velocity field ζqt(ht) defined by the field generator ζqt and the control ht. The geodesics
for problem 2.26 are usually described using a Hamiltonian system of geodesic equations,
corresponding to the equations 19 for LDDMM.
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Chapter 3: Multi-Shape Deformation Modules

3.1 Definition of the Framework

The idea of the multi-shape framework is to be able to incorporate different kinds of
priors for the motion in different parts of the image, for example given by a segmentation.
In this case, the shape space O is the product space of the spaces Oi = Cp(Ω,Rd) for
i = 1, ...,m. We consider a multi-shape q = (q1, ..., qm) of shapes qi ∈ Oi.
For segmented images we can construct the multi-shape in the following way. Let

I : Rd → R be an image suppported on Ω ⊂ Rd and let U = (U1, ..., Um) with U i ⊂ Ω,
U i ∩ U j = ∅ and

⋃m
i=1 U

i = Ω for all i, j ∈ {1, ...,m}, i 6= j be a segmentation of the
image I. Then we define

qi(x) :=
{

I(x) , if x ∈ U i

0 , else.
(54)

The tuple q = (q1, ..., qm) is the multi-shape that represents the image I that is the sum
of images qi supported on each part of the segmentation U i of the segmentation.
In order to combine the framework of deformation modules with multi-shape registra-

tion, we define a new way of combining them. We will introduce a combination where
for each shape qi we consider a separate deformation module. The new multi-shape
combination can be seen as an external combination, opposed to the compound module
as an internal combination. It does fall into the class of a deformation modules, as the
generated deformation does not act continuously on O.

Definition 3.1. Multi-Shape Combination of Deformation Modules

Let Mi = (Oi,Hi, ζi, ξi, ci), i = 1, ..., n be Ck-deformation modules on Rd of or-
der l. Then Mmulti = (O,H, ζ, ξ, c) is the associated multi-shape combination of
deformation modules (Mi)i, with

• shapes q = (q1, ..., qn) in the shape space O = O1 × ...×On,

• controls h = (h1, ..., hn) in H = Hi × ...×Hn,

• ζ := (ζ1, ..., ζn) : (q, h) ∈ O ×H 7→ (ζ1(q1, h1), ..., ζn(qn, hn))
∈
∏n
i=1C

li
0 (Rdi ,Rdi),

• ξ := (ξ1, ..., ξn) : C l10 × ...× C l
n

0 ×O →
∏n
i=1 TOi ⊂ TO and

• cost cq(h) =
∑n
i=1 cqi(hi)i : O ×H→ cq(h) ∈ R+.

The following example is motivated by the problem of image registration, where dif-
ferent parts of the image given by a segmentation are desired to be deformed by different
kinds of deformations. For the application in medical image registration, we assume to
have segmentations of the different organs to register. Define the regions U1, ..., Um of
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the image domain Ω, that correspond to the segmented parts, and Um+1 := Ω\(
⋃m
i=1 U

i)
as the background region.
The goal is to find diffeomorphic constrained deformations for each region, where

points on the boundaries ∂U1, ..., ∂Um of U1, ..., Um and corresponding points on the
background boundary ∂Um+1 are transported by the same velocity field. The images are
mathematically given as functions on Ω and have infinite dimension, and their boundaries
are represented by curves. In order to simplify the example we will consider landmarks
instead of curves. The landmarks lie on the boundaries of the segmented organs and
can be viewed as a discretization of the infinite-dimensional setting. The purpose of this
example is to derive the explicit geodesic equations in a case as simple as possible, in
order to get an intuition of their meaning.
Throughout this chapter we will come back to this example and derive the explicit

formulations of the geodesic equations.

Example 3.2. Translation of Landmarks in a Background

As a first example, we will study the case of landmarks. Let O1 = (R2)N1 and
O2 = (R2)N2 be the shape spaces, N1 and N2 being the number of landmarks.
Assume that q1 and q2 are sets of landmarks that represent a discretization of two
curves in R2. Let U i := U(qi) ⊂ R2 be an open set where the points qij , j = 1, ..., Ni

lie on the boundary of U(qi) for i = 1, 2. For this example we will omit the time-
dependency index t for the shape qt and control ht where it is clear, in order to
reduce the amount of indices.
The background space is defined as O3 = O1 ×O2, following the work of [Arg14].

The elements q3,i
j ∈ q3,i ∈ (q3,1, q3,2) =: q3 are landmarks on the boundary of U3. If

qij = q3,i
j , for i = 1, 2 and j = 1, ..., Ni i.e., the boundary points of the background

and the corresponding shape coindice, then U3 = R2\(U1 ∪ U2).
For the modules M1 and M2, we choose a local translation of the shape qi =

(qi1, ..., qiNi)∈ O
i. A local translation is defined by a point z(qi) and a translation

vector hi. We set z(qi) := 1
Ni

∑Ni
j=1 q

i
j as the mean of the landmarks in qi. The

control variable hi is an element of H i = R2. The field generator builds a vector field
vi = ζiqi(h

i) = Kσi(z(qi), ·)hi. The scale σi of the reproducing kernel Kσi describes
the size of the region that is translated. For a translation of the whole shape qi, the
scale of σi is chosen to have a high value compared to the scale of the shape.
For the background we assume to have no prior knowledge or no restriction on the

vector fields, except for the regularity of the field. This corresponds to a vector field
as in classical LDDMM. Therefore the control variable is a vector field h ∈ H3 := Vσ3 ,
where Vσ3 is the RKHS defined by the Gaussian Kernel with scale σ3. The space H3

is not finite-dimensional as required in the definition 2.18 of a deformation module,
so M3 is not a deformation module as introduced in [Gri16]. However, existence of
optimal trajectories and minimizers have been shown for the LDDMM setting, so it
is legitimate to consider H3 as a space of controls.
In order to allow more irregular deformations in the background, the kernel size
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3.2 Deformation Modules

U2U1

U3 = Rd \ U1 ∪ U2

Figure 6: Shapes defined by the regions U1 and U2 in a background

σ3 is chosen to be of much smaller scale than σ1 and σ2. The field generator
ζ3
q3(h3) = h3 maps the vectorfield h3 to itself. The infinitesimal action ξ3

q3(v3) =
(v3(q3,1

1 ), ..., v3(q3,1
N1

), v3(q3,2
1 ), ..., v3(q3,2

N2
)) applies the generated vector field v3 = ζ3

q3(h3)
to the points q3,1

i and q3,2
j for i = 1, ..., N1, j = 1, ..., N2.

For i = 1, 2, consider the cost function ciqi(h
i) = |hi|2Hi . The cost function describes

the length of the translation vector. High translations are penalized more than small
translations. For the background, let c3

q3(h3) = ‖h‖Vσ3
be the cost function defined

as the norm in Vσ3 , as in the LDDMM setting.
For the multi-shape combination Mmulti, the vectorfield ζq(h) = (ζ1

q1(h1), ζ2
q2(h2), h3)

consists of three vector fields that are all defined on R2. In the next section we define
a single large deformation on R2 from these three vector fields.

3.2 Existence of Large Deformations for Multi-Shape Modules

Until now Mmulti was used to generate velocity fields on the shape space. The next
step is to build large deformations from a trajectory of vector fields. This is done by
integrating the time-dependent vector field vit = ζi

qit
(hit) over time according to the flow

equation

ϕ̇it = vit ◦ ϕit
ϕi0 = IdRd ,

(55)

for each i ∈ {1, ..., n}. If the UEC is satisfied for each moduleMi, then the deformations
ϕi can be built for each vi, as proved in [Gri16], see proposition 2.24. We will consider
trajectories that satisfy the definition of controlled paths of finite energy. For the multi-
shape framework we follow the definition 2.23.

Definition 3.3. Controlled Path of Finite Energy

Let Mmulti = (O,H, ζ, ξ, c) be a multi-shape combination of deformation mod-
ules with the modules Mi, i = 1, ..., n, and let a = (a1, ..., an), b = (b1, ..., bn) ∈
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O= O1 × ...×On. Denote by Ωa,b the set of measurable curves t 7→ (qt, ht) ∈ O×H,
where for every i, qit is absolutely continuous starting from ai and ending at bi, such
that for almost every t ∈ [0, 1], ˙qit = ξiqit

(vit) with vit = ζi
qit

(hit), and

Ei(qi, hi) =
∫ 1

0
ciqit

(hit)dt <∞. (56)

The set Ωa,b defined in this way is called the set of controlled paths of finite energy
starting at a and ending at b. Then Ω := ∪a,b∈OΩa,b is the set of possible controlled
paths of finite energy in O.

Remark 3.4
The energy

E(q, h) =
∫ 1

0
cqt(ht)dt =

∫ 1

0

n∑
i=1

ciqit
(hit)dt (57)

of (q, h) is finite, as well for all curves in Ωa,b due to 56.

Example 3.5. Large Deformation of Landmarks in a Background

For the framework in example 3.2, it is desired to have the diffeomorphisms ϕit only
acting on points in the set U i. To achieve this, the final deformation ϕ1 for the multi-
shape combination Mmulti is built from the deformations of the modules according
to

ψt(x) =


ϕ1
t (x) , if x ∈ U1

ϕ2
t (x) , if x ∈ U2

ϕ3
t (x) , if x ∈ U3.

(58)

Here, U i denotes the closure of U i. Notice that the deformation ψ is in general
not a diffeomorphism anymore, which is intentional and the goal of its construction.
Instead it consists of diffeomorphisms on each subset U i, that do not influence each
other.

So far, the framework of a multi-shape deformation can be seen as multiple deforma-
tions that are studied separately on their shape spaces. In most applications certain
interaction of the shapes between each other are desired. For example it could be plau-
sible that the deformed shapes do not overlap. This is equivalent to the deformation
ψt being injective, which is not true in general without further restrictions on ϕt. This
can be incorporated in the model by additional constraints on the deformed shapes (or
equivalently on the velocity field, see remark 2.14) in the optimization problem, as has
been done in [Arg14].
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3.3 The Constrained Registration Problem

In the following, the minimization problem for constrained image registration will be
defined. The aim is to find the deformation that maps a given shape qS ∈ O onto a
target shape qT . The similarity of the deformed shape to the source is measured by a
function U : O ×O → R.

Problem 3.6. Constrained Modular Registration Problem for Multi-Shapes
Let qt := q(t) : [0, 1] → O and ht := h(t) : [0, 1] → H. Let Y be a Banach space. Let
C : O × V 7→ Y be continuous in both variables and Cq(v) := C(q, v) linear in v.
Consider the minimization of the functional

J(q, h) :=
m∑
i=1
Um(qm1 , qT ) + 1

2

∫ 1

0
cqt(ht)dt (59)

over (q, h) ∈ Ω := ∪a,b∈OΩa,b, such that

q0 = qS

q̇t = ξqt ◦ ζqt(ht)
Cqt(ζqt(ht)) = 0

(60)

for almost every t ∈ [0, 1].

The constraints C(v) are continuous and linear constraints on the vector field v = ζqt(ht).
They can be of different kinds, as discussed in chapter 2.2. In the following the example
of identity constraints for the multi-shape combination of translations of landmarks will
be given.

Example 3.7. Identity Constraints for Landmarks in a Background
A possible choice of constraints for the previously discussed example is to ensure
that the corresponding landmarks qij and q3,i

j in the shape space O1 × O2 and the
background space O3 are transformed by the same vector field. This is the case of
identity constraints as introduced in chapter 2.2. To incorporate the constraints into
the minimization problem, they are formulated as the linear equation Cqv = 0 with

Cq(v) := Cq(v1, v2, v3)

:=
(
v1(q1)− v3(q3,1)
v2(q2)− v3(q3,2)

)
!=
(

0
0

)
.

