
PH30101 General Relativity

Prof Tim Birks

“General relativity without tensors”

General relativity (GR) states that spacetime is deformed by 

gravitating masses. Freely-moving objects follow straight lines 

(or their nearest equivalents) in this curved spacetime, even in 

the presence of gravity. GR is our current theory of gravity and, 

alongside the "standard model" of quantum/particle physics, 

forms our best account yet of how the Universe fundamentally 

works.

A complete treatment of GR relies on tensor analysis, a chunk of 

advanced mathematics we'd need to spend a lot of time learning 

before even starting the actual physics. But, knowing the 

curvature of spacetime, we can deduce the motion of particles 

and light without knowing about tensors. (It's still mathematical, 

but it's maths you already know.) In this unit we will use this 

approach to examine what curved spacetime means, compare the 

predictions of GR and Newtonian gravity, and explore the 

properties of the quintessential GR object: the black hole.

Spacetime curvature is described by metrics, which we won't be 

able to derive without tensors. We'll just take them as given. But, 

when you learned quantum mechanics, did it bother you (did 

you even notice) that you never saw where Schrödinger's 

equation came from?
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Revision: You will need material from previous units, including:

special relativity (SR): PH10103 for Physics students, PH20076 

for Maths and Physics students, or PH20106/PH20114 for 

students who transferred to Physics from other courses.

Newtonian mechanics and gravity: including gravitational 

potential, angular momentum, orbits, planetary motion, impact 

parameter

calculus: curve sketching, differentiation and integration 

(including line and multiple integrals), polar plots, ordinary 

differential equations (separable, forced s.h.m.) and especially

coordinate systems like spherical polars. But, no vector analysis 

or complex numbers.

geometry: basic stuff (triangles, circles, parallel lines), curves 

(ellipses, hyperbolae) and spheres (surface area, latitude and 

longitude, great circles).

thermal physics and quantum mechanics: entropy, microstates, 

black-body radiation, the uncertainty principle(s).

I don't schedule office hours, but I'm usually happy to be 

interrupted. To contact me outside timetabled contact time, use 

email (t.a.birks@bath.ac.uk) or visit my office (8W 4.13) if the 

door is open. It's OK for students to get in touch and ask me 

questions!
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The Moodle page for the unit contains, amongst other things:

Organisational information (when different lectures and 

problems classes will be held, etc). I will assume you have read 

this and will keep checking for changes from time to time, 

especially if you miss any announcements.

The problem set as a pdf file. 

Model answers to the problem set. These will become available 

after the corresponding problems classes. The idea is to attempt 

the problems before being given the answers ...

A sheet of useful equations, most of which you do not need to 

memorise.

These notes as a pdf file. On each page of the notes, a header 

summarises what's on it and indicates the expected (no 

promises) lecture number when it's covered.

I will not be handing out paper copies of the notes, problem set, 

model answers or anything else!

If you decide to print the notes I recommend printing them 

double-sided, black-and-white, and 2 pages on each side*. In 

January 2024 this cost £1.90 using University printers. The notes 

are designed to be comfortable to read at this size.

It cost 22p to print the problem set in the same way.
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* If you're using Adobe Reader and University printers: select printer UPS1 or UPS2

select "Print in grayscale (black and white)"

click "Multiple" and select 2 Pages per sheet, "Print on both sides of paper" and "Flip on short edge".

Remember to deselect these options next time you print something!
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1. Introduction: deforming time and space

We needed a new theory of gravity!

General Relativity (GR) is Einstein's theory of gravity. So what's 

wrong with Newton's?

F is the force now, when M and m are r apart. But special 

relativity (SR) says no influence can travel faster than light, so 

gravitational influences too must take time to get from M to m. 

Indeed, r is the difference between the positions of M and m

measured simultaneously, but SR says that simultaneity depends 

on your frame of reference.

If that criticism is too vague and picky for you, try this thought 

experiment. In frame of reference S, test mass m lies initially at 

rest half-way between two identical streams of masses, spaced 

by l, moving at the same speed v in opposite directions:

6Lecture 1

2

Mm
F G

r
=

The net gravitational force on m is zero, by rotation symmetry: 

the attraction of the upper stream is balanced by the attraction of 

the lower stream.

 m does not accelerate
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These two viewpoints contradict one another: m can't both move 

upwards (and eventually collide with the upper stream) and not 

do so. This exemplifies the fact that:

In our thought experiment, F is balanced by a new repulsive

force between co-moving masses called "gravito-magnetism", cf 

the well-known velocity-dependent relativistic force between 

electric charges. But rather than patching up Newton's theory in 

this way, Einstein preferred to start from scratch with:

Then look at things in frame S' moving at speed v to the right 

relative to S. Now the lower stream is at rest, m moves to the left 

at speed v, and the upper stream moves to the left at a speed 

greater than v.
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According to SR, moving objects undergo length contraction. 

