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1 Large Deformation Diffeomorphic Metric Map-

ping for Indirect Image Registration

1.1 The LDDMM Model

The image registration problem is to find a deformation φ, that maps a given template image T
onto a reference image R. Mathematically a gray scale image is modelled as a function from Rd to
R that is zero outside a domain Ω ⊂ Rd and satisfying certain smoothness assumptions. We will
denote the space of images by X. The deformation φ is a mapping φ : Rd → Rd, assumed to be the
identity mapping outside Ω.

One approach to solve this problem is by minimization of a cost functional

E(R, T ;φ) = R(φ) + λD(R, T ;φ), (1.1)

where D is a similarity measure for the deformed reference image and target image, and R is a
regularization term that forces the deformation to satisfy certain smoothness conditions. The regu-
larization parameter λ specifies the influence of the regularization term compared to the similarity
measure.

For many applications it is desirable to have a deformation φ that is invertible, and both φ and
φ−1 should be sufficiently smooth. This prevents the deformation from creating holes or foldings
when applied to an image. Under this assumption the set of deformations forms a group with the
identity mapping as neutral element.

We will consider diffeomorphisms φ ∈ Diff(Ω) on a domain Ω ⊂ Rd as deformations for the image
registration framework. Diff(Ω) contains continuously differentiable maps that have a countinuously
differentiable inverse and therefore satisfies these assumptions.

To create a diffeomorphism φ one can consider small perturbations of the identity mapping

φ = Id + v,

where v is a small enough vector field. For image registration it will generally not be enough to
consider small deformations, hence we need to find a way to create larger deformations. One can
consider the composition of small deformations

φi = (Id + εvi) ◦ φi−1 = φi−1 + εvi ◦ φi−1, (1.2)

where φ0 = Id and for some ε0 > 0, Id + εvi with ε < ε0 is a diffeomorphism. Writing (1.2) as a
difference equation (φi − φi−1)/ε = vi ◦ φi−1 motivates the expression of a differential equation as
a continuous form of it, depending on the time variable t.

Definition 1 (The Flow Equation). Let v : Ω × [0, 1] → Ω, vt(x) := v(x, t) be a time-dependent
vector-field. The flow equation reads

d

dt
φvt = vt ◦ φvt ,

and v is called the flow of φv.
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To make sure that the evolved deformation φvt is a diffeomorphism, it is necessary for vt to
satisfy strong enough smoothness constraints [11].

Definition 2 (Admissible Space). V is an admissible space if it is continuously embedded in
C1

0 (Ω,Rd), or equivalently if there exists a constant c > 0, such that ‖u‖1,∞ ≤ c‖u‖V .

As a sufficient condition of the well-posedness of the flow equation, one assumes vt to be in an
admissible space. Section 1.1.1 will discuss the admissible space in more detail.

Note that the diffeomorphism generated by a given flow field is unique, while one diffeomorphism
can generally be evolved from more than one flow field.

Considering again the energy functional (1.1), we now specify the functionals R(φ) and D(R ◦
φ−1, T ). For the regularization term R one needs to define a metric on the space of deformations.

Theorem 1 (A Metric on G). For G a group of diffeomorphisms, ψ, ψ̄ ∈ G and φvt ∈ G the solution
of the flow equation for a given vector field vt,

dG(ψ, ψ̄) = inf
vt∈V

{∫ 1

0

‖vt‖V dt, ψ = ψ̄ ◦ φvt=1

}
is a metric on G and (G,dG) is a complete metric space.

Proof. A proof can be found in [17, chapter 8.2]

As the similarity metric D in the image space we take the squared L2-norm ‖ · ‖L2 . Plugging in
these terms into the energy functional (1.1), we obtain the the optimization problem as

Problem 1 (Optimization over Velocity Fields).

arg min
vt

E(vt) =
1

2

∫ 1

0

‖vt‖V dt+
λ

2
‖R ◦ (φv1)−1 − T‖2L2 (1.3)

s.t. φt = vt ◦ φt
φ0 = id

(1.4)

1.1.1 Admissible Spaces: Reproducing Kernel Hilbert Spaces

Admissible spaces fall into the class of reproducing kernel Hilbert spaces [2], which are introduced
in the following.