(61)

The constraints Cq here are kinetic constraints. The space of the constraints is in
this case Y := (R2)N1 × (R2)N2 with e.g., the Euclidean norm.
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3.4 Existence of Geodesic Flows

In this section we will analyse the possible paths resulting from the framework. Previ-
ously we discussed that for the LDDMM setting,

dV (ψ, ψ̄) = inf
vt∈V

{∫ 1

0
‖vt‖V dt, ψ = ψ̄ ◦ φvt=1

}
(62)

defines a metric on the considered subgroup DiffV of Diff l0(Rd,Rd). For the deformation
modules framework a distance DistH can be defined using the cost function [Gri16, Def.
25].

Definition 3.8. [Gri16, Def. 25]
Let a, b ∈ O and (q, h) ∈ Ωa,b. The length of (q, h) is defined by

l(q, h) :=
∫ 1

0

√
cqt(ht)dt =

∫ 1

0

√√√√ n∑
i=1

ci
qit

(hit)dt (63)

and the distance between a and b is defined by

DistH(a, b) := inf{l(q, h)|(q, h) ∈ Ωa,b} (64)

The following proposition extends [Gri16, Prop. 22] to our multi-shape framework.

Proposition 3.9
DistH(a, b) is a metric on O.

Proof : The argumentation follows the structure of the proof in [Gri16]. We will show non-
negativity, symmetry and subadditivity for DistH(a, b).
Nonnegativity. Let (q, h) ∈ O × H. Because the cost cq(h) takes non-negative values, it

follows that

l(q, h) =
∫ 1

0

√
cq(h)dt ≥ 0 (65)

for all q, h ∈ O ×H, and

DistH(a, b) = inf{l(q, h)|(q, h) ∈ Ωa,b} ≥ 0 (66)

for all a, b ∈ O.
Symmetry We use the fact that for every element (q, h) ∈ Ωa,b there exists an element

(q̄, h̄) ∈ Ωb,a with the same length. From linearity of ζqt
it follows that for h̄t := −ht, the

generated vectorfield satisfies ζqt
(h̄t) = −ζqt

(ht). Moreover, the cost is a metric on H and
therefore cqt

(ht) = cqt
(h̄t).

We define
q̄t := q1−t and h̄t := −h1−t. (67)
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Then (q̄, h̄) ∈ Ωb,a because q̄0 = q1 = b and q̄1 = q0 = a. We define the mapping f : Ωa,b →
Ωb,a, f((q, h)) := (q̄, h̄) with The mapping f is one-to-one and

cq̄t
(h̄t) = cq1−t

(−h1−t) = cq1−t(h1−t). (68)

For the length of the paths (q, h) and (q̄, h̄) it follows∫ 1

0

√
cq̄t(h̄t)dt =

∫ 1

0

√
cq1−t(h1−t)dt = −

∫ 0

1

√
cqs(hs)ds =

∫ 1

0

√
cqs(hs)ds, (69)

and thus l(q, h) = l(q̄, h̄).
So we deduce

DistH(a, b) = inf{l(q, h)|(q, h) ∈ Ωa,b}
= inf{l(q, h)|(q, h) ∈ Ωb,a} = DistH(b, a)

(70)

and DistH is symmetric.
Subadditivity. Furthermore, DistH is subadditive because for every a, b, c ∈ O,

DistH(a, c) = inf{l(q, h)|(q, h) ∈ Ωa,c}
(∗)
≤ inf{l(q̄, h̄) + l(q̃, h̃)|(q̄, h̄) ∈ Ωa,b, (q̃, h̃) ∈ Ωb,c}
= inf{l(q̄, h̄)|(q̄, h̄) ∈ Ωa,b}+ inf{l(q̃, h̃)|(q̃, h̃) ∈ Ωb,c}
= DistH(a, b) + DistH(b, c)

(71)

for all a, b, c ∈ O.
For the inequality (∗) we use that the length of the path (q, h) from a to c can be expressed

as the sum of the lengths of path segments (q̄, h̄) ∈ Ωa,z and (q̃, h̃) ∈ Ωz,c, where z lies on the
path (q, h). We define (q̄t, h̄t) := (qt/2,

1
2ht/2). Then (q̄t, h̄t) still satisfies the flow equation

˙̄qt = 1
2 q̇t/2 = 1

2ξqt/2ζqt/2(ht/2) = 1
2ξq̄tζq̄t((2h̄t)) = ξq̄tζq̄t(h̄t), (72)

and the length of (q̄t, h̄t) is given by

l(q̄, h̄) =
∫ 1

0

√
cq̄t

(h̄t)dt =
∫ 1

0

√
cqt/2(1

2ht/2)dt =
∫ 1/2

0

√
cqs

(1
2hs)2dt, (73)

where we substituted s = t/2 and dt = 2ds. Because the cost is quadratic,

l(q̄, h̄) =
∫ 1/2

0

√
1
4cqs

(hs)2ds =
∫ 1/2

0

√
cqs

(hs)ds. (74)

Analogously, we find that (q̃, h̃) := (q(1+t)/2, h(1+t)/2) satisfies the flow equation and

l(q̃, h̃) =
∫ 1

1/2

√
cqt(ht)dt. (75)

Then we can build the concatenation (q̄.q̃, h̄.h̃) of paths (q̄, h̄) and (q̃, h̃) by

q̄.q̃ :=
{
q̄2t, 0 ≤ t < 1/2,
q̃2t, 1/2 ≤ t ≤ 1,

and h̄.h̃ :=
{
h̄2t, 0 ≤ t < 1/2,
h̃2t, 1/2 ≤ t ≤ 1.

(76)
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With (74) and (75), it follows that l(q̄.q̃, h̄.h̃) = l(q̄, h̄) + l(q̃, h̃).
Let D := {l(q̄, h̄) + l(q̃, h̃)|(q̄, h̄) ∈ Ωa,b, (q̃, h̃) ∈ Ωb,c}. It follows that

D = {l(q̄.q̃, h̄.h̃)|(q̄, h̄) ∈ Ωa,b, (q̃, h̃) ∈ Ωb,c} (77)

which is a subset of {l(q, h)|(q, h) ∈ Ωa,c}. This implies

inf D ≥ inf{l(q, h)|(q, h) ∈ Ωa,c}. (78)

Finally it needs to be shown that DistH(a, b) = 0⇔ a = b. Indeed it holds

DistH(a, b) = 0⇒ inf
{∫ 1

0

√
cqt

(ht)dt

∣∣∣∣∣(qt, ht) ∈ Ωa,b

}
= 0 (79)

and because the cost cqt(ht) is positive,

⇒ inf
{∫ 1

0
cqt

(ht)dt

∣∣∣∣∣(qt, ht) ∈ Ωa,b

}
= 0. (80)

Inserting the definition of the cost cqt
(ht) =

∑n
i=1 c

i
qi

t
(hi

t) yields

⇒ inf
{∫ 1

0

n∑
i=1

ci
qi

t
(hi

t)dt

∣∣∣∣∣(q, h) = ((q1, h1), ..., (qn, hn)) ∈ Ωa,b

}
= 0

⇒ inf
{

n∑
i=1

∫ 1

0
ci

qi
t
(hi

t)dt

∣∣∣∣∣(q, h) = ((q1, h1), ..., (qn, hn)) ∈ Ωa,b

}
= 0

(81)

The cost is nonnegative and therefore it follows

⇒ inf
{∫ 1

0
ci

qi
t
(hi

t)dt

∣∣∣∣∣(qi
t, h

i
t) ∈ Ωai,bi

}
= 0 (82)

for all i = 1, ..., n.
Consequently, as DistHi was previously shown to be a distance on Oi [Gri16, Prop. 22],

⇒ DistHi(ai, bi) = 0 ∀i = 1, ..., n
⇒ ai = bi ∀i = 1, ..., n
⇒ a = b.

(83)

On the other hand, let a = b. Then (qt, ht) with qt ≡ a ∀t ∈ [0, 1] and ht ≡ 0 ∀t ∈ [0, 1] is
an element of Ωa,b, with cqt

(ht) = 0. Therefore,

DistH(a, b) = inf{l(q, h)|(q, h) ∈ Ωa,b} = l(qt, ht) = 0 (84)

reaches the infimum 0. From non-negativity, symmetry, subadditivity and DistH(a, b) =
0↔ a = b it follows that DistH(a, b) is a distance on Ωa,b.

Now we will examine the important question of existence of minimizers for the energy
E =

∫ 1
0 cqt(ht)dt. Minimizers of E correspond to geodesic flows considering the metric

DistH. The next theorem adapted from 2.25 states the existence of minimizers:
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3.4 Deformation Modules

Theorem 3.10. Existence of Geodesics

Let Mmulti be a multi-shape combination of modules Mi = (Oi, H i, ζi, ξi, ci), i =
1, ..., n, where each module Mi satisfies the UEC 2.22. Let a, b ∈ O be of compact
support. Let q 7→ Cq be continuous as a mapping from O to L(V, Y ) and v 7→ Cq(v)
linear and bounded. If Ωa,b is non-empty, the minimum of the energy (57) on Ωa,b

exists and the minimizer satisfies the constraints Cqt(vt) = 0 for almost every t ∈
[0, 1].

Proof : We will show that from the existence of minimizers of Ei(qi, hi) in Ωai,bi , shown in
theorem 2.25, the existence of minimizers of E(q, h) in Ωa,b follows and that the minimizer
still statisfies the constraints.
First we will verify that Ωa,b =

∏n
i=1 Ωi

ai,bi
. For every i ∈ {1, ..., n} the element (qi, hi) ∈

Ωi
ai,bi

satisfies the flow equation q̇i
t = ξi

qi
t
◦ ζi

qi
t
(hi

t), so by definition q̇ = ξqt
◦ ζqt

(ht). Since q
is absolutely continuous for each component, it is absolutely continuous. Moreover, because
Ei(qi, hi) <∞ for all i, it follows E(q, h) =

∑n
i=1E

i(qi, hi) <∞. So Ωa,b ⊃
∏n

i=1 Ωi
ai,bi

.
On the other hand, if q̇ = ξqt ◦ ζqt(ht), then the flow equation is by definition satisfied

componentwise and qi is absolutely continuous for each component. From E(q, h) <∞ and
positivity of Ei(qi, hi) for each i it follows that if E(q, h) < ∞, Ei(qi, hi) < ∞ for each i.
So we have Ωa,b ⊂

∏n
i=1 Ωi

ai,bi
.

The energy E(q, h) takes only non-negative values and thus is bounded from below. More-
over, as Ωa,b is non-empty by assumption, it follows that the infimum is finite. Therefore
we can find a minimizing sequence of E. Let (qj , hj)in Ωa,b be a minimizing sequence that
satisfies the constraints.
We will show that, up to extraction of a subsequence, qj → q∞ uniformly in O, hj → h∞

weakly in L2([0, 1], H), so that and (q∞, h∞) satisfy the constraints for almost every t.
Then optimality of (q∞, h∞) follows by a variant of lower-semicontinuity: From the proof of
2.25, we know that for each component ((qi)j , (hi)j) of (qj , hj), (qi)j → (qi)∞ uniformly and
(hi)j → (hi)∞ weakly in L2([0, 1], H), and all Ei are lower semi-continuous with respect to
this kind of convergence. Therefore their sum E is also lower semi-continuous, which together
with the fact that (qi, hi) is a minimizing sequence implies that (qi, hi) is a minimizer.
In order to apply this argument, we first need to show that qj → q∞ uniformly and

hj → h∞ weakly in L2([0, 1], H). We use the convergence of each component that has
been shown in [Gri16]: For all i = 1, ..., n, hi converges weakly to (hi)∞ in L2([0, 1], Hi),
so for all f i ∈ (Hi)∗: (f i|(hi)j − (hi)∞)Hi∗ ,Hi → 0. Let (f1, ..., fn) be a basis in H∗. For
hj ∈ H =

∏n
i=1H

i and f := (f1, ..., fn) ∈ H∗ it follows

(f |hj − h∞)H∗,H =
n∑

i=1
(f i|(hi)j − (hi)∞)Hi∗,Hi → 0, (85)

so hj converges weakly in
∏n

i=1 L
2([0, 1], Hi) = L2([0, 1],

∏n
i=1H

i). Moreover, (qi)j con-
verges uniformly to (qi)∞ in C([0, 1],Oi), so qj converges to q∞ in

∏n
i=1 C([0, 1],Oi).