The upper stream moves faster in S' than in S and experiences 

more length contraction, so its spacing is <l. The lower stream 

moves slower in S' than in S and experiences less length 

contraction, so its spacing is >l.

There's therefore more mass (per unit length) above m than 

below, and a net upward gravitational force F on m.

 m accelerates upwards

Newtonian gravity is not consistent with SR.

1. Introduction / A new theory of gravity
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Why are they identical?

Actually there are other forces that accelerate independently of 

mass. For example, "g-forces" that push you backwards in an 

accelerating rollercoaster, centrifugal forces that pull outward on 

a curved path and Coriolis forces that spin weather systems. 

What all these forces have in common is that they don't exist... 

They are pseudo-forces that appear only in accelerating (ie, non-

inertial) frames of reference. The acceleration that all masses 

seem to have in common is merely the acceleration of the frame 

itself.

2

Mm
mg G

r
=

inertial mass m

(resistance to 

acceleration)

gravitational mass m

(source of 

gravitational force)

The principle of equivalence

Einstein's thinking on gravity was based on a familiar result 

from Newton's theory - the acceleration g of test mass m due to 

mass M is independent on m:

The fact that all free-falling masses accelerate equally was well 

known before Newton (Galileo etc) and has been experimentally 

verified to within one part in 1012. Yet in Newton's theory it is an 

astonishing coincidence, because the m's on both sides of the 

above equation represent logically-distinct concepts:

1. Introduction / Principle of equivalence
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Einstein's big idea was that the gross "9.8 ms-2" effect of gravity 

is also a pseudo-force. It appears only because, standing on the 

ground, we're really using an upwardly-accelerating frame of 

reference. He realised this by imagining that a man falling from 

a building feels no gravity as he falls, which Einstein called the 

"happiest thought" of his life.

9Lecture 1

Free-falling frames  inertial frames

It follows that being at rest (in the conventional sense) in a 

gravitational field is the same as being accelerated relative to a 

freely-falling (and hence inertial) frame. Einstein generalised 

this mechanical result to all physical phenomena, leading to

The Principle of Equivalence: no local experiment can 

distinguish between gravity and accelerated motion.

According to the principle, experiments at rest on the ground 

yield the same results as they would in a rocket accelerating 

smoothly at 9.8 ms-2 far from gravitating masses. Without 

external interactions (for example, no looking out of windows), 

you can't tell the difference.

at rest in a 

gravitational field
in an accelerating 

rocket, no gravity

in both cases, the apple* accelerates downwards relative to the observer

* We're studying gravity - tradition demands it's an apple.

1. Introduction / Principle of equivalence



The word "local" is important. Unlike uniform acceleration, 

gravity has a centre. Free-falling frames have vector

10Lecture 1

There are no universal inertial frames, only local ones.

flat Minkowski spacetime 

of SR into the curved 

spacetime of GR. (Like 

the way stitching 

together lots of flat city-

scale maps produces a 

spherical surface on a 

continental scale.)

Cut out the U-shape of stitched-together small-scale maps and lay the two maps for the 

north pole over each other (with the right orientation). The paper strip forms part of a 

globe, even though each individual map is approximately flat.

accelerations that vary from 

place to place, in magnitude 

(g is slightly bigger at your

feet than your head) and 

direction (the vertical in Bath is 

~1½º away from the vertical in 

London). A big-enough 

experiment can use this spatial 

variation to distinguish gravity 

and accelerated motion, and we 

can't find a common frame of 

reference that eliminates gravity 

everywhere:

Stitching together neighbouring local inertial frames across an 

extended region turns the
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The essence of gravity in GR - what can't be eliminated by 

moving to a new frame of reference - is the spatial variation left 

over when the gross effect of gravity is subtracted by moving to 

a freely-falling local inertial frame.

Imagine a free-falling sphere of loose gravel, ignoring air 

resistance etc. The bottom of the sphere has bigger g than the 

top, and at the sides the directions of g converge slightly to point 

to the centre of the gravitating mass*. Shifting to the (inertial) 

frame of the centre of the sphere means subtracting gaverage :
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What's left over is a vertical tension and horizontal compression, 

tending to deform the sphere into an ellipsoid. If the gravel was 

water, with a rocky ball inside rotating once per day, the whole 

lot in free fall towards the Moon, you might recognise these left-

over forces as the tides.

Tidal forces are the essence of gravity.

They encapsulate the spatial variations discussed on the previous 

page. In our unit we won't study tidal forces much, but this 

concept is central to the tensor formulation of GR as a whole.

* The gravel doesn't have to actually hit the gravitating mass. Free fall is just motion 

without forces other than gravity, and can be upwards or sideways (like an orbit) as 

well as the classic vertical drop.

1. Introduction / Principle of equivalence



Consequences of the principle of equivalence

The principle of equivalence quickly leads to two surprising 

consequences about space and time in the presence of gravity.