Definition 3 (Reproducing Kernel Hilbert Space). Consider a Hilbert space V ⊂ L2(Ω,Rd). V is
a reproducing kernel Hilbert space (RKHS) if the point evaluation functional δx : V → R, δx(v) :=
v(x) is continuous on V.

This property allows the definition of the reproducing kernel of V . The Riesz representation
theorem states that, for every element µ in the dual space V ∗, there exists a unique representation
µ(y) = µx(y) = 〈x, y〉, x ∈ V . This implies that there exists a unique K(x) ∈ V with the
reproducing property µ(x) = δx(µ) = 〈µ,K(x)〉∀µ ∈ V . The kernel K has the properties to be
symmetric and positive definite [17].
In [17], a method for creating such a RKHS is introduced. An operator L : D → H is chosen.
Here H is a Hilbert space, typically H = L2(Ω,R) and D is densely included in H. With certain
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monotonicity contraints on L, the induced inner product 〈·, ·〉L = 〈·, L·〉L2 can be extended to a
dense subspace V ⊂ H, which is a RKHS. L can be extended to an operator L̂ : V → H.

On the space V there exist two different scalar products, one being the L2 scalar product defined
by the Hilbert space H, which we will denote 〈·, ·〉L2 or 〈·, ·〉, and the scalar product induced by the
reproducing kernel denoted by 〈·, ·〉V .

It can be shown that the reproducing kernel K for a space designed like this is well-defined on
V [17]. This leads to the property 〈K(x), v〉V = 〈L̂K(x), v〉 = δx(v), or K = L̂−1. K can be seen
as the inverse Operator of L̂ and is also called its Green’s function.

In the LDDMM setting, it is common to regularize by minimization over the L2-norm of a
self-adjoint differential operator F applied to ve. The operator F is defining the reproducing kernel
K−1 := L := F>F of the space, as∫ 1

0

‖ vt ‖V dt =

∫ 1

0

‖ Fvt ‖L2
dt = 〈Fvt, Fvt〉L2 = 〈Lv, v〉L2 = 〈mt,Kmt〉L2 = 〈mt, vt〉

(1.5)
A common choice for K in the LDDMM setting is the Gaussian kernel, which corresponds to the
differential operator F = −α52 +γId, where 52 is the Laplacian operator, see [8] and [3]. Other
kinds of kernels have been used and will have a different smoothing property.

1.1.2 Lagrangian and Eulerian Reference Frames and Adjoint Action

The previously defined velocity field is given in Eulerian coordinates. This means it is seen as
observed in the current configuration at each time point, therefore depending on the deformation
that happened before. Another possibility of describing the velocity is to see it from the initial
configuration, which is called the velocity field in the Lagrangian frame or Lagrangian coordinates.
In the following chapters we will write vl for the velocity in the Lagrangian frame and ve for the
velocity field given in Eulerian coordinates.

Figure 1.1 illustrates the correspondence of the two reference frames. On the left, the velocity
is shown as in the initial configuration. The velocity vector is given relative to the neighbouring
control points. By the deformation φ the initial configuration is transformed into the Eulerian
reference frame. The position of the control points is changed aswell as the direction and length of
the velocity vector in the spatial grid, while the relative position to the neighbouring control points
remains the same.

Figure 1.1: Velocity fields in Lagrangian and Eulerian reference frame
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It will be necessary to change between the two frames, which is done by the adjoint action.

Definition 4 (Adjoint action of the group G on V ). The adjoint action of φ ∈ G on the tangent
space V is

Adφ : V → V

Adφv := dφ · v ◦ φ−1.

The Langrangian velocity can be defined via

vl = Adφv−1ve.

The term adjoint action comes from Lie-group theory, where it is interpreted as the push-forward
of v by φ. In the literature, LDDMM theory is often described in the terminology of Lie groups,
interpreting the function space of velocity fields V as the tangent space (or Lie algebra) of the diffeo-
morphism group G. However, even though this terminology brings in useful notation and intuition,
one can not speak of a Lie group structure on G in a rigorous sense since the infinite-dimensional
setting is not compatible with the regularity assumptions of classical Riemannian geometry.