Finally we need to prove that (q∞, h∞) still satisfies the constraints if they are satisfied
for every (qj , hh). With the same argument as for h∞, we get that vj := ζqj (hj) converges
weakly to v∞ := ζq∞(h∞) in L2([0, 1],

∏n
i=1 V

i) =
∏n

i=1 L
2([0, 1], V i), as weak convergence

of all components was shown in the proof of [Gri16, Theorem 5]. In the same proof, it
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was shown that there exists a compact set L of O such that for all t ∈ [0, 1], q∞t ∈ L and
qj

t ∈ L ∀j.
We will show now that for almost all t ∈ [0, 1] the constraints Cq∞t

(v∞t ) = 0 are satisfied.
Define ν : t 7→ Cq∞t

(v∞t ). We show

(i) ν ∈ L2([0, 1],Y) and
(ii) (ν|w) = 0 ∀w ∈ L2([0, 1],Y∗) = (L2([0, 1],Y))∗

as this implies ν = 0 for almost all t, which is what we want to show.
We first verify (i), i.e., ν ∈ L2([0, 1],Y). We have∫ 1

0
‖Cq∞t

(v∞t )‖2Y dt ≤
∫ 1

0
‖Cq∞t

‖2L(V,Y )‖(v∞t )‖2V dt. (86)

From the proof of [Gri16, Theorem 5], we know that {q∞t , t ∈ [0, 1]} is contained in the
compact set L. Since L is compact and q∞t 7→ Cq∞t

is continuous, q∞t 7→ Cq∞t
is uniformly

continuous. This shows that Cq∞t
is uniformly bounded on [0, 1], i.e., there exists an α ∈ R

with ‖Cq∞t
‖2L(V,Y ) ≤ α

2. Then∫ 1

0
‖Cq∞t

(v∞t )‖2Y dt ≤
∫ 1

0
‖Cq∞t

‖2L2‖(v∞t )‖2L(V,Y )dt ≤ α2‖v∞‖L2([0,1],V ) <∞, (87)

and thus ν ∈ L2([0, 1],Y).
Now we show (ii), i.e., 〈ν, w〉 = 0 for all w ∈ L2([0, 1],Y). For every w ∈ L2([0, 1],Y∗)

and every j ∈ N, we have

|(ν|w)L2([0,1],Y ),(L2([0,1],Y ∗)|

=
∣∣∣ ∫ 1

0
(Cq∞t

(v∞t )|wt)Y,Y∗dt
∣∣∣

(∗)=
∣∣∣ ∫ 1

0
(Cq∞t

(v∞t )− Cqj
t
(vj

t )|wt)Y,Y∗dt
∣∣∣

=
∣∣∣ ∫ 1

0
(Cq∞t

(v∞t )− Cq∞t
(vj

t ) + Cq∞t
(vj

t )− Cqj
t
(vj

t )|wt)Y,Y∗dt
∣∣∣

(∗∗)
≤
∣∣∣ ∫ 1

0
(Cq∞t

(v∞t )− Cq∞t
(vj

t )|wt)Y,Y∗dt
∣∣∣+
∣∣∣ ∫ 1

0
(Cq∞t

(vj
t )− Cqj

t
(vj

t )|wt)Y,Y∗dt
∣∣∣, (88)

where we used (∗) that the constraints are satisfied for (qj , vj) for all j for almost all t, and
then (∗∗) the subadditivity.

For the first term in (88) it holds∣∣∣ ∫ 1

0
(Cq∞t

(v∞t − v
j
t )|wt)Y,Y∗dt

∣∣∣ ≤ ∫ 1

0
‖Cq∞t

‖L(V,Y)‖v∞t − v
j
t ‖V ‖wt‖Y∗dt, (89)

and applying the Hölder inequality yields∣∣∣ ∫ 1

0
(Cq∞t

(v∞t − v
j
t )|wt)Y,Y∗dt

∣∣∣ ≤ (∫ 1

0
α2‖wt‖2Y∗

)1/2(∫ 1

0
‖v∞t − v

j
t ‖2V dt

)1/2
. (90)

This expression is a linear and bounded functional in (v∞ − vj). As vj → v∞ weakly, this
implies that (90) converges to zero for j →∞.
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For the second term in (88), we have∣∣∣ ∫ 1

0
(Cq∞t

(vj
t )− Cqj

t
(vj

t )|wt)Y,Y∗dt
∣∣∣ ≤ ∫ 1

0
‖Cq∞t

− Cqj
t
‖L(V,Y)‖wt‖Y∗‖vj

t ‖V dt. (91)

Again, as all qj
t and qt are contained in the compact set L, and the mapping qt 7→ Cqt

is
continuous, the mapping is uniformly continuous in L. As qj → q∞ uniformly on [0, 1], this
implies that ‖Cq∞t

−Cqj
t
‖L(V,Y) ≤ α(j) for some α(j), not depending on t, with α(j) j→∞−→ 0.

We pursue∣∣∣ ∫ 1

0
(Cq∞t

(vj
t )− Cqj

t
(vj

t )|wt)Y,Y∗dt
∣∣∣ ≤ α(j)

∫ 1

0
‖wt‖Y∗‖vj

t ‖V dt

(∗∗∗)
≤ α(j)‖w‖L2([0,1],Y ∗)‖vj‖L2([0,1],V ),

(92)

where for (∗ ∗ ∗) we applied the Hölder inequality. Furthermore, the UEC yields

‖vj‖2L2 ≤
∫ 1

0
γcqt

(ht)dt = γE(qj , hj), (93)

for some γ <∞. Because (qj , hj) is a minimizing sequence, there is some β <∞ with

E(qj , hj) ≤ β (94)

for all j. Then

α(j)‖w‖L2‖vj‖L2 ≤ α(j)γβ‖w‖L2 , (95)

which converges to zero for j →∞ because α(j) converges to zero for j →∞.
All in all, we have shown that both terms in (88) converge to zero as j →∞. Therefore

|〈ν, w〉| ≤ ε ∀w ∈ L2([0, 1],Y)∗ ∀ε > 0, (96)

which implies
|〈ν, w〉| = 0 ∀w ∈ L2([0, 1],Y)∗. (97)

Therefore ν = 0 in L2([0, 1], Y ). This finally yields

Cq∞t
(v∞t ) = 0 for a.e. t ∈ [0, 1], (98)

which concludes the proof.

Having ensured the existence of geodesics, we can now examine the principle of least
action for the energy E. We will state the Hamiltonian system for our setting and derive
the geodesic equations analoguously to (19) that describe the nature of the geodesics.

3.5 The Hamiltonian Function and Shooting Equations

In this section we derive the geodesic equations for the Hamiltonian system of the con-
strained registration problem. The system of equations corresponds to the system (100)
for LDDMM. It describes how the deformed shape and the time-dependent velocity field
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can be obtained from the initial shape q0 and initial momentum p0 (see section 2.1.7).

Compared to the Hamiltonian system for deformation modules, the system for the con-
strained multi-shape framework is extended by a term corresponding to the constraints.
In the Hamiltonian function, a Lagrange multiplier λ ∈ Y∗ for the constraints is intro-
duced. Analoguous to [Arg14], we define the Hamiltonian function H : O×T∗qtO×H×Y,

H(q, p, h, λ) := (p|ξq ◦ ζq(h))T∗
qO,TqO

− 1
2cq(h)− (λ|Cqζq(h))Y∗,Y . (99)

The geodesic equations read

q̇ = ∂

∂p
H(qp, h, λ)

ṗ = − ∂

∂q
H(qp, h, λ)

∂

∂h
H(qp, h, λ) = 0

∂

∂λ
H(qp, h, λ) = 0.

(100)

To compute the so called reduced Hamiltonian H, h and λ are chosen depending on q
and p so that the last two constraints are satisfied.
As the cost function is quadratic and positive definite (see definition 3.1) and H is

finite-dimensional, there exists an invertible symmetric operator Zq : H→ H∗ such that
cq(h) =

(
Zqh

∣∣h)H∗,H. First, the constraint ∂
∂hH = 0 leads to the equation

∂

∂h
H(qp, h, λ) = ζ∗q ξ

∗
qp− Zqh− ζ∗qC∗qλ = 0. (101)

Solving (101) for h gives
hqp = Z−1

q ζ∗q (ξ∗qp− C∗qλ). (102)

The constraint ∂
∂λH = 0 leads to

∂λH = Cqζq(h) = 0. (103)

By inserting (102) it follows

∂λH = CqζqZ−1
q ζ∗q (ξ∗qp− C∗qλ) = 0. (104)

Now solving for λ gives first

CqζqZ−1
q ζ∗q ξ

∗
qp = CqζqZ−1

q ζ∗qC∗qλqp (105)

and then, assuming CqζqZ−1
q ζ∗qC∗q is invertible,

λqp = (CqζqZ−1
q ζ∗qC∗q)−1CqζqZ−1

q ζ∗q ξ
∗
qp. (106)

In [Arg14] it is stated that if Cq is surjective, the invertibility of the corresponding term
CqKCq (where K is the reproducing kernel) in the multi-shape LDDMM setting follows.
In the following proposition we provide a proof for the modular multi-shape setting.
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3.5 Deformation Modules

Proposition 3.11
Let Cqζq : H→ Y be surjective. Then the matrix CqζqZ−1

q ζ∗qC∗q is invertible.

Proof : Define f : H → Y, f := Cqζq. H is of finite dimension and f : H → Y is surjec-
tive by assumption, so Y must be of finite dimension. Because Y is of finite dimension,
fZ−1

q f∗ : Y∗ → Y is invertible if and only if it is injective.
We first show that f∗ is injective. For α ∈ ker f∗, by definition f∗(α) = 0 and for all

h ∈ H:
(
f∗(α)

∣∣h)H∗,H = 0. f is surjective, so for all y ∈ Y there exists h ∈ H with y = f(h).
Then for all y ∈ Y it follows(

α
∣∣y)Y∗,Y =

(
α
∣∣f(h)

)
Y∗,Y =

(
f∗(α)

∣∣h)H∗,H = 0 (107)

and therefore α = 0. Therefore, Z−1
q f∗ is injective as both f∗ and Z−1

q are injective.
It remains to be shown that f

∣∣
Im(Z−1

q f∗) is injective. Let α ∈ ker(f), h ∈ Im(Z−1
q f∗) and

λ ∈ Y∗ such that h = Z−1
q f∗(λ). Then(

Zqh|α
)

H∗,H =
(
f∗λ|α

)
H∗,H =

(
f∗λ

∣∣α)H∗,H =
(
λ
∣∣fα)Y∗,Y = 0 (108)

for all α ∈ ker(f).
It follows h = 0 or h /∈ ker(f) as otherwise setting α = h would contradict the positive

definiteness of Zq.
So we obtain Im(Z−1

q f∗) ∩ ker(f) = {0}. As the kernel ker(f∣∣
Im(Z−1

q f∗)

) of f restricted on

Im(Z−1
q f∗) is trivial and Cqζq is linear, f

∣∣
Im(Z−1

q f∗) is injective.