• Consequence #1: gravitational time dilation

Rocket R undergoes constant acceleration g far from gravitating 

masses. Time t is measured by inertial observer O. Pulses of 

light leave the ceiling A every period DtA. What is the period DtB

of the pulses reaching the floor B, if h is the height of the room?

12Lecture 2

Let pulse 1 leave A when R is instantaneously at rest relative to 

O. It reaches B after time* t1 = h/c, the time of flight for light to 

travel distance h. 

Pulse 2 is emitted time DtA later. By then, R has accelerated to 

speed* u = g DtA. As the pulse travels downwards, the floor 

travels upwards through distance* l  u t1 = g DtA × h/c (using t1

as our first approximation for the time of flight of pulse 2).

Pulse 2 therefore travels a shorter distance h - l to B, with a 

shorter time of flight (our second approximation) of*

2 1 2

( )
A

h l gh
t t t

c c

-
= = - D

* From the definitions of velocity and acceleration - or "suvat" if you prefer.
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Here's a time-line for these various events:

13Lecture 2

So DtB < DtA: the pulses arrive at B more often than they leave A. 

Nothing paradoxical so far: the times of flight of the pulses are 

clearly different, just giving a fancy kind of Doppler shift.

But the equivalence principle says we get the same result in a 

room R' at rest in a gravitational field g.

2 1 1 12 2
1B A A A A

gh gh
t t t t t t t t t

c c

 
D = D + - = D + - D - = - D 

 

Now the room doesn't move. The times of flight are now the 

same. But the equivalence principle demands DtB < DtA still. An 

inhabitant of the room, measuring these times, concludes:

Gravitational time dilation: time passes more slowly 

lower down in a gravitational field*.

The time DtB between the two pulses reaching B is therefore

* The difference is tiny on Earth: ~1 ms per century between a typical ceiling and floor.
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• Consequence #2: curved spacetime

In a (t versus x) spacetime diagram* of the events in R', A and B 

are at rest so their worldlines are vertical, with constant values of 

x separated by h. This means lines CD and EF are parallel.

The two pulses of light travel at the same speed c, so their 

worldlines make the same angle to the axes. This means lines 

CE and DF are also parallel. By definition, the quadrilateral 

CDFE is therefore a parallelogram.

14Lecture 2

But CD = DtA and EF = DtB, so the time dilation result means

CD EF

CDFE is a parallelogram with a pair of unequal opposite sides! 

Obviously this contradicts a basic theorem of plane geometry as 

developed by the ancient Greeks, such as Euclid. In fact such a 

shape cannot be accurately drawn on a flat sheet like the above 

diagram. The sheet would need to be curved.

Gravity causes spacetime to be curved.

The geometry of spacetime is "non-Euclidean".

1. Introduction / Curved spacetime

* x is the height coord: it's a shame spacetime diagrams always put space horizontally!







General Relativity

J Wheeler summarised GR in two parts like this:

15Lecture 2

Part  (it logically comes first...) means that sources of gravity 

cause the geometry of spacetime to depart from the flatness of 

the Minkowski spacetime of SR. This is described by the 

fundamental equation of GR, the Einstein field equation:

8G GTm m=

“ Spacetime tells matter how to move,

matter tells spacetime how to curve. ”

Einstein tensor describes

the curvature of spacetime 

(in a differentiated form)
gravitational 

constant

stress-energy tensor 

represents sources of 

gravity

m,  = 0, 1, 2, 3

4-D components, 

usually 0 is time

This simple-looking equation plays the role of a force law, like 

F = GMm/r2, telling us how a gravitational field (represented by 

the curvature of spacetime) is produced by sources of gravity.

However, it is not as simple as it looks! It's written in the 

language of tensor analysis. The two tensors Gm and Tm can 

each be thought of as a 4×4 symmetric matrix, with 10 

independent components*. Just for the sake of curiosity - you are 

not expected to remember this, or even the Einstein field 

equation itself, for the exam - take a look at Tm on the RHS:

* m and  act as matrix row and column indices - not exponents / powers.
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Ordinary mass (represented by energy density) is merely T00, the 

time-time component of Tm. Other sources of gravity in GR are 

momentum density (space-time components) and pressure and 

stress (space-space components). Meanwhile, on the LHS, Gm is 

a set of complicated derivatives of something called the metric, 

which describes the spacetime curvature geometrically.

The use of tensors is an elegant way to express the principle of 

general covariance, which states that the laws of physics should 

be valid in all frames of reference, not just inertial ones. But 

written out in full, the Einstein equation becomes 10 coupled 

nonlinear partial differential equations in non-cartesian 

coordinates. Actually solving these equations, to get the metric, 

is hideously complicated. Indeed, it has only ever been done 

exactly in a handful of very simple cases. We'd need to spend 

most of the semester learning tensor analysis before even 

beginning any physics. Therefore, I regret to inform you that

16Lecture 2

In this unit*, we will not learn about how "matter 

tells spacetime how to curve".