By differentiating Ad at the identity of the group, we get the adjoint action adu : V → V on
the tangent space V :

Definition 5 (Adjoint Action of V on itself and Coadjoint Action). For u, v in an admissible space
V , the adjoint action of V on itself is

aduv := ∂φ(dφ · v ◦ φ−1)|φ=Idu = du · v − dv · u

The coadjoint actions Ad∗ : G×V ∗ → V ∗ on the group G and ad∗ : V ×V ∗ → V ∗ on V are defined
via

〈Ad∗φµ, u〉 = 〈µ,Adφu〉,

and
〈ad∗vµ, u〉 = 〈µ, advu〉.

The coadjoint actions act as the transpose of the operators Ad and ad in the sense of linear
algebra, acting on the dual space of V .

1.2 Geodesic Shooting

The optimization problem (1.3) is expressed as a minimization over the time-dependent velocity
fields vt. The flow of a diffeomorphism is not unique, so the idea of the shooting formulation is to
not optimize over all velocity fields vt, but instead only over those with the least norm for a given
φ. In Lie-group terminology we want to find the geodesics on the manifold G.

Considering a minimizer v∗ of the optimization problem (1.3), v∗ has to be a minimizer of the

regularization term
∫ 1

0
‖ vt ‖V dt with the constraint (1.4) for a fixed deformation φ. The shooting

equations are equivalent to this statement.
Similar to the physical setting of a dynamical system, one can introduce the concept of momen-

tum for the image deformation case.
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Definition 6 (Momenta in the Eulerian and Lagrangian Reference Frames). The Eulerian momen-
tum me is defined as the dual of the velocity in the RKHS,

me := Lve,

and the Lagrangian momentum is defined by

ml := Ad∗φ−1me.

The Lagrangian momentum ml is defined in such a way that

〈Lve, ve〉 = 〈me, ve〉 = 〈ml, vl〉.

Using the identity ‖vt‖2V = 〈mt,Kmt〉 from equation (1.5), the energy functional can be ex-
pressed as a function of the momentum me

t , giving the minimization problem

Problem 2 (Optimization over the Momentum).

arg min
me

t

E(me
t ) =

1

2

∫ 1

0

〈me
t ,Km

e
t 〉dt+

λ

2
‖ R ◦ φ−11 − T ‖2

s.t. φt = vet ◦ φt
φ0 = id

me
t − Lvet = 0.

Here the constraints (1.4) are extended by the constraints that define the correspondence of the
momentum me to the velocity ve.

1.2.1 Geodesic Equation for the Lagrangian Reference Frame - Conser-
vation of momentum

Considering the path of least energy for a particle in the Lagrangian reference frame leads to a very
intuitive result known from mechanics. An important theorem in mechanics is Noether’s theorem,
which states that if a mechanical system is invariant under the action of a group G, the generalized
momentum is conserved. For the Lagrangian reference frame the velocity vlt is always given as in
the initial configuration. Hence, it doesn’t depend on the deformation φt and is invariant under the
group action. Due to Noether’s theorem, the Lagrangian momentum ml

t is a constant of motion,
i.e.

Theorem 2 (Conservation of momentum).

d

dt
ml
t = 0. (1.6)

Proof. In [2], this is proven by directly differentiating the energy functional (1.3).

Knowing the initial momentumml
0, it follows from Theorem 2, that the momentum and therefore

the velocity field over the whole time interval [0, 1] is known. Adding this as a constraint to
the problem 2 allows optimization over the initial momenta instead of time-dependent momenta,
reducing the parameter space. In the following the equivalent formulation for the Eulerian reference
frame is examined.
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1.2.2 Geodesic Equation for the Eulerian Reference Frame - The Euler-
Poincaré Equation

To obtain the geodesic equation for the Eulerian velocity ve, one can apply the Euler-Lagrange
equation to the regularization term. We define φ : [0, 1] × Rd → Rd as the deformation over time
and φt := φ(t, ·) as the deformation for a given timepoint t. We consider the energy

L(g, w) =
1

2
〈L(w ◦ g−1), w ◦ g−1〉

as Lagrange-function. Evaluating L(φt, ∂tφt) gives L(φt, ∂tφt) = 1
2 〈Lv

e, ve〉, the kinetic energy for
the LDDMM regularization term. Now we are interested in finding the minimizer of

S(φ) =

∫ 1

0

L(φt, ∂tφt) dt.