All in all, CqζqZ−1
q ζ∗q C∗q = fZ−1

q f∗ is injective and therefore invertible.

Remark 3.12. Surjectivity of Cqζq

Surjectivity of Cqζq is an important assumption in proposition 3.11. For the LDDMM
multi shape setting, surjectivity becomes almost straightforward when the constraints
are discretized to a finite number [ATTY15a]. Then they are true as soon as the
points on which the constraints are defined are all distinct.
For our framework using deformation modules, we need to choose the space of controls
H to be of the same or higher dimension as the space of constraints Y. If this is not
given in the first place, the controls can be extended by adding for example local
translations of the boundary points with a high penalty. For our examples of shapes
in a background, Cq is always surjective as the dimension of the background space
is at least the same as the number of constraints.

Having expressions of hqp and λqp, the Hamiltonian function can be expressed depend-
ing only on the state q and the momentum p. This new function is referred to as the
reduced Hamiltonian and we will denote it by H(q, p).
Theorem 3.13. Reduced Hamiltonian for the Constrained Registration Problem

Defining the reduced Hamiltonian H : O × T∗qO 7→ R,

H(q, p) := H(q, p, hqp, λqp), (109)
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the system of equations (100) for the Hamiltonian (99) is equivalent to

q̇ = ∂

∂p
H(q, p, hqp, λqp)

ṗ = − ∂

∂q
H(q, p, hqp, λqp)

(110)

with

hqp = Z−1
q ζ∗q (ξ∗qp− C∗qλqp)

and λqp = (CqζqZ−1
q ζ∗qC∗q)−1CqζqZ−1

q ζ∗q ξ
∗
qp

(111)

In practice during the integration of ṗ and q̇, the geodesic variables hqp and λqp are
computed at every time step.

3.6 Geodesic Variables for Landmarks

Let us go back to the example 3.2 where we considered multiple shapes embedded in a
background. In general, we want to define the background module in such a way that
the deformation is not restricted to a particular type of modular deformation. It should
correspond to the LDDMM framework, where the only restriction on the velocity field v
is that it is an element of a RKHS Vσ. As mentioned earlier this setting does not satisfy
the definition of a deformation module, where the space of controls is assumed to be
finite. However we can define a finite-dimensional representation for H = Vσ.
In this section we will prove that if finite-dimensional shape spaces are considered, we

can define a finite-dimensional space Hq and of the space H exists such that the solution
of the problem 3.6 lies in Hq.
Consider the modules Mi = (Oi,Hi, ζi, ξi, ci) for i = 1, ...,m. Each of the modules
Mi is assumed to model the deformation of Ni points, the shape spaces are given by
Oi := (Rd)Ni . The spaces of controls Hi are restricted to be finite-dimensional. The
background moduleMm+1 = (Om+1,Hm+1, ζm+1, ξm+1, cm+1) is given by

• the background shape space Om+1 :=
∏m
i=1Oi being the product space of all other

shape spaces,

• the space of controls Hm+1 := Vσm+1 being a RKHS defined by the Gaussian kernel
Kσm+1 ,

• the field generator ζm+1 : Om+1 × Hm+1; (qt, ht) 7→ ht as the identity mapping of
controls,

• and the cost function cm+1
qt (ht) :=

∫ 1
0 ‖ht‖Vσm+1

dt.

In the following section, we will consider q ∈ O and h ∈ H for a specific time point
and omit the index for the time-dependency, in order to reduce the number of indices.
For qij and hij the index i refers to the module index and the index j to its component.
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The point qm+1,i
j is the point on the background boundary, corresponding to the point

qij on the boundary of shape qi.
We make the following assumption on the boundary constraints.

Assumption 3.14
There exists a linear function gq : TqO → Y such that the constraints function
C:

∏m+1
i=1 Oi × C l(Rd,Rd)→ Y can be written as

C(q, v) = Cq(v) = gq
(
ξq(v)

)
. (112)

This assumption implies that the boundary constraints only take velocities of points
into account that belong to the shape q. As the goal of using constraints in our example
is to link the deformations of points in the shapes qi and qm+1,i, this assumption holds.
The following example shows how the function gq can be written as a matrix for the case
of identity constraints of landmarks.

Example 3.15. Identity Constraints for Points
For the special case of identity constraints, the space of constraints Y is given by
Y = (Y 1, ..., Y m) = (T∗q1O1, ...,T∗qmOm) and the constraints function Cq is given
by Cq(v) =

(
v1(q1) − vm+1(qm+1,1), ..., vm(qm) − vm+1(qm+1,m)

)
. Therefore it can

be written componentwise as Cq(v) =
(
C1
q(v), ...,Cm

q (v)
)
with Ciq(v) = vi(qi) −

vm+1(qm+1,i). In this case we have

Cq(v) = gqξq(v) = gq(v1(q1), ..., vm+1(qm+1)) =
m∑
i=1

giq(vi(qi)) (113)

Let N =
∑
Ni. The function gq is given by gq = (g1

q , ..., g
m+1
q ) with

giq = (0, ..., 0, IdNi , 0, ..., 0), i = 1, ...,m
and gm+1

q = −IdN ,
(114)

IdNi being at the ith position in giq.

Now recall the expression for the geodesic control

hqp = Zq−1ζ∗q (ξ∗qp− C∗qλqp), (115)

which, using the assumption 3.14, we will now write

hqp = Zq−1ζ∗q ξ
∗
q (p− g∗qλqp). (116)

The idea behind the representation of the geodesic controls is to make use of the fact
that they are only supported on points that belong to the shape q. This was pointed
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T∗qOV ∗H∗H

VTqO

Hq
H

= ∼=

ξ∗qζ∗qZ−1
q

ζq = Id
ξq

fq

Id

infinite dimensionfinite dimension finite dimension

Figure 7: The diagram motivates the definition of a function fq that corresponds to the functions Z−1
q ζ∗

q ξ
∗
q . This

helps to avoid the expression of the geodesic controls in the infinite-dimensional space H. The function ξqIdfq
maps from the finite-dimensional space Hq to the finite-dimensional space TqO. Using this function does not
need the expression of controls in infinite-dimensions. The space Hq can be identified with TqO ∼= RdN , where
N =

∑m

i
Ni is the dimension of the product of shape spaces Oi. What has to be verified is, that all controls

that we want to consider, i.e., the geodesic controls, can be reached from fq .

out in the previous chapter in section 2.1.7, where we studied the geodesic equations of
the Hamiltonian system for LDDMM 1.
For our setting, a natural finite-dimensional representation for the background controls

appears in equation (116): The geodesic controls depend on the term (p−g∗qλqp) which is
an element of the cotangent space T∗qO of the shape q. It has the same dimension as the
shape. The idea now is to define the finite-dimensional space Hq isomorphic to T∗qO and
a function fq that maps an element h̄q ∈ Hq to an element h in the infinite-dimensional
space H. The diagram in figure 7 visualizes this intuition.
As the space Hq is of lower dimension than the original space of controls H, not all

controls h ∈ H can be reached by fq from h̄q ∈ Hq. In the following we will verify that
all geodesic controls can be reached from Hq by the mapping fq.
First, to define the background control independently of the controls hi, i = 1, ...,m,

we need some preliminaries: We can compute the geodesic control hqp and the function
Cq componentwise, as we will show.
Because of linearity of Cq, gq can be written as the sum gq(x) =

∑m+1
i=1 giq(xi) for

x = (x1, ..., xm+1) and giq : TqiOi 7→ Y. Then writing

(
g∗qλ

∣∣x)T∗
qO,TqO

=
(
λ
∣∣gqx)Y∗,Y =

(
λ
∣∣m+1∑
i=1

giqx
i)

Y∗,Y

=
m+1∑
i=1

(
λ
∣∣giqxi)Y∗,Y =

m+1∑
i=1

(
giqi
∗
λ
∣∣xi)T∗

qi
Oi,TqiOi

=
(
(g1
q
∗
λ, ..., gm+1

q
∗
λ)
∣∣(x1, ..., xm+1)

)
T∗
qO,TqO

,

(117)

we find that g∗q = (g1
q
∗
, ..., gm+1

q
∗). Therefore, the adjoint constraints function is given

by C∗q = ξ∗qg
∗
q = (ξ1

q1
∗
g1
q
∗
, ..., ξm+1

qm+1
∗
gm+1
q

∗). We define Ciq := giqξ
i
qi .

1Recall that the equation v = Kξ∗
qp implies that the momentum m := K−1v = ξ∗

qp is only supported
on the shape q
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Furthermore we resume:

Corollary 3.16
For the geodesic control hqp = (h1

qp, ..., h
m+1
qp ), each component hiqp can be written as

hiqp = Ziqi
−1
ζiqi
∗(ξiqi

∗
pi − Ci

q
∗
λ).

Proof : The operators Z−1
q , ζ∗q , ξ∗q and C∗q can all be applied componentwise. For p =

(p1, ..., pm+1) ∈ T∗qO it holds

(
ξ∗qp
∣∣v)

V ∗,V
=
(
p
∣∣ξq(v)

)
T∗qO,TqO

=
m+1∑
i=1

(
pi
∣∣ξi

qi(vi)
)

Ti∗
qO,Ti

qO
=

m+1∑
i=1

(
ξi

qi

∗
pi
∣∣vi
)

V ∗,V
, (118)

and thus it follows
ξ∗qp = (ξ1

q1
∗
p1, ..., ξm+1

qm+1
∗
pm+1). (119)

Similarly, for δ = (δ1, ..., δm+1) ∈ V ∗ it holds

(
ζ∗q δ
∣∣h)H∗,H =

(
δ
∣∣ζq(h)

)
V ∗,V

=
m+1∑
i=1

(
δi
∣∣ζi

qi(hi)
)

V i∗,V i =
m+1∑
i=1

(
ζi

qi

∗
δi
∣∣hi
)

Hi∗,Hi , (120)

which implies
ζ∗q δ = (ζ1

q1
∗
δ1, ..., ζm+1

qm+1
∗
δm+1). (121)

Moreover, C∗q = ξ∗qg
∗
q can be written as

C∗qλ = ξ∗qg
∗
qλ =

(
ξ1

q1
∗
g1

q
∗
λ, ..., ξm+1

qm+1
∗
gm+1

q
∗
λ
)
. (122)

The cost cq(h) of the multi-shape module is defined as the sum of the costs of each module.
Therefore we have

cq(h) =
(
Zqh

∣∣h)H∗,H =
m+1∑
i=1

(
Zi

qihi
∣∣hi
)

Hi∗,Hi =
(
(Z1

q1h1, ...,Zm+1
qm+1h

m+1)
∣∣h)H∗,H. (123)

For the cost operator Zq it follows Zq = (Z1
q1 , ...,Zm+1

qm+1). Therefore it follows for the compo-
sition of the operators that

hqp = Z−1
q ζ∗q (ξ∗qp− C∗qλ)

= (Z1
q1
−1
ζ1

q1
∗(ξ1

q1
∗
p1 − ξ1

q1
∗
g1

q1
∗
λ), ...,

Zm+1
qm+1

−1
ζm+1

qm+1
∗(ξm+1

qm+1
∗
pm+1 − ξm+1

qm+1
∗
gm+1

q
∗
λ))

(124)

The following lemma finally provides the tools to express the geodesic controls in
finite-dimension, in the way that was motivated in figure 7.