* To study GR with tensors, and learn about matter telling spacetime how to curve, take 

PH40112 Relativistic Cosmology.
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It relates a small spacetime interval ds2 (as in SR) to small 

changes in four coordinates. The coordinates resemble spherical 

polars (r, q, f) with time t tacked on. The metric generalises the 

Pythagoras theorem, and is a geometrical description of how the 

mass warps spacetime in its vicinity.

Note there are no tensors to be seen, just ordinary calculus. You 

don't need tensors to perform calculations with it either. Tensors 

are elegant but for part  they are optional - and we will opt 

out*! I am therefore pleased to inform you that

17Lecture 2

In this unit, we will take spacetime metrics derived 

elsewhere to learn about how "spacetime tells matter 

how to move".

1

2 2 2 2 2 2 2 2 2

2 2

2 2
1 1 sin  

GM GM
ds c dt dr r d r d

c r c r
q q f

-

   
= - - + - + +   

   

Part  of Wheeler's comment means that the motion of particles 

(and light) is determined by the metric found in part . The rule 

is that SR remains valid locally, and that free-falling particles 

follow geodesic world-lines. (In a curved space or spacetime, a 

geodesic is the nearest thing to a straight line.) This plays the 

role of an equation of motion, like F = ma, telling us how the 

particle moves in a given spacetime.

Although the metric is really a tensor, it is actually possible to 

write it as a so-called "line element" without knowing anything 

about tensors. Here's an important example, the Schwarzschild 

metric for a spherically-symmetric mass M:

* Other omitted GR topics: for cosmology, gravitational waves and other astrophysics, 

see PH40112 Relativistic Cosmology and PH40113 High Energy Astrophysics; for 

exotic matter and warp drives - get back to me when they've become science.
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In the next few lectures, we'll do some background and revision 

work using Newtonian gravity, special relativity and the 

geometry of curved spaces and spacetimes. Then we'll be ready 

for some actual GR.

Classical test #1, gravitational time dilation

Newton*: There is no time dilation - time is absolute.

Newton wrote, “Absolute, true, and mathematical time, of itself, 

and from its own nature flows equably without regard to 

anything external.” In contrast, we have already seen how the 

equivalence principle predicts an inequable flow of time 

between the ceiling and the floor.

For the other two tests, we need to study the "planetary" motion 

of particles around a gravitating mass - ie, orbits. Most of this 

should be revision for you!

2. Newtonian gravity

We will look at Newtonian gravity, partly to introduce some 

useful tools and partly to see where it differs from GR. Einstein 

originally proposed 3 observations, which were realistic to make 

using the technology of his day, where GR's predictions differ 

from the Newtonian ones. They are called the three classical 

tests of GR. To contrast the two theories, we need to know what 

the Newtonian predictions are.

Time

The prediction for one test can be written down right away:

* ie this is what Newton's theory says; Sir Isaac knew nothing of time dilation ...

2. Newtonian gravity / Time
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The effective potential

A test particle m moves near a gravitating point-mass M at O.

2 d
L mr mvb

dt

f
= =

1. angular version 

of p = mv : I

2. moment of 

momentum:

p × ⊥ distance 

For central forces like gravity, angular momentum is conserved. 

The size of m is rarely important, so we'll work with angular 

momentum per unit mass or specific angular momentum l:

2L d
l r vb

m dt

f
= = = (i)

• The angular momentum of m, defined by L = r × p, has a 

magnitude L that can be thought of in two ways [revision!]:

• The energy of m =  KE  +  PE
21

2

GMm
mv

r
= -

Likewise, energy per unit mass or specific energy EN. If we write 

speed v in its radial and azimuthal* components vr and vf:

2 2

21 1

2 2
N

dr d GM
E r

dt dt r

f   
= + -   

   

vr = dr/dt vf = r

= radial KE/m + azimuthal KE/m + grav. potential

(N for 

"Newtonian")

[v2 = (vr)
2 + (vf)

2]

* "radial" = the r direction = in or out from the origin = vertical

"azimuthal" = the f direction = perpendicular to the radial direction = horizontal

2. Newtonian gravity / Effective potential
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This is the energy equation for a particle undergoing 2-D orbital

motion. But, if we substitute df/dt = l/r2 using the angular 

momentum formula (i) we can pretend that the particle is 

undergoing 1-D radial motion, by combining the azimuthal KE 

with the true potential to make an effective potential VN(r). The 

key feature is that the form of VN depends only on position r not 

velocity, which is what we expect from a potential function:

2 2

2

1

2 2

N N NE K V

dr GM l

dt r r

= +

 
= - + 

 

2

2
( )

2
N

GM l
V r

r r
= - +

KN = radial KE/m

effective potential

true gravitational potential "centrifugal term" 

(from azimuthal KE)

Now we can analyse the radial part of the particle's motion as if 

it was just moving along r subject to the effective potential VN. 

[When we need the azimuthal part of the motion, we can solve 

the angular momentum formula (i).]

Note that KN can never be negative - it's something squared. So 

the particle can only be where EN  VN(r), and the gap between 

EN and VN relates to the particle's radial (r direction) speed there. 