The Euler-Lagrange equation states that for stationary points of the functional S(φ), φ must satisfy

d

dt

[
∂L
∂w

(φt, ∂tφt)

]
=
∂L
∂g

(φt, ∂tφt). (1.7)

Calculating the derivatives of L and inserting into (1.7) as in [7] will give the Euler-Poincaré
equation:

Theorem 3 (The Euler-Poincaré Equation). Along a geodesic path, the Eulerian momentum me
t

satisfies the Euler-Poincaré equation

d

dt
me
t + ad∗vetm

e
t = 0,

which can be explicitly written as the EPDiff equation

d

dt
me + dmeve + dveme +medivve = 0. (1.8)

The Euler-Poincaré equation holds for any Lie group with right invariant Lagrangian, while
EPDiff is its special case for a diffeomorphism group. The Euler-Poincaré equation can also be
derived as an equivalent formulation of the geodesic equation for the Lagrangian momentum. In [2]
this is done by inserting ml

t = Ad∗
φ−1
t
me
t in (1.6) and differentiating the operator Ad∗ with respect

to time.
The shooting formulation of problem 2 is

Problem 3 (Shooting Formulation for the Eulerian Momentum).

arg min
me

0

E(me
0) =

1

2
〈me

0,Km
e
0〉+

λ

2
‖ R ◦ φ−1(1)− T ‖2

s.t. φt = vet ◦ φt
φ0 = id

me
t − Lvet = 0.

d

dt
me
t + ad∗vetm

e
t = 0
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The shooting step to obtain the deformed image from the initial momentum is done by inte-
grating (1.8), then convolving mt for each timestep with the kernel K to obtain the velocity fields.
By integration of the velocity fields one obtains the deformation that can be applied to the image.

1.2.3 Geodesic Equations for the Hamiltonian Frame

Another approach in the literature is to consider the Hamiltonian system. The reduced Hamiltonian
function H(g, p) is derived from the Lagrangian L(g, w) by a change of variables (g, w) 7−→ (g, p)
through the Legendre-transformation. This leads to a system of first order differential equations,
as opposed to the Euler-Lagrange equation as a second order differential equation. The introduced
variable p is called the conjugate momentum or generalized momentum. The Hamiltonian function
is defined as

H(g, p) = p · w − L(g, w),

where w depends on g and p and is the solution of the equation

p =
∂L
∂w

(g, w). (1.9)

Hamilton’s equations state that if there are p, g that minimize the energy, then they must satisfy

d

dt
p = −∂H

∂g

d

dt
g =

∂H
∂p

.

The first equation follows from the Euler-Lagrange equation. The second equation follows directly
from the definition of H(g, p).

Evaluating (1.9) for the LDDMM setting with g = φ and w = d
dtφ will lead to the conjugate

momentum p that corresponds to the momenta ml and me as p = dφ−>ml = |dφ| me ◦ φ. Similar
to the Lagrangian frame the momentum is given in the initial configuration.

One can check that p and w are defined in such a way that 〈p, w〉 = 1
2 〈L(w ◦ φ−1), w ◦ φ−1〉,

which gives the Hamiltonian

H(φ, p) = 〈p, w〉 − L(φ,w)

= 〈p, w〉 − 1

2
〈L(w ◦ φ−1), w ◦ φ−1〉

=
1

2
〈p, w〉

When solving (1.9) for w, one will obtain the expression

w(g, p) =

∫
Rd

K(g(x), g(y))p(y)dy.

Defining Kg as the kernel evaluated at g, that gives w = Kgp, we have H(g, p) = 1
2 〈p,K

gp〉.
Evaluating the partial derivatives of H(φ, p) leads to the geodesic equations

d

dt
p = −(5Kg ◦ φ)p

d

dt
g = (Kg ◦ φ)p,

(1.10)

see [13], [12] for a more detailed derivation of this. The solutions of the Hamiltonian system are
then obtained solving (1.10) for g forward in time and for p backward in time, see Algorithm 1 in
[12].
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1.2.4 Comparison of Optimization Strategies

An important advantage of the shooting method is the reduction of the parameter space, which
makes the algorithm more efficient. In [17] it is stated that convergence of the shooting method is
fast, but not guaranteed. Especially for large complex deformations the sensibility to small changes
in the control variables can be large, which leads to an unstable optimization procedure.