Lemma 3.17
Let Mmulti be the multi-shape combination of modules Mi, i = 1, ...,m and back-
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ground moduleMm+1 where Oi is Ni-dimensional for i = 1, ...,m; Hi finite-dimen-
sional for i = 1, ...,m; Hm+1 := Vσm+1 a RKHS. Let Cq = gqξq be linear kinetic
constraints. For the geodesic control hm+1

qp there exists a N1 + ...+Nm-dimensional
representation h̄m+1

qp ∈ Hm+1
q and a function fq : Hm+1

q → Hm+1
q , with

fq(h̄m+1
qp ) = hm+1

qp . (125)

The space Hm+1
q can be identified with the cotangent space T∗qm+1Om+1. The repre-

sentation h̄m+1
qp and the function fq are given by

h̄m+1
qp = pm+1 − gm+1

q
∗
λ and fq : h 7→ Zm+1

qm+1
−1
ζm+1
qm+1

∗
ξm+1
qm+1

∗
. (126)

Proof : From Corollary 3.16 we have hm+1
qp = Zm+1

qm+1
−1
ζm+1

qm+1
∗(ξm+1

qm+1
∗
pm+1 − Cm+1

q
∗
λ), and

with Cm+1
q = gm+1

q ξm+1
q it follows

hm+1
qp = Zm+1

qm+1
−1
ζm+1

qm+1
∗
ξm+1

qm+1
∗(pm+1 − gm+1

q
∗
λ). (127)

So h̄m+1
qp := pm+1 − gm+1

q
∗
λ and fq : h 7→ Zm+1

qm+1
−1
ζm+1

qm+1
∗
ξm+1

qm+1
∗ satisfy fq(h̄m+1

qp ) = hm+1
qp .

Because Om+1 =
∏m

i=1Oi is finite-dimensional, T∗qm+1Om+1 is finite-dimensional. More
precisely,

dim(T∗qm+1Om+1) = dim(Tq(
m∏

i=1
Oi)) = dim(

m∏
i=1

T∗qiOi)

=
m∑

i=1
dim(T∗qiOi) =

m∑
i=1

Ni.

(128)

So h̄m+1
qp ∈ T∗qm+1Om+1 is a N1 + ...+Nm-dimensional representation of hm+1

qp .

Remark 3.18
In general, there exists a representation fq(h̄qp) = hqp with h̄qp ∈ T∗qO. For the case
of finite-dimensional shapes q ∈ O, the cotangent space TqO is finite-dimensional.
In the case of infinite-dimensional shape spaces one will have to define a finite-
dimensional representation q̃ ∈ Õ and a function f̃q : Õ → O; q̃ 7→ q for the imple-
mentation. Then the finite representation of hqp lies in T∗q̃Õ and a function mapping
the finite representation h̃qp ∈ T∗q̃Õ to hqp can be defined.

Finally, we reformulate the geodesic equations for problem 3.6 in terms of the finite-
dimensional background representation.
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3.6 Deformation Modules

Corollary 3.19. Geodesic Variables for Finite-Dimensional Shape Spaces

Let Mi = (Oi,Hi, ζi, ξi, ci) be deformation modules with finite-dimensional shape
spaces Oi = (Rd)Ni . Let N :=

∑m
i=1Ni.

LetMm+1 = (Om+1,Hm+1
, ζ̄m+1, ξ̄m+1, c̄m+1) be the finite-dimensional background

representation with

• shape space Om+1 :=
∏m
i=1Oi = (Rd)N ,

• space of controls Hm+1 = (Rd)N ,

• field generator ζ̄q(h) =
∑m
i=1

∑Ni
j=1 Kσm+1(qij , ·)hij ,

• infinitesimal action ξ̄q(v) := v(q), and

• cost c̄q(h) =
∑
i,j

∑
k,l h

i
j
>K̃(qij , qkl )hkl , and

cost operator Zq = K̃qm+1,qm+1 .

Let Mmulti be a multi-shape combination of deformation modulesMi, i = 1, ...,m+ 1.
For the associated reduced Hamiltonian H : O × T∗qO 7→ R,

H(q, p) = H(q, p, hqp, λqp), (129)

the system of equations (100) for the Hamiltonian (99) is equivalent to

q̇ = ∂

∂p
H(q, p, hqp, λqp)

ṗ = − ∂

∂q
H(q, p, hqp, λqp)

(130)

with geodesic variables

hqp = (h1
qp, ..., h

m
qp, h̄

m+1
qp )

and λqp = (CqζqZ−1
q ζ∗qC∗q)−1CqζqZ−1

q ζ∗q ξ
∗
qp

(131)

where

hiqp = Zi−1
qi ζ

i∗
qiξ

i∗
qi(pi − gi

∗
qiλqp) for i = 1, ...,m

h̄m+1
qp = pm+1 − gm+1∗

qm+1λqp
(132)

As a demonstration of geodesic variables computation we provide the derivation of the
explicit terms for the example 3.2, considering translations of landmarks in a background,
in the appendix.
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The computations will amount to the expressions

hqp =

K̃1
z1,q1 0 0
0 K̃2

z2,q2 0
0 0 Id

(p− ( λ
−λ

))
. (133)

and ((
K̃1
q1,z1K̃1

z1,q1 0
0 K̃2

q2,z2K̃2
z2,q2

)
+ K̃3

q,q

)
λqp

=
(

K̃1
q1,z1K̃1

z1,q1 0 K̃3
q3,1,q3

0 K̃2
q2,z2K̃2

z2,q2 K̃3
q3,2,q3

)
p,

(134)

Here K̃i
x,y := K̃i(x, y) is the d(n1)×d(n2) kernel matrix corresponding to the ith module,

with values
(
K̃(x, y)

)
i,j

= k(xi, yj) for x = (x1, ..., xn1) ∈ (Rd)n1 , y = (y1, ..., yn2) ∈
(Rd)n2 (see also Notation chapter). In the explicit expressions it can be seen that the
components of the geodesic controls are linked only implicitly through the variable λqp
in (134).
The expression (CqζqZ−1

q ζ∗qC∗q)λqp amounts to a kernel convolution of all components
of λqp with the kernel associated to the background, summed with convolutions of the
components of λqp associated with a moduleMi and the corresponding kernel for each
i = 1, ...,m. If the scale of the background kernel is chosen small in relation to the
distance of points belonging to different shapes, then the cooresponding values in the
convolution matrix K̃3

q3,q3 will be very small. This amounts to little influence between
the deformations of different shapes. If the scale of the kernel is chosen a higher value,
the link between deformations of different shapes becomes more important. This can be
observed in practice in numerical experiments and will be pointed out in the next chapter,
where we examine practical results of our implementation of the new framework.
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Chapter 4: Numerical Results
In order to verify that the approach works numerically, and to get an intuition of its
qualitative behaviour, we present the shape registration of two synthetic data sets. The
implementation was done in Python using the PyTorch library for automatic differenti-
ation in the optimization.
The basis for the implementation was a class-oriented implementation of the deforma-

tion modules framework, provided by Leander Lacroix. It included classes for deforma-
tion modules and shape types that we use for our work. In order to extend the model to
multiple shapes, a new class for multi-shape combinations has been constructed, where
the key point is the automatic generation of the background module and computation
of the geodesic variables. Several other adaptions have been made. As a starting point,
we used shapes as points in two dimensions, and translation and scaling deformation
modules as well as the compound deformation module for the internal combination of
modules.
We will compare our newly presented framework to the multi-shape LDDMM frame-

work of Arguillère et al. as well as to LDDMM and compound deformation modules.
The computation for the standard LDDMM framework was done using a sum of local
translations deformation module, which amounts to the same theoretical solution for the
minimization problem, as explained in 2.3.
The optimization was done using the BFGS optimization algorithm from the SciPy

package.

4.1 Translation of Shapes in a Background

For a demonstration of the behaviour of the boundary constraints, we consider the
example of two discretized circles translated closely in a shared background. The source
and target shape are given in figure 8. For this example we chose the L2-norm between
corresponding points as a data attachement term.
Although with all models the target can be reached from the source, the resulting

deformation grids and the states during the shooting have a very different appearance.
Figure 9 shows the resulting deformations from the multi-shape deformation modules

approach. The scale of the Gaussian kernel was set to σ = 20 for the region inside the
two shapes and σ = 0.5 for the background. The translation of the shapes is modeled
using using one translation vector as control variable, that is supported at the mean of
the shapes. Figures (b) and (c) show the translation for the two circles. The grid itself
is only bent slightly while the whole grid is translated. For the background module in
figure (d) we see a higher amount of deformation in the grid itself.
The points that lie on the circles are translated while points that are further away

from the circle boundaries experience a lower translation. Because a high variation in
the deformation is allowed, the circles can be translated without being much influenced
by the deformation of points that belong to the other circle. Considering the points on
the boundary, we see that the deformations are consistent for the deformations inside the
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(a) source shapes (b) target shapes

Figure 8: Source and target shape for translations of circles in a background. Two shapes that represent the
discretization of curves are shown. The two shapes are depicted in different colours, indicating which shapes
correspond in the two images. For each point in the source the point correspondence in the target is given, such
that they can be transformed by one vertical translation.

circle and for the background. The points are transported by the same velocity fields.
The results for the multi-shape LDDMM approach are shown in figure 10. The kernel

scales are set to σ = 5 inside the shapes and σ = 0.5 for the background. We see similar
results as for the multi-shape deformation modules approach. The deformations of the
circles are consistent with the deformation of the background thanks to the coundary
constraints. The deformation inside the circles is less smooth than for the multi-shape
deformation modules approach in figure 9. This could be reduced by using a bigger
kernel scale.
Figure 10 shows the results for the LDDMM approach using a Gaussian kernel of scale

σ = 5 and with a scale of σ = 0.5. With a scale of σ = 5 the deformation of the two
circles influence each other in such a way that they are prevented from coming too close.
Figures 12, 13, 14 and 15 show the iterations of the geodesic shooting over ten time

steps. For the multi-shape deformation module approach, the circles preserve their
volume over time. In the multi-shape LDDMM approach the circles reduce their radius
during the shooting, having a minimal radius at t = 0.5. The same behaviour can
be observed for standard LDDMM with a kernel scale σ = 0.5. The radius of the
right circle reduces approximately to one third of the radius at time t = 0 and t = 1.
A weaker reduction is happening for the left, bigger circle. This behaviour is typical
for LDDMM and can be reduced using multi-shape boundary constraints compared to
LDDMM [Arg14]. For the LDDMM setting with a scale of σ = 5, the bigger scale
prevents the circle from getting close to each other. It can be observed that the shapes
keep approximately the same distance from each other, resulting in distortion to an
ellipse-like shape during the shooting.
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4.1 Translation of Shapes in a Background

(a) Deformation grid corresponding to the left shape.
The whole grid is translated upwards due to a high kernel
scale of σ = 20.

(b) Deformation grid corresponding to the left shape.
The whole grid is translated downwards due to a high
kernel scale of σ = 20.

(c) Deformation grid corresponding to the background.
The kernel scale is set to σ = 0.5. The small kernel scale
allows an irregular deformation.

(d) Multi-shape combination of the deformation grids for
shapes and background. The combined grid is continuous
at the circle boundaries due to the identity boundary
constraints.

Figure 9: Deformation grids of the shapes and background and combined grid for the proposed multi-shape
deformation modules framework. The deformations inside the two shapes approximate a global translation due to
a high kernel scale of σ = 20. The support for the translation vector is the center of the circle. In the background
the kernel scale is chosen to be relatively small (σ = 0.5), to allow a high deformation variability in smaller
regions. The combined grid is continuous at the boundaries of the circles due to the identity constraints.
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(a) Deformation grid corresponding to the bigger circle.
The grid is relatively regular.

(b) Deformation grid corresponding to the smaller circle.
The shape is experiencing a bigger translation relative to
its size, which results in a higher deformation compared
to the deformation of the bigger circle.

(c) Deformation grid corresponding to the background.
The deformation is irregular due to a small kernel scale
of σ = 0.5.

(d) Multi-shape combination of the deformation grid.
The grid is continuous at the circles boundaries due to
the use of identity constraints.