A plot of VN(r) therefore tells us a lot about the possible orbits.

(ii)

(iii)

2. Newtonian gravity / Effective potential
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Plot VN(r) for a fixed l, and possible orbits for different EN:

EN = Vmin  stable circular bound orbit at A. This is the only 

value of r allowed for this energy.

Vmin < EN < 0  elliptical bound orbit between perihelion

(closest point) B and aphelion (furthest point) C.

EN  0  hyperbolic or parabolic escape orbit with perihelion D 

and no aphelion.

what the orbits might look like in space:

Only if l = 0 can we get plunge orbits that reach r = 0.

2. Newtonian gravity / Effective potential
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Shapes of orbits (the Kepler problem)

Differential equations (i) and (ii) can in principle be solved to 

find r(t) and f(t). But if we're only interested in the shape of the 

orbit not the timing, then finding the "polar plot" r(f) instead is 

enough. (If you think the following mathematical trickery is not 

obvious - you're right!)

Work with u = 1/r instead of r, and write dr/dt as

dr dr du d

dt du d dt

du
l

d

f

f

f

=

= -

[chain rule, twice]

[subst (i) and du/dr]

Substitute into (ii):
2

2

2 2

1 1

2 2

NE du GM
u u

l d lf

 
= - + 

 

Differentiate this w.r.t. f, EN and l being constants. [NB chain 

rule when differentiating (du/df)2, then du/df cancels]:

2

2 2

d u GM
u

d lf
+ =

Our trickery has given us something easy: the equation for 

forced s.h.m.. The general solution follows using YR1 methods:

( )2

1
( ) 1 sin

( )

GM
u

r l
f  f

f
 = + (iv)

where  is one constant of integration, and the other went to 

define f = /2 to be the perihelion (the maximum of u(f) if we 

take   0). You may recall  being the eccentricity of the orbit.

2. Newtonian gravity / Shape of orbit
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Classical test #2, perihelion shift

Newton: In the absence of other influences, a bound 

orbit is closed and its perihelion does not shift.

Incidentally, while we're here, let's capture some results from 

(iv) for future reference:

And this is the second classical test:

perihelion distance, 1/u at f = /2, is

aphelion distance, 1/u at f = -/2, is

 semi-major axis is

2

(1 )
P

l
r

GM 
=

+

2

(1 )
A

l
r

GM 
=

-

2

22 (1 )

P Ar r l
a

GM 

+
 =

-
(v)

• Bound orbits

If  < 1, u is greater than 0 for all f so r = 1/u is always finite. 

This corresponds to a bound orbit. The curve turns out to be an 

ellipse of course (or a circle if  = 0), but the important thing for 

us is that u(f) in (iv) has a period of exactly 2. This means that 

the particle returns to where it started in r after each complete 

revolution in f, so a bound orbit is a closed curve. If nothing else 

disturbs the orbit, each perihelion is at the same place in space.

2. Newtonian gravity / Shape of orbit
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Big scale view:

perihelion (and line of 

symmetry) at f = /2

r →  when f = -q/2

Small scale view:

r  b when f = /2

(a very good approx for 

small q)

At perihelion (f = /2), substitute r = b and l = vb (from (i) on

p. 19) into (iv) to get  : 

( )2 2

1
1

GM

b v b
= +

2 2

1
v b v b

GM GM
 = -  [large v and b]

• Escape orbits

If  > 1, r in (iv) becomes infinite (u = 0) for some f, 

corresponding to an escape orbit with a hyperbolic shape. Let's 

look at the extreme case where the particle approaches at high 

speed v with a large impact parameter b (see p. 19), so that it 

will be deflected only slightly by gravity and its speed is roughly 

constant. Our aim is to find the small deflection angle q. 

2. Newtonian gravity / Shape of orbit



As the particle approaches from a long way away (f = -q/2), 

substitute r →  into (iv) to relate q to  : 
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0 1 sin

1 sin( / 2) 1
2

 f

q
 q

= +

= -  - [small q]

2

2 2GM

v b
q


= =

Then use our value for  to getq :

The final classical test is about the deflection of light by gravity. 

In Newtonian gravity we'll treat light as a particle with a speed 

of v = c:

Classical test #3, deflection of light

Newton: Light approaching mass M with (large) impact 

parameter b is deflected by an angle of

2

2GM

c b
q =

We now have the Newtonian results for all three of Einstein's 

classical tests, ready to compare with the predictions of GR.

2. Newtonian gravity / Shape of orbit
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3. Special relativity

My first lecture on SR will revise Dr Sloan's teaching, and the 

second lecture will be new material on accelerated motion.

I will adopt two conventions that differ from Dr Sloan's. Here's 

the first one:

Relativistic units

Relativity is about spacetime, a unified 4-D continuum, so we 

really should measure all four dimensions using the same units. 

We therefore adopt SI but with time measured in metres.