The geodesic equations result in slightly more complex computations, while optimization over
time-dependent quantities requires a larger computation memory. However, those algorithms are
more less likely to get stuck in local minima for large deformations. The solutions of such an
optimization algorithm are not guaranteed to be a geodesic on G, but can differ significantly from
the geodesic equations unless the discretization in time is chosen fine enough.

For the shooting method, we examined the different shooting equations for the Lagrangian,
Eulerian and Hamiltonian momentum. In the Lagrangian framework, the position of points on
which the momenta are given, is changing over time. This makes the convolution and integration
step computationally more demanding than for a fixed regular grid. The convolution kernel K has
to be evaluated on a different grid for each timestep. For the integration, [1] say that Lagrangian
integration schemes are more computationally stable and provide good numerical accuracy for a
larger size of time step, compared to the Eulerian integration scheme.

For the Eulerian framework the momenta at discretized timepoints can be computed by the
EPDiff-equation, and then convolved to obtain the velocity field at each timepoint for the integra-
tion. Having the vectors given on the same spatial grid at each timepoint makes the implementation
easier.

In the Hamiltonian framework the geodesic equations are solved by integrating d
dtq forward in

time and d
dtp backward in time, see [12]. Shooting algorithms for the Eulerian momentum and

for the Hamiltonian momentum are widely used, whereas a shooting algorithm for the Lagrangian
momentum is not common.

Note that the initial momenta are the same for each reference frame. The difference is how to
look at the geodesic path on G.

At convergence, the initial momentum will be parallel to the image gradient. This is because
a deformation along the level set of the image will increase the regularization term while giving
the same deformed image. Thus the optimization can be done over a scalar momentum α lying in
the image space and satisfying m0 = α0 5 R. The scalar momentum α has lower dimensionality
than the vectorvalued momentum m, which helps speeding the optimization algorithm. However
the computations are often less stable.

1.3 Geodesic Shooting for Indirect Image Registration

In indirect image registration the target is not given in the image space X but only observed as
noisy data in the data space Y . The forward operator T : X → Y , T (T ) = g gives the relation
between the image and corresponding data in the data space. The optimization problem 3 can be
reformulated as
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Problem 4 (Shooting Formulation of the Indirect Image Registration Problem).

arg min
me

0

E(me
0) =

1

2
〈me

0,Km
e
0〉+

λ

2
‖ T (R ◦ φ−1)− g ‖2

s.t. φt = vet ◦ φt
φ0 = id

me
t − Lvet = 0.

d

dt
me
t + ad∗vetm

e
t = 0

The similarity between the transformed reference image and the target image is now measured
in the data space. Depending on the kind of data the norm is chosen. Since the forward operator
has no effect on the regularization term, the geodesic equations remain the same as in 3.

It is not obvious that the new minimization problem also converges to an existing solution. In
[4] a proof of existence of a minimizer for the indirect registration problem is given. For the proof
of convergence the forward operator T has to satisfy certain conditions.

1.4 Numerical Results

The indirect registration problem was implemented in Python using the Operator Discretization
Library (ODL). The code is available at https://github.com/RosaKow/LDDMM.

The kernel was set to be a Gaussian kernel with standard deviation σ = 5. For the experiments
the forward operator T was chosen to be the Ray transform, with the L2-norm as the metric in
the data space. For the optimization the gradient of the energy functional was computed using the
adjoint equations as in [14]. The optimization was done by gradient descent with fixed stepsize.
During the optimization process it happened that the momentum map and the velocity field ex-
ceeded the image domain, which could not be handled by the algorithm. A first attempt was to
stop the iterations as soon as this problem appeared. For the examples shown here, the algorithm
did not converge yet. To adress this problem one could try to use a kernel that vanishes on the
image boundaries.