Figure 10: Deformation grids of the shapes, background and combined grid for the multi-shape LDDMM frame-
work. The kernel scale for the deformation inside the shapes is set to σ = 5, the scale of the background is σ = 0.5.
The combination of the grids is continuous at the shape boundaries, as in the multi-shape deformation modules
setting. Opposed to figure 9, the region inside the circles are more irregular due to the choice of the kernel scale.
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4.1 Translation of Shapes in a Background

(a) Deformation grid for LDDMM with σ = 5. The
relatively high kernel scale prevents an irregular grid
with high deformations.

(b) Deformation grid for LDDMM with σ = 0.5. The
relatively low kernel scale allows for more irregular de-
formations.

Figure 11: Deformation grids for the LDDMM framework with two different scalings. The deformation with a
higher kernel scaling of σ = 5 forces the grid to high smoothness and prevents high deformations in a small region.
The deformation with a low kernel of σ = 0.5 allows high differences in the translation relatively of close points.
The region inside the shapes is not as much influenced by the boundary deformation.

(a) Shooting at t = 0 (b) Shooting at t = 0.2 (c) Shooting at t = 0.4

(d) Shooting at t = 0.6 (e) Shooting at t = 0.8 (f) Shooting at t = 1

Figure 12: Shooting iterations over time for the multi-shape deformation module approach, compare figure 9.
The source shapes are marked with black points, the target shapes with black crosses, and the current state qt
during the shooting with red points. During the shooting the circles preserve their appearance and volume.
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(a) Shooting at t = 0 (b) Shooting at t = 0.2 (c) Shooting at t = 0.4

(d) Shooting at t = 0.6 (e) Shooting at t = 0.8 (f) Shooting at t = 1

Figure 13: Shooting iterations over time for the multi-shape LDDMM approach, compare figure 10. During the
shooting the circles get slightly smaller than their original radius at time t = 0 and t = 1. The small scale of the
background kernel allows the shapes to come close to each other during the shooting without being influenced by
each other.

(a) Shooting at t = 0 (b) Shooting at t = 0.2 (c) Shooting at t = 0.4

(d) Shooting at t = 0.6 (e) Shooting at t = 0.8 (f) Shooting at t = 1

Figure 14: Shooting iterations over time for LDDMM with σ = 0.5, compare figure 11b. During the shooting
the smaller circle is experiencing a high amount of size reduction. The bigger circle is being reduced to a smaller
extent.
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(a) Shooting at t = 0 (b) Shooting at t = 0.2 (c) Shooting at t = 0.4

(d) Shooting at t = 0.6 (e) Shooting at t = 0.8 (f) Shooting at t = 1

Figure 15: Shooting iterations over time for LDDMM with σ = 5, compare figure 11a. The larger kernel scale
does not allow the shapes to come close to each other during the shooting. Therefore they are avoiding each
other, resulting in an arc-like trajectory. Moreover they are both deformed to ellipse-like irregular shapes during
the shooting.

4.2 Local Scalings and Translation

The second example is chosen in order to demonstrate how more complex deformations
can be obtained by combining compound modules, acting as an internal combination,
and the multi-shape framework, modeling an external combination.
We study the deformation of two peanut-shaped curves, shown in figure 16. Compared

to the source shape, the nuts in the target shape are enlarged in one part and reduced
in the other part of the shape. This will be modeled with deformation modules for local
scalings, as described in section 2.3. We thank Alain Trouvé for providing the code for
data generation.
As the similarity measure for the shapes we chose the varifold attachment as introduced

in [CT13], which provides a way to compare curves without point correspondence. 2

The deformation modules for each shape are chosen as a combination of two scalings
with a Gaussian kernel scale of σ = 1 and a local translation with a high scale of σ = 10 to
model the translation of the whole shape. Furthermore, local translations at each point
of the curve were added with a high penalty coefficient to facilitate an exact registration.

2 As pointed out in [CT13], the concept of varifolds provides a way to numerically encode an unoriented
manifold. The authors explain how a metric can be built using the theory of reproducing kernels. For
further details we refer to [CT13]. At this point we only emphasize the fact that the metric is independent
of the parametrization of the manifold and therefore no point correspondence is needed.
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(a) Source shape (b) Target shape

Figure 16: source and target shape for the peanut-shaped curves, see section 4.2. The target shape results from
the source shape by two scalings centered at both halfs of the nut, and a translation of the whole shape in opposite
directions. The goal of the registration is to match the above shape in the source to the right shape in the target,
and the shape below in the source to the shape on the left in the target.

We use identity constraints at the boundaries for both multi-shape frameworks.
In figure 17, the deformation grid resulting of the multi-shape deformation modules

framework are shown. The deformation grids of the shapes, compare figure 17a and 17b,
model the scalings of the two seperate shapes, that are combined with the background
in figure 17d. For the multi-shape LDDMM framework, the optimization terminated
before convergence due to precision loss. The algorithm stopped after two iterations.
The resulting deformation grids are shown in figure 18. Comparing with figure 22, it
can be seen that the deformed source shape is transformed irregularly into the targets
direction. In the LDDMM framework, the algorithm also terminated due to precision
loss, after 49 iterations. Compared to the multi-shape LDDMM framework the shapes
were transformed closer to the target due to more iterations.
A possible explanation for the numerical errors could be that the computation of the

geodesic variables was done in the multi-shape deformation modules setting. This arises
due to two kernel multiplications and one inversion, while in LDDMM there is only one
kernel multiplication involved 3. When the points of the shape are close to each other
relative to the kernel scale this could have lead to precision loss. For the deformation
modules we used for the multi-shape modular framework this difficulty does not arise
because the geometrical descriptors of the modules are relatively far from the geometrical
descriptors on the boundary.
Figure 20 and 24 show the results of the shape registration using a compound deforma-

tion module. The states during the shooting indicate that instead of local scalings, the
local translations of the boundary points were used to reach the target. This happened

3 This appears when computing the term ξqζqZ−1
q ζ∗

q ξ
∗. The terms ξqζq and ζ∗

q ξ
∗ arise to the same

kernel convolution, where the term Z−1
q is the inverse of this convolution in the case of LDDMM. In the

computation of the geodesic variables in the original multi-shape LDDMM framework, the whole term
corresponds to one convolution with the reproducing kernel. The same appeared when we calculated the
expression for the background geodesic control in A.1.
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despite the fact that the cost of the boundary translations was strongly penalized (with
a factor of 400 instead, opposed to a factor of 1 for scalings and 10 for the translation
centered at the mean point of the shapes). This indicates that the compound module is
not suitable for settings as in this experiment with deformations happening very close
in a very different nature.
From a qualitative point of view it can be said that the multi-shape deformation

module approach yields a plausible deformation grid for the considered prior. Using the
LDDMM shooting method, a grid that can model a scaling can not be obtained. If the
kernel is chosen too big, the deformation of each point influences a bigger region around
the point, which prevents deformations of two close shapes from being of very different
nature. If the kernel is chosen too small, then the curves representing the boundaries can
be deformed very loosely. The space of reachable deformed shapes is bigger. However,
a small kernel cannot model the influence of the curve deformation inside the region,
which results in less reuglar deformations. Points that lie inside the curves but relatively
far from the boundary do not, or only to a small extend, experience the deformation.
This can be seen in the grids of the background deformations and in figure 11b, where
LDDMM with a small kernel scale was used.
Using a compound deformation module for two close shapes amounts to the same prob-

lem as choosing a high scale for the kernel in LDDMM. The two shapes are influencing
each other and are prevented from being separated, as seen in figure 20.
This shows that our new framework is capable of building deformations that none of

the tested state-of-the-art models can achieve.
Table 1 shows the computation time per iteration during the optimization process

for each of the four models. Here it needs to be pointed out that these results do not
allow for a quantitative comparison of the modular approach with the LDDMM shooting
method. The LDDMM model we use here is the sum of local translations as a special
case of deformation module. The computation of the geodesic variables was done in the
general modular setting, which involves more complex computations. This leads to a
higher computation time than for a standard LDDMM setting.
Moreover there are different types of shooting methods that can be used for LDDMM.

The optimization can be done over a momentum mt ∈ V ∗ as a vectorfield, or for a
costate pt ∈ T∗qtO that has reduced dimensionality (see chapter 2.1.7).
It is also interesting to see that introducing multi-shape boundary constraints in LD-

DMM leads to time increasing of two orders of magnitude for the examples we con-
sidered. Considering the deformation modules, the time per iteration is approximately
double when introducing the constraints.
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Numerical Results

(a) Deformation grid corresponding to the left
shape. The deformation models an enlarge-
ment of the left part of the shape and reduction
of the right part of the peanut-shape. At the
same time the whole shape is translated down-
wards left.

(b) Deformation grid corresponding to the right
shape. The enlargement and reduction of the
parts are happening in the opposite way from
the first shape, while having used the same
prior.

(c)Deformation grid corresponding to the back-
ground. Due to a relatively low kernel scale of
σ = 0.3 an irregular grid is achieved where high
deformations of close regions are possible.

(d) Multi-shape combination of the grids. At
the boundary of the shapes, the deformations
are forced to be identical for the background
and the corresponding shape. The local scal-
ings inside the shape and the translations in op-
posite directions are happening simultanously.

Figure 17: Deformation grids for both shapes (above), the background (below left) and multi-shape combination
grid resulting from the shape registration using the multi-shape deformation modules framework. The deformation
grids of the shapes indicate that using deformation modules, a deformation modeling a local scaling can be
obtained. The background grid is of low regularity, such that the shapes can be translated in different directions
although being close to each other. In the multi-shape combined grid, the local scaling deformation prior the
shapes and the independent translation are possible at the same time.
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4.2 Local Scalings and Translation

(a) Deformation grid corresponding to the left shape with
a kernel scale of σ = 0.5.

(b) Deformation grid of right shape with a kernel scale
of σ = 0.5.

(c) Deformation grid corresponding to the background.
The kernel scale was set to σ = 0.2. (d) Multi-shape combination of the deformation grids.

Figure 18: Deformation grids for shapes (above), background (below left) and multi-shape combination (below
right) resulting from the shape registration using multi-shape LDDMM. Due to numerical precision loss the
optimization process terminated before convergence.
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Numerical Results

Figure 19: Deformation grid for the shape reg-
istration using the LDDMM framework with a
Gaussian kernel of scale σ = 0.5.

Figure 20: Deformation grid for the compound
deformation module framework.