1 metre of time is the time it takes light to travel one metre:

8

1

2.998 10
1 metre  =  s  3 ns (ie, very small)

distance 1 metre
1 metre per metre

time 1 metre
c = =  speed of light

These units are therefore sometimes called "c = 1 units". In fact 

all velocities v are expressed as unit-less fractions of c.

To convert a physical quantity with ordinary SI units into c = 1 

units, multiply or divide by whatever power of (conventional) c

eliminates seconds from the units. For example, G:

11 3 2 1

8 1 2

28 1

6.672 10  

(2.998 10  )

7.423 10  

m s kg
G

ms

mkg

- - -

-

- -


=



= 
no "s"

3. Special relativity / Units
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To convert the other way, from a value in c = 1 units into 

ordinary units, do the opposite: multiply or divide the value by 

whatever power of (conventional) c restores the right SI unit.

These units simplify relativity (eg, no more "ct" on spacetime 

diagrams) but conversion is undeniably awkward. When 

evaluating formulae that use c = 1, any values you plug in must 

have the right units. You need to get used to this, and may be 

tested on it in the exam. (However, it is not my intention to set 

exam questions to deliberately catch you out.)

Some people go one step further and adopt the metre as the unit 

of mass as well. For them, 1 metre of mass is the mass that has a 

Schwarzschild radius of 2 metres, or G = c = 1. The motivations 

for G = 1 are much less compelling than for c = 1, however, 

since mass is not another dimension of spacetime. I will keep 

kilograms and G  1, but be aware that various combinations of 

these conventions are in use "out there" - be careful when 

pulling equations from books, papers and online sources. (Don't 

get me started on how these people butcher electromagnetic 

units!)

From this point on, unless otherwise noted, all our 

derivations, formulae, problems and exam questions 

will be in c = 1 units.

NB sometimes the seconds are hidden inside derived SI units, in 

which case use the dimensions of the unit to find them.

eg [joules] = M L2 T-2 → kg m2 s-2
so the unit of energy 

becomes kg - does that 

surprise you?

3. Special relativity / Units
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Spacetime

• Event: a particular place at a particular time, specified by a set 

of four spacetime coordinates like t, x, y and z.

• Proper distance s : that which is measured by rulers. The ruler 

measures the distance between two events at the same time 

(simultaneous in the ruler's frame of reference).

• Proper time t : that which is measured by clocks. The clock 

measures the time between two events at the same place (co-

located in the clock's frame of reference).

• Inertial frame of reference: a frame of reference in which 

Newton's first law of motion holds; an unaccelerated frame.

• Spacetime diagram: a map of t versus x, y and z. (The 

limitations of 2-D paper usually restrict us to x.) 

• Special relativity: the laws of physics (including the speed of 

light) are the same in all inertial frames. This causes the space 

(dx and dx') and time (dt and dt') increments between two events 

to be different in different frames.

events A and B, seen in two different frames of reference:

frame S, coords t and x frame S', coords t' and x', moving 

at velocity v relative to S

3. Special relativity / SR revision
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• Lorentz transformation: relates coordinate increments in 

different frames 

( )

( )

x x v t

t t v x

d  d d

d  d d

 = -

 = -

2

1
1

1 v
 = 

-

where

c = 1, 

remember...

• Simultaneity: observers in different frames may disagree about 

which events are simultaneous (or, indeed, co-located).

• Length contraction: moving rulers shorten by  along the 

direction of motion.

• Time dilation: moving clocks slow by dt/dt = .  

• Rest frame (of a particle): the inertial frame in which the 

particle is instantaneously at rest, even if it is accelerating*.

• Proper time t : time measured in the rest frame of the particle, 

ie the particle's "personal", "experienced" or "wrist-watch" time.

• Worldline: a path in spacetime. Along a non-inertial worldline, 

t is the integral of dt 's of infinitesimal inertial segments. 

• The principle of maximal proper time: the inertial worldline 

between two events maximises proper time.

( ' ')

( ' ')

x x v t

t t v x

d  d d

d  d d

= +

= +

B

A
dt t= 

3. Special relativity / SR revision

* When we loosely talk about a particle or observer being "in a frame" or having "their 

own frame", we mean their rest frame. All observers and particles are in all frames!
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• Relativistic energy: E = m

 specific energy e  E/m =  = dt/dt

[E = mc2 in c = 1 units]

[energy per unit mass]

The interval ds2 and the Minkowski metric

• A kind of "displacement in spacetime": 

2 2 2s t xd d d= - +

2 2 2 2 2s t x y zd d d d d= - + + +

[1+1 D]

[3+1 D]

Almost Pythagoras in 4-D, but minus signs distinguish time and 

space dimensions. Whether the minus signs are attached to the 

time or the space increments

is a convention: the "metric signature". It's a free choice (both 

are in use) but, once chosen, we must stick to it. I have chosen 

the "space-like" or (-, +, +, +) signature in which time has the 

minus sign, so that concepts of curved space link more directly 

to curved spacetime. This is the other way (besides units) in 

which my conventions differ from Dr Sloan's!