For the examples shown in the following, the template image is shown in the image space for
better visualisation. As input for the energy functional the template was transformed to the data
space. Figure 1.2 shows the result of the registration of the letters ’J’ and ’V’ as well as the computed
initial momentum. In figure 1.3 the evolution of the template image over 10 timesteps is visualized
for the same example. Figure 1.4 shows the results of the registration with noise added to the
reference image in the image space. The deformed image is only very slightly less accurate. Figure
1.5 shows that the algorithm has slight difficulties remaining straight parallel edges. The straight
edges of the square are blurred and rounded. This might be due to the using the Gaussian kernel.
For an application where it is important to preserve this kind of features, one might consider using
other kernels. Figure 1.6 shows that the algorithm is able to provide a good deformed template.
The momentum is quite high in the inner region of the shape, and is quite smooth over the entire
domain. Theoretically, the momentum vectors should be parallel to the image gradient. From this
one can assume that the algorithm is not completely converged yet.
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(a) Template image (b) Reference image

(c) Initial momentum (d) Deformed template

Figure 1.2: Registration results for LDDMM shooting algorithm

Figure 1.3: Template image deforming over time
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(a) Template image (b) Reference image

(c) Initial momentum (d) Deformed template

Figure 1.4: Registration results for LDDMM shooting algorithm with noisy data

(a) Template image (b) Reference image

(c) Initial momentum (d) Deformed template

Figure 1.5: Registration results for LDDMM shooting algorithm
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(a) Template image (b) Reference image

(c) Initial momentum (d) Deformed template

Figure 1.6: Registration results for LDDMM shooting algorithm
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2 Deep Learning Approaches for Indirect Image

Registration

2.1 Deep Learning for Image Registration

In some applications, e.g. in medical imaging, a real-time registration algorithm is required. Most
state-of-the-art registration algorithms are too complex to provide good results in real time. The
advantage of neural networks is that once trained, they are very fast in producing the output
for new input data. For this reason, several approaches of applying learning algorithms in image
registration have been made.

In deep learning one distiguishes between supervised and unsupervised learning algorithms. In
supervised learning, the network is trained with a pair of input data and desired output data. In
contrast, unsupervised learning algorithms don’t have access to the ground truth output but work
as functions to describe hidden structures from the data.

For a supervised learning approach for image registration, the training data is typically given
as the set

Σ := {Ri, Ti, φi} ⊂ X ×X ×G

of corresponding images, where Ti ≈ W(Ri, φi) := Ri ◦ φ−1i and G is the deformation group. The
intention is to find the approximate inverse operator Λθ : X ×X → G of the operator W w.r.t the
deformation. This is done by minimizing a loss function

L(θ) =
∑
i

‖Λθ(Ri, Ti)− φi‖G (2.1)

over θ.
For an unsupervised learning approach the loss function is similar to the energy function (1.1):

L(θ) =
∑
i

‖W(Ri,Λθ(Ri, Ti))− Ti‖X (2.2)

It is also possible to add a regularization term here. In the loss function (2.1) the accuracy is
measured in the space of deformation. In contrast, the loss function (2.2) measures the accuracy of
Λθ in the space of images. For both cases the choice of the norm is essential for the result.

Both supervised and unsupervised learning algorithms have been applied for image registration
tasks, of which some examples are described in the following. In [5] the deformation is directly
being learned end-to-end. In a convolutional network a displacement vector field is generated and
the similarity is measured of the warped template and reference image in the image space. In
[15], authors use a convolutional neural network for preprocessing, by extracting features that are
important for predictions of local displacement from images and constructing a low-dimensional
representation which is then fed into a registration algorithm. A supervised learning approach
with given groundtruth deformation, [10] used CNNs with generated training data for rigid image
registration. Rigid registration has much fewer parameters than using a deformation field, and
therefore is easier to learn by a deep network. In [6] and [9], authors used a supervised CNN for
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deformation prediction, that is then used as an initial guess for a registration algorithm. In [16],
the initial momenta from the LDDMM setting are learned in a supervised learning framework. The
following section gives a further describtion of this approach.

2.2 Deep Learning for LDDMM

The momenta in the LDDMM shooting framework have the property to be much less smooth than
the resulting deformation field. This is particularly convenient for learning, as the momenta provide
more characteristic features for a particular image than the smoother deformations. The prediction
of the momenta is likely more robust than the prediction of the deformation field.