Model Time per Iteration
Multi-shape deformation modules 16.9s

Multi-shape LDDMM 244s
LDDMM 1.38s

compound deformation module 8.11s

Table 1: Computation time per iteration for the four models tested on the peanuts-dataset. The use of multi-
shape boundary constraints increases computation time. The increasing factor is higher for the LDDMM setting
than for the deformation modules setting.
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4.2 Local Scalings and Translation

(a) Shooting at t = 0 (b) Shooting at t = 0.2

(c) Shooting at t = 0.4 (d) Shooting at t = 0.6

(e) Shooting at t = 0.8 (f) Shooting at t = 1

Figure 21: Shooting iterations over time for the multi-shape deformation module approach. The scaling centers
and translation point are marked in the shapes. During the shooting the simultanous local scalings and translation
of the whole shape can be observed.
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Numerical Results

(a) Shooting at t = 0 (b) Shooting at t = 0.2

(c) Shooting at t = 0.4 (d) Shooting at t = 0.6

(e) Shooting at t = 0.8 (f) Shooting at t = 1

Figure 22: Shooting iterations over time for the multi-shape LDDMM approach. The shapes did not reach the
target because the optimization terminated after two iterations due to numerical precision loss. The red crosses
mark the location of the geometrical descriptors used for the deformation modules. They do not influence the
deformation for the multi-shape LDDMM setting but are marked for comparison.
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4.2 Local Scalings and Translation

(a) Shooting at t = 0 (b) Shooting at t = 0.2

(c) Shooting at t = 0.4 (d) Shooting at t = 0.6

(e) Shooting at t = 0.8 (f) Shooting at t = 1

Figure 23: Shooting iterations over time for LDDMM with kernel scale σ = 0.5. The optimization terminated
after 49 iterations due to precision loss. The shapes are deforming irregularly during the shooting. The red crosses
mark the location of the geometrical descriptors used for the deformation modules. They do not influence the
deformation for the LDDMM setting but are marked for comparison. They are translated in the direction of the
other shape.
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Numerical Results

(a) Shooting at t = 0 (b) Shooting at t = 0.2

(c) Shooting at t = 0.4 (d) Shooting at t = 0.6

(e) Shooting at t = 0.8 (f) Shooting at t = 1

Figure 24: Shooting iterations over time for a compound deformation module. The shapes are deforming irregu-
larly during the shooting and the scaling and translation centers are drawn to the part of the shape that is closer
to the other shape. The scalings cannot occur simultanously in the two seperate shapes that lie close together,
because the deformations are influencing each other. Therefore most of the deformation results from the local
translations of the boundary points, that have been added with a high penalty.
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Chapter 5: Conclusion
The purpose of this thesis was to provide a framework for incorporating deformation
priors in segmented images and multi-shapes.
We extended the deformation module framework introduced in [Gri16] to a setting

where deformation priors in different regions of the ambient space do not influence each
other while the overall deformation remains consistent at the region boundaries. This
was achieved by incorporating boundary constraints in the optimization problem.

As a first contribution, we stated a new optimization problem that takes into account
the two types of prior knowledge: Deformation priors were incorporated by using defor-
mation modules. Consistency at the region boundaries was modeled by constraining the
problem to certain region boundary constraints as proposed in [Arg14].
From the theoretical viewpoint, we proved the existence of large deformations as well

as existence of geodesics for our new setting. We also computed the geodesic equations
for the Hamiltonian system, which are used in practice to compute geodesics.
In terms of numerical results we compared our presented framework to state-of-the-art

methods such as multi-shape LDDMM, LDDMM and deformation modules. The results
are mainly focused on synthetic examples for pointing out the new possibilities specific
to the framework.
While preliminary, the experimental results show that the framework successfully com-

bines the advantages of deformation modules and the constrained multi-shape registra-
tion framework.
The high amount of computation for the geodesic variables leads to a computation

time of a few minutes for the presented examples. When registering images instead of
points and curves an even higher computation time can be expected. For this reason,
the model is not yet suitable for real-time computations.

Future Work
As numerical results have only been provided for synthetic data of points and curves it
would be interesting to use the method for real medical images. There are promising
perspectives within the application on CT and MR abdominal or brain images for which
a segmentation is given. Until now the framework has been implemented and tested
in two dimensions, which could also be extended to three or more dimensions. For the
application on real data the choice of deformation modules for each object is crucial and
would have to be studied further. Furthermore different types of boundary constraints
can be incorporated, for example in order to allow a sliding motion of objects.
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Chapter A: Appendix

A.1 Explicit Formulation of Geodesic Variables for Landmarks with
Identity Constraints

The purpose of this section is to give an example of explicit formulations for hqp and
λqp as they are computed in practice for the implementation. We will derive the explicit
formulation of hqp and λqp for the example 3.2, where we considered the case of trans-
lations of two shapes in a background. All variables are given for a specific time point.
In order to make the notation less dense we omit the time index t in the following.
Let us recall the given setting of the example. We have

• Translation modules M i, i = 1, 2

– Oi = (R2)Ni

– H i = R2

– ζiqi(h
i) = Kσi(z(qi), ·)hi ∈ C l(R2,R2)

with z(qi) = 1
Ni

∑Ni
j=1 qi,j

– ξiqi(v
i) = vi(qi) ∈ (R2)Ni

– ciqi(h
i) = |hi|2R2 ∈ R

• Background module M3

– O3 = O1 ×O2 = R2N1+N2

– H3 = Vσ3 ⊂ C l(R2,R2)

– ζ3
q3(h3) = h3 ∈ V 3 = Vσ3

– ξ3
q3(v3) =

(
v3(q3,1

1 ), ..., v3(q3,1
N1

), v3(q3,2
1 ), ..., v3(q3,2

N2
)
)
∈ (R2)N1+N2

– c3
q3(h3) = |h3|2H3 ∈ R

• Identity Constraints

Cq(v) = Cq(v1, v2, v3) =
(
v1(q1)− v3(q3,1), v2(q2)− v3(q3,2)

)
=
(
v1(q1

1)− v3(q3,1
1 ), ..., v1(q1

N1)− v3(q3,1
N1

),

v2(q2
1)− v3(q3,2

1 ), ..., v2(q2
N2)− v3(q3,2

N2
)
)

∈ (R2)N1+N2 = Y

(135)

In the example the background space H3 is defined as an infinite-dimensional RKHS.
We will use its finite-dimensional representation as derived in chapter 3.6.
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Appendix

Finite-Dimensional Representation of the Background Space
As motivated in section 3.6, we will consider a finite-dimensional representation h3

q ∈
H3
q := R2(N1+N2). Define the function

fq : H3
q → H3, fq(h3

q) :=
2∑
i=1

Ni∑
j=1

K̃(·, q3,i
j )h3i

j (136)

for h3
q = (h3,1

1 , ..., h3,2
N2

). In this case, fq is defined as fq := Z3−1
q3 ζ3∗

q3ξ3
q3
∗ as in lemma 3.17.

Remark A.1
The following notation is used for a reproducing kernel Hilbert space V .

• K the reproducing kernel

• K̃(x, y) the d× d kernel matrix

• k(x, y) the Gaussian distribution

• K̃a,b := K̃(a, b) ∈ Rd(n1×n2) with a = (a1, ..., an1) ∈ Rd(n1), b = (b1, ..., bn2) ∈
Rd(n2) the dn1 × dn2 kernel matrix with values

(
K̃(a, b)

)
i,j

= k(ai, bj)

In the following sections the terms for the operators ζ∗q ξ∗q , Z−1
q and ζ∗qC∗q will be derived.

Subsequently they are composed to obtain the required terms for λqp and the finite-
dimensional representation of hqp.

Explicit Formulation of the Operator ζ∗q ξ∗q
To compute the operator (ξqζq)∗ : T∗qO → H∗, consider an element α = (α1

1, ..., α
3,2
N2

) ∈
T∗qO = (R2)N1 × (R2)N2 × (R2)N1+N2 . The dual pairing of (ξqζq)∗α with an element h
of H can be written as(
(ξqζq)∗α

∣∣h)H∗,H =
(
α
∣∣ξq ◦ ζq(h)

)
T∗
qO,TqO

=
(
α
∣∣ξq(Kσ1(z(q1), ·)h1,Kσ2(z(q2), ·)h2, h3)

)
T∗
qO,TqO

=
(
α
∣∣Kσ1(z(q1), q1

1)h1, ...,Kσ1(z(q1), q1
N1)h1,

Kσ2(z(q2), q2
1)h2, ...,Kσ2(z(q2), q2

N2)h2,

h3(q3,1
1 ), ..., h3(q3,2

N2
)
)
T∗
qO,TqO

=
N1∑
j=1

(
α1
j

∣∣Kσ1(z(q1), q1
j )h1)

T∗
q1
j

O1,Tq1
j
O1

+
N2∑
j=1

(
α2
j

∣∣Kσ2(z(q2), q2
j )h2)

T∗
q2
j

O2,Tq2
j
O2 +

2∑
i=1

Ni∑
j=1

(
α3
j

∣∣δq3
j
h3)

T∗
q

3,i
j

O3,T
q3,i

j
O3

(137)
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Constraints

=
N1∑
j=1

(
Kσ1(z(q1), q1)α1

j

∣∣h1)
H1∗,H1 +

N2∑
j=1

(
Kσ2(z(q2), q2)α2

j

∣∣h2)
H2∗,H2

+
2∑
i=1

Ni∑
j=1

(
δ
α3,i
j

q3,i
j

∣∣h3)
H3∗,H3

(138)

Here we still have an infinite-dimensional term that will be replaced when considering
the mapping fq and the cost operator Z̄q for the finite-dimensional background module.

Explicit Formulation of the Inverse Cost Operator Z−1
q

By definition the cost for h ∈ H is

cq(h) =
3∑
i=1

ciqi(h
i) = ‖h1‖2H1 + ‖h2‖2H2 + ‖h3‖2H3

= 〈h1, h1〉R2 + 〈h2, h2〉R2 + 〈h3, h3〉Vσ3

=
(
h1∣∣h1)

H1∗,H1 +
(
h2∣∣h2)

H2∗,H2 +
(
K−1
σ3 h

3∣∣h3)
V ∗
σ3 ,Vσ3

.

(139)

For the cost operator Zq with

(
Zqh

∣∣h)H∗,H =
3∑
i=1

(
Ziqih

i
∣∣hi)Hi∗,Hi

=
(
Z1
q1h1∣∣h1)

R2,R2 +
(
Z2
q2h2∣∣h2)

R2,R2 +
(
Z3
q3h3∣∣h3)

V ∗
σ3 ,Vσ3

(140)

we obtain
Z1
q1 = Id, Z2

q2 = Id and Z3
q3 = K−1

σ3 . (141)
In the following, an equivalent formulation of the geodesic equation (115) will be

derived for the finite-dimensional representation h̄3
qp.

For this purpose, define the cost function c̄q : Hq → R and the cost operator Zq : H∗q → Hq

such that cq(h) = c̄q(h̄) =
(
Zqh̄|h̄

)
H∗
q ,Hq

for h = fq(h̄). Then it holds(
Zqh̄

∣∣h̄)H∗
q ,Hq

=
(
Zqh

∣∣h)H∗,H =
(
Zqfq(h̄)

∣∣fq(h̄)
)
H∗,H =

(
f∗q Zqfqh

∣∣h)H∗
q ,Hq

, (142)

and thus the cost operators Zq and Zq are related in the way that Zq = f∗q Zqfq. Applying
the cost operator to the finite-dimensional representation hq is equivalent to applying
fq, then applying the cost operator Zq in H3 and going back to H3 by f∗q . Equivalently
we have Z−1

q = fqZ
−1
q f∗q .

Applying the inverse cost to the already obtained term (138) and inserting the defini-
tions of Z−1

q and f∗q δ yields

f−1
q Z3−1

q3 (ξ3
q3ζ3

q3)∗α3 = Z3−1
q fq

∗(ξ3
q3ζ3

q3)∗α3 = Z3−1
q fq

∗
(∑
i,j

δ
α3,i
j

q3,i
j

)
= K̃−1

q3,q3K̃q3,q3α3 = α3.

(143)
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We see that the kernel convolution cancels out for our choice of f . Finally, we obtain
for the finite-dimensional representation,

(
Z1
q1
−1(

ξ1
q1ζ1

q1
)∗
α1,Z2

q2
−1(

ξ2
q2ζ2

q2
)∗
α2, f−1

q Z3
q3
−1(

ξ3
q3ζ3

q3
)∗
α3)

=
(
K̃1
z1,q1α1, K̃2

z2,q2α2, α3
)
.