2 2 2s t xd d d= - + 2 2 2s t xd d d= -versus

space time

• The expression ds2 = -dt2 + dx2 + dy2 + dz2 is called the 

Minkowski metric and it describes Minkowski spacetime: the flat 

spacetime of gravity-free SR. Like the more-general metrics 

we'll meet in GR, it relates a physical measurement ds2 (a proper 

distance or proper time, as measured by a ruler or clock) to 

mathematical coordinates like dx and dt. The coordinate 

increments change if you transform to other coordinates (eg a 

Lorentz transformation, or cartesian-to-polar), but:

[1+1 D]

3. Special relativity / SR revision
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• Lorentz transformations  the interval between two 

nearby events is absolute - the same for all frames:

2 2 2 2 2 2 2 2 2s t x y z t x y zd d d d d d d d d   = - + + + = - + + +

• Recall (p. 28) that proper distance ds is the distance between 

two events in a frame where they are simultaneous. That is, ds is 

dx in a frame where dt = 0. From ds2 = -dt2 + dx2 :

ds 2 = ds2

• Similarly, recall that proper time dt is the time between two 

events in a frame where they are co-located. That is, dt is dt in a 

frame where dx = 0. From ds2 = -dt2 + dx2 :

dt 2 = -ds2

2 2 2s t xd d d= - +

• Though written as a square, ds2 can be positive, negative or 

zero. This suggests there's a thing called ds that can sometimes 

be imaginary. Resist that suggestion! There are no complex 

numbers in GR*. We don't ever square-root ds2 without first 

replacing it with whichever of ds 2 or -dt 2 makes the square 

root real (see below). Otherwise, just leave it squared and treat it 

as an object that can have either sign.

What the sign of the interval means:

* Unless they're grafted in from other branches of physics, like wave equations.

3. Special relativity / SR revision
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• Space-like interval AB: ds2 > 0

-dt2 + dx2 > 0  more space |dx| than time |dt|.

Observers in different frames may disagree on the time order of 

A and B, dt > 0 (B after A) vs dt < 0 (B before A), and there's 

a frame in which dt = 0 (A and B are simultaneous).

All observers agree on the space order of A and B, dx > 0 

(B is always to the right of A).

The proper distance ds between A and B is

The proper time between A and B is not defined, since there is 

no frame in which they are co-located.

2sds d=

• Time-like interval AC: ds2 < 0

-dt2 + dx2 < 0  more time |dt| than space |dx|.

Observers in different frames may disagree on the space order of 

A and C, dx > 0 (C right of A) vs dx < 0 (C left of A), and there's 

a frame in which dx = 0 (A and C are co-located).

All observers agree on the time order of A and C, dt > 0 

(C is always after A).

The proper time dt between A and C is

The proper distance between A and C is not defined, since there 

is no frame in which they are simultaneous.

• Light-like (or null) interval AD: ds2 = 0 even if A  D

All observers agree on the time and space order of A and D, 

dt > 0 (D always after A) and dx > 0 (D always right of A).

The proper distance ds and proper time dt between A and D are 

both zero.

2sdt d= -

3. Special relativity / SR revision
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• Because ds2 is invariant, so is its sign  an interval that is 

time-like (etc) in one frame is time-like (etc) in all frames.

• Matter always travels slower than light, so dx2 < dt2, ds2 < 0, 

and its worldline is always time-like.

• Causality is the idea that a cause must precede its effect

according to all observers. It is an essential part of the concept of 

"time". Therefore, no influences can pass between events 

separated by a space-like interval because different observers 

will disagree about the time order of the events, and some will 

say the events are simultaneous. Causally-connected events must 

be separated by a time-like or light-like interval.

• Light cone: the set of all time-like worldlines through a given 

event A, bounded by the light-like worldlines through A. All 

events causally connected to A, or reachable from A (if in the 

future), or from which A can be reached (if in the past), lie 

within its light cone.

Did you notice this vertical bar on the last 3 pages? It marks the most 

conceptually-important revision material for this unit, which you must 

know AND THOROUGHLY UNDERSTAND to do well at GR!!

3. Special relativity / SR revision



Acceleration in SR

This is a bit of a side-track from GR. But acceleration mimics 

the gross effects of gravity, so studying accelerated motion in SR 

will give us some hints about gravity before starting GR.

• Proper acceleration a: the acceleration of a particle (or rocket) 

R measured in its own (instantaneous) rest frame S' :
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2 2

2 2

d d x

d dt

s
a

t


= =



This is the acceleration that R itself feels. If a = 9.8 ms-2, it will 

feel like gravity on the surface of the Earth.

In a different inertial frame (in which R is not at rest), the same 

expression gives a mere "coordinate acceleration", whose value 

does not relate simply to what it feels like to R.

while 0
dx

dt


=



2 2 2x t X- =

where X is a constant. The worldline is a hyperbola with 45º

asymptotes through O: x = X at t = 0, and x → t as t → . 