In [16] a deep convolutional neural network is used to learn these initial momenta. The network
architecture consists of an encoder and a decoder. The encoder is fed with the corresponding
reference and template image and works as a feature extraction for both images independently.
The extracted features are then concatenated and fed into the decoder. The decoder consists of
three independant convolutional networks that predict the momenta for the three dimensions. To
recover from prediction errors, a correction networks of the same archtitecture is used to predict
the prediction error. While feeding the network with whole images would require a substantially
large capacity of the network, only patches of images are used as input here. This also has the
advantage that from relatively few images and ground truth momenta, a large amount of training
data is obtained. The patches are extracted from the reference, template and deformation at the
same spatial grid locations. For this to be reasonable, it needs to be assumed that the deformation
is relatively small, i.e. the deformed patch lies (at least mostly) in the same patch in the template
image.

2.3 Learning Strategies for Indirect LDDMM Image Regis-
tration

In indirect image registration the target is not given in the image space X but only observed as
noisy data in the data space Y . The forward operator T : X → Y, T (Ti) = gi gives the relation
between the image and corresponding data in the data space. The training data now consists of
pairs of images and data

Σ := {Ri, gi} ⊂ X × Y,

where gi ∼= T ◦ S(Ri,mi) for an unknown momentum mi. Now one is interested in learning the
operator

Λθ : X × Y → V ∗,

where V ∗ is the space of momenta. This can be done by minimizing one of several possible cost
functions.

For a supervised learning approach a deep convolutional network can be used to minimize the
cost function

θ∗ ∈ arg min
θ

∑
i

‖Λθ(Ri, gi)−mi‖V ∗

Here it is assumed that the ground truth initial momentum is known. This can either be computed
from an existing registration algorithm, like in the previously described framework. The accuracy
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of the learned momentum is obviously restricted by the accuracy of the underlying registration
algorithm. However the computation will be significantly faster.

Another possibility is to use generated training data. The loss function for generated training
data would read

θ∗ ∈ arg min
θ

∑
i

‖Λθ(Ri, T ◦ S(Ri,mi))−mi‖V ∗ .

Here S : X × V ∗ → X is the shooting operator, that maps an initial momentum and an image
to the deformed image. For data generation one can pick an image and an initial momentum to
then obtain the data g by the shooting algorithm and forward operator. The difficulty with this is,
that the training data needs to be similarly distributed as the actual data one wants to feed to the
network. Randomly chosen momenta will likely not lead to a plausible deformation field. It can
be shown, that a momentum vector field will be parallel to the image gradient when minimizing
the energy functional. This is because deforming constant regions of the image will not lead to
a change of the data term but increase the regularization term in the energy functional (1.1). It
would therefore make sense to use the scalar valued momentum α with

m = α · ∇R

for training data generation. Which further conditions the momenta should satisfy is still to be
investigated. It would be interesting if one could use a network that uses both precomputed and
generated groundtruth momenta to have the advantages of real images as training data and at the
same time not being limited by the accuracy of the used registration algorithm.

Another question in this formulation is how to chose the norm ‖ · ‖V ∗ for a sensible comparison
of momenta. The standard L2-norm would most likely not be a good choice, because it is using
pointwise differences. For comparing momenta it would make sense to use a norm that takes the
whole geometry of the vectorfield into account. It needs to be investigated which choice of norm has
the desired properties for comparing initial momenta. To avoid this issue it is possible to formulate
the loss function in the data space, as in

θ∗ ∈ arg min
θ

∑
i

‖T ◦ S(Ri,Λθ(Ri, gi))− T ◦ S(Ri,mi)‖Y

One can also use a network that is trained withour the groundtruth momenta as a function
approximation network with the loss function

θ∗ ∈ arg min
θ

∑
i

‖T ◦ S(Ri,Λθ(Ri, gi))− gi‖Y .

Here, the sought-for operator Λθ,R is forced to approximate the inverse of the composition of the
operators T ◦ SR. The metric is in the data space, as no momentum is directly involved in the
formulation.

For the network architecture, it would be possible to use a similar architecture as in [16]. For
indirect image registration it would propably not work that well to extract image patches, because
in the data space the information of the patch might be spread over the whole data, as for example
in a sinogramm of a tomographic image. It would be interesting to see, which of the proposed loss
functions work best for which kind of application. For now this is an open question for future work.
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