(144)

Explicit Formulation of the Operator Cqζq
For the following computations the vector field generated by ζq from h has to be eval-
ulated at the points qij ∈ q. Since the vector fields ζ1

q1(h1) and ζ2
q2(h2) are given by

the convolution with the kernel, the evaluation at a point x ∈ R2 is straightforward by
using the kernel matrix K̃(x, qi)hi. For the infinite-dimensional control h3 ∈ H3, the
evaluation h3(x) can be written as h3(x) = (fqh3

q)(x). This arises to the convolution of
hq ∈ H3 with the matrix K̃3(x, q), which will be done in the first equality of the following
computations.
For an element h ∈ H and its finite-dimensional representation hq ∈ Hq, the applied

operator Cqζq yields

Cqζq(h) = Cq
(
ζ1
q1(h1), ζ2

q2(h2), fqh3
q

)
=
(
ζ1
q1(h1)(q1)− ζ3

q3(h3)(q3,1), ζ2
q2(h2)(q2)− ζ3

q3(h3)(q3,1)
)

=
(
K̃1(q1

1, z
1)h1 −

∑
i,j

K̃3(q1
1, q

3,i
j )h3,i

j , ..., K̃
1(q1

N1 , z
1)h1 −

∑
i,j

K̃3(q3,i
N1
, q1
j )h

3,i
j ,

K̃2(q2
1, z

2)h2 −
∑
i,j

K̃3(q3,2
1 , q3,i

j )h3,i
j , ..., K̃

2(q2
N2 , z

2)h2 −
∑
i,j

K̃3(q3,2
N2
, q3,i
j )h3,i

j ,
)

=
(
K̃1
q1,z1h1 − K̃3

q3,1,q3h3
q , K̃2

q2,z2h2 − K̃3
q3,2,q3h3

q

)
(145)

Explicit Formulation of the Operator ζ∗qC∗q
Let λ = (λ2, λ2) ∈ Y∗, h ∈ H and hq ∈ Hq be its finite-dimensional representation.
Consider the dual pairing

(
ζ∗qC∗qλ

∣∣h)H∗,H =
(
λ
∣∣Cqζqh

)
Y∗,Y

=
(
λ
∣∣Cq(K̃1(·, z1)h1, K̃2(·, z2)h2, f(h3

q)
)
Y∗,Y

=
(
λ
∣∣Cq(K̃1(·, z1)h1, K̃2(·, z2)h2,

∑
i,j

K̃3(·, q3,i
j )hij)

)
Y∗,Y

=
(
λ
∣∣K̃1

q1,z1h1 − K̃2
q3,1,q3h3

q , K̃2
q2,z2h2 − K̃3

q3,1,q3h3
q

)
Y∗,Y

=
(
(K̃1

z1,q1λ1, K̃2
z2,q2λ2,−K̃3

q3,q3,1λ1 − K̃3
q3,q3,2λ2)

∣∣(h1, h2, h3
q)
)
H∗
,H.

(146)

which yields the expression ζ∗qC∗qλ = (K̃1
z1,q1λ1, K̃2

z2,q2λ2,−K̃3
q3,q3,1λ1 − K̃3

q3,q3,2λ2)
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Constraints

The Inversion of CqζqZ−1
q ζ∗qC∗q

With the already obtained results from (146), (141) and (145), the expression for
CqζqZ−1

q ζ∗qC∗q is

CqζqZ−1
q ζ∗qC∗qλ = CqζqZ−1

q (K̃1
z1,q1λ1, K̃2

z2,q2λ2,−K̃3
q3,q3,1λ1 − K̃3

q3,q3,2λ2)
= Cqζq(K̃1

z1,q1λ1, K̃2
z2,q2λ2,−λ)

=
(
K̃1
q1,z1K̃1

z1,q1λ1 + K̃3
q3,1,q3λ, K̃2

q2,z2K̃2
z2,q2λ2 + K̃3

q3,2,q3λ
)
.

(147)

From 3.11, we know that this matrix is invertible. In practice the inversion is done by
solving the linear system

(CqζqZ−1
q ζ∗qC∗q)λq,p = CqζqZ−1

q ζ∗q ξ
∗
qp. (148)

Computing λqp and hqp
Writing the equation (148) explicitly yields the linear system of equations((

K̃1
q1,z1K̃1

z1,q1 0
0 K̃2

q2,z2K̃2
z2,q2

)
+ K̃3

q,q

)
λqp

=
(

K̃1
q1,z1K̃1

z1,q1 0 K̃3
q3,1,q3

0 K̃2
q2,z2K̃2

z2,q2 K̃3
q3,2,q3

)
p,

(149)

which is to be solved.
For hqp the explicit expression is

hqp =
(
K̃1
z1,q1p1, K̃2

z2,q2p2, p3
)
−
(
K̃1
z1,q1λ1, K̃2

z2,q2λ2,−λ
)

=

K̃1
z1,q1 0 0
0 K̃2

z2,q2 0
0 0 Id

(p− ( λ
−λ

))
.

(150)

Now, with equations (150) and (149) we can compute the explicit geodesic variables
hqp and λqp, that are computed at each time step during the shooting.

71





References
[ACAP09] Arsigny, Vincent ; Commowick, Olivier ; Ayache, Nicholas ; Pennec,

Xavier: A fast and log-euclidean polyaffine framework for locally linear
registration. In: Journal of Mathematical Imaging and Vision 33 (2009),
Nr. 2, S. 222–238

[APA03] Arsigny, Vincent ; Pennec, Xavier ; Ayache, Nicholas: Polyrigid and
polyaffine transformations: A new class of diffeomorphisms for locally rigid
or affine registration. In: International Conference on Medical Image Com-
puting and Computer-Assisted Intervention Springer, 2003, S. 829–837

[Arg14] Arguillère, Silvain: Géométrie sous-riemannienne en dimension infinie
et applications à l’analyse mathématique des formes, Université Paris VI -
Pierre et Marie Curie, Diss., 2014

[Aro50] Aronszajn, Nachman: Theory of reproducing kernels. In: Transactions
of the American mathematical society 68 (1950), Nr. 3, S. 337–404

[ATTY15a] Arguillère, Sylvain ; Trélat, Emmanuel ; Trouvé, Alain ; Younes,
Laurent: Multiple shape registration using constrained optimal control. In:
arXiv preprint arXiv:1503.00758 (2015)

[ATTY15b] Arguillere, Sylvain ; Trélat, Emmanuel ; Trouvé, Alain ; Younes,
Laurent: Shape deformation analysis from the optimal control viewpoint.
In: Journal de mathématiques pures et appliquées 104 (2015), Nr. 1, S.
139–178

[BBM14] Bauer, Martin ; Bruveris, Martins ; Michor, Peter W.: Overview of
the geometries of shape spaces and diffeomorphism groups. In: Journal of
Mathematical Imaging and Vision 50 (2014), Nr. 1-2, S. 60–97

[BH15] Bruveris, Martins ; Holm, Darryl D.: Geometry of image registration:
The diffeomorphism group and momentum maps. In: Geometry, Mechanics,
and Dynamics. Springer, 2015, S. 19–56

[BMTY05] Beg, M F. ; Miller, Michael I. ; Trouvé, Alain ; Younes, Laurent:
Computing large deformation metric mappings via geodesic flows of diffeo-
morphisms. In: International journal of computer vision 61 (2005), Nr. 2,
S. 139–157

[Bro81] Broit, Chaim: Optimal registration of deformed images. (1981)

[CRM+96] Christensen, Gary E. ; Rabbitt, Richard D. ; Miller, Michael I. u. a.:
Deformable templates using large deformation kinematics. In: IEEE trans-
actions on image processing 5 (1996), Nr. 10, S. 1435–1447



[CT13] Charon, Nicolas ; Trouvé, Alain: The varifold representation of nonori-
ented shapes for diffeomorphic registration. In: SIAM Journal on Imaging
Sciences 6 (2013), Nr. 4, S. 2547–2580

[DGM98] Dupuis, Paul ; Grenander, Ulf ; Miller, Michael I.: Variational prob-
lems on flows of diffeomorphisms for image matching. In: Quarterly of
applied mathematics (1998), S. 587–600

[Gri16] Gris, Barbara: Modular Approach on Shape Spaces, Sub-Riemannian Ge-
ometry and Computational Anatomy, Université Paris-Saclay, Diss., 2016

[GSS06] Grenander, Ulf ; Srivastava, Anuj ; Saini, Sanjay: Characterization
of biological growth using iterated diffeomorphisms. In: 3rd IEEE Inter-
national Symposium on Biomedical Imaging: Nano to Macro, 2006. IEEE,
2006, S. 1136–1139

[HSS09] Holm, Darryl D. ; Schmah, Tanya ; Stoica, Cristina: Geometric me-
chanics and symmetry: from finite to infinite dimensions. Bd. 12. Oxford
University Press, 2009

[MM07] Michor, Peter W. ; Mumford, David: An overview of the Riemannian
metrics on spaces of curves using the Hamiltonian approach. In: Applied
and Computational Harmonic Analysis 23 (2007), Nr. 1, S. 74–113

[Mod04] Modersitzki, Jan: Numerical methods for image registration. Oxford
University Press on Demand, 2004

[MR13] Marsden, Jerrold E. ; Ratiu, Tudor S.: Introduction to mechanics
and symmetry: a basic exposition of classical mechanical systems. Bd. 17.
Springer Science & Business Media, 2013

[MSBP15] McLeod, Kristin ; Sermesant, Maxime ; Beerbaum, Philipp ; Pennec,
Xavier: Spatio-temporal tensor decomposition of a polyaffine motion model
for a better analysis of pathological left ventricular dynamics. In: IEEE
transactions on medical imaging 34 (2015), Nr. 7, S. 1562–1575

[MTY02] Miller, Michael I. ; Trouvé, Alain ; Younes, Laurent: On the metrics
and Euler-Lagrange equations of computational anatomy. In: Annual review
of biomedical engineering 4 (2002), Nr. 1, S. 375–405

[MTY15] Miller, Michael I. ; Trouvé, Alain ; Younes, Laurent: Hamiltonian
systems and optimal control in computational anatomy: 100 years since
D’Arcy Thompson. In: Annual review of biomedical engineering 17 (2015),
S. 447–509

[RDSP15] Rohé, Marc-Michel ; Duchateau, Nicolas ; Sermesant, Maxime ; Pen-
nec, Xavier: Combination of polyaffine transformations and supervised



learning for the automatic diagnosis of LV infarct. In: Statistical Atlases
and Computational Models of the Heart Springer, 2015, S. 190–198

[SPR12] Seiler, Christof ; Pennec, Xavier ; Reyes, Mauricio: Capturing the
multiscale anatomical shape variability with polyaffine transformation trees.
In: Medical image analysis 16 (2012), Nr. 7, S. 1371–1384

[You10] Younes, Laurent: Shapes and diffeomorphisms. Bd. 171. Springer Science
& Business Media, 2010

[You12] Younes, Laurent: Constrained diffeomorphic shape evolution. In: Foun-
dations of Computational Mathematics 12 (2012), Nr. 3, S. 295–325


	Introduction
	Image Registration
	Large Diffeomorphic Deformations
	Parametric Diffeomorphic Deformations
	Constrained Diffeomorphic Deformations for Multiple Shapes

	Outline

	Mathematical Background
	Large Deformation Diffeomophic Metric Mapping
	The Registration Problem
	Shape Spaces
	The Diffeomorphism Group
	Reproducing Kernel Hilbert Spaces
	The LDDMM Registration Problem for Shapes
	Geodesic Shooting
	Hamiltonian Geodesic Equations

	Constrained LDDMM for Multi-Shapes
	Deformation Modules

	Multi-Shape Deformation Modules
	Definition of the Framework
	Existence of Large Deformations for Multi-Shape Modules
	The Constrained Registration Problem
	Existence of Geodesic Flows
	The Hamiltonian Function and Shooting Equations
	Geodesic Variables for Landmarks

	Numerical Results
	Translation of Shapes in a Background
	Local Scalings and Translation

	Conclusion
	Appendix
	Explicit Formulation of Geodesic Variables for Landmarks with Identity Constraints