• Uniform acceleration

Say R's worldline in inertial frame S is the positive-x branch of

3. Special relativity / Acceleration in SR
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It can be shown (see the problem set, A9) that R has an 

instantaneous velocity (measured in S) of
t

v
x

=

and a constant proper acceleration of

1

X
a =

R is like a rocket that accelerates uniformly for all time

(vi)

• Causality of eternal acceleration

Consider event B above the line t = x. No part of R's worldline is 

inside the future light cone of B, and B is never inside the past 

light cone of any event on R. This means that no objects or 

signals originating at B can ever reach, communicate with or 

influence R. Objects or signals from R can travel across the line 

t = x, but then can never return to R.

3. Special relativity / Acceleration in SR
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The line t = x is an event horizon* for R.

Therefore

A probe P is released from R at t = 0, when R is instantaneously 

at rest. P is unpowered, so remains at rest with a vertical 

worldline. Meanwhile R continues its acceleration and sees P 

drop "downwards" in the negative-x direction, as if falling off a 

cliff on a world with acceleration-due-to-gravity a = 1/X.

Like Sputnik, all P does is emit periodic light (or radio) pulses, 

to be detected by R. Plot the worldlines of R, P and the pulses on 

a spacetime diagram:

* Likewise, ponder the causal status of the line t = -x and the events below it for R ...

The pulses (blue lines at 45º) are emitted regularly by P, but the 

time between the arrival of the pulses at R lengthens, and pulses 

emitted beyond the horizon t = x never arrive at all. R sees P 

approach, but never reach, the horizon, and interprets this as 

time running ever more slowly for P.

Yet P just sits at rest in inertial frame S. Nothing special or even 

noticeable happens to P, at the horizon or afterwards.

So, the accelerating rocket experiences a gravity-like field with 

many of the properties we associate with black holes, yet 

described entirely by SR.

3. Special relativity / Acceleration in SR



37Lecture 5

• The Rindler frame - an accelerating frame of reference

Say S' is the rest frame of R at a particular event A, when its 

velocity is v relative to S. Events simultaneous with A define an 

isochrone - a line of constant time according to R. The (reverse) 

Lorentz transformations with dt' = 0 give

( )

( )

x x v t x

t t v x v x

d  d d d

d  d d  d

  = + =

  = + =

Dividing gives the slope of the isochrone through A: dt/dx = v. 

However, the line joining O to A also has a slope of v because 

(vi) on p. 35 tells us that t/x = v. Therefore straight lines t = vx

through the origin are isochrones for R when its velocity is v.

This result does not depend on X, which determines the 

acceleration of R and the value of x when t = 0. A whole family 

of accelerating rockets R1, R2, R3 ... with similar worldlines but 

different X = X1, X2, X3 ... therefore shares the same isochrones, 

each one through simultaneous events like A1, A2, A3 ... at which 

the rockets share the same velocity v. Consequently:

1. The Ri are always at rest with each other, since at a given time 

(ie on an isochrone) they have the same velocity v. Instead of a 

family of rockets, the Ri could be parts of one (tall) rocket.

2. Their relative positions are Xi at t = 0, and therefore always.

3. Special relativity / Acceleration in SR
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3. X therefore defines a position co-ordinate in an accelerating 

frame of reference (the Rindler frame) in which the Ri are at rest. 

The hyperbolae x2 - t2 = X2 are lines* of constant X, and the 

event horizon t = x is a degenerate hyperbola with X = 0.

4. The straight lines t = vx are lines of constant time in this 

frame, and so conceptually define the frame's coordinate time T. 

(We'd need to do more work to quantify T, eg equating it to the 

proper time of one of the Ri, but we won't bother.)

5. How can the Ri always be at rest relative to each other while 

having different proper accelerations a = 1/X? Between adjacent 

isochrones (ie for a given increment dT of coordinate time T), all 

Ri change velocity by the same dv. 

But from the definition of acceleration (using proper variables):

* Dunno what the fancy word for that is: iso-X'es?

 vd a dt=

Therefore, in the coordinate time increment dT, the proper time 

increments dt for different X values must differ

1
Xdt

a
 =

3. Special relativity / Acceleration in SR
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It's "gravitational" time dilation again: time passes more slowly 

"lower down" at smaller X, but bigger proper acceleration acting 

for smaller proper time yields the same change of velocity.

6. X = 0 means dt = 0: time for the accelerating frame stands 

still at the event horizon where v → 1, the speed of light. This is 

a coordinate singularity: the Rindler coordinates (T, X) fail at the 

horizon, but spacetime itself is well-behaved there physically 

(the probe P doesn't even notice it).

In summary, GR and black holes versus SR and accelerating 

frames:

non-inertial frames
more weight (ma) lower down
more time dilation lower down

an event horizon
coordinate singularity at horizon

curved spacetime

uneventful fall through horizon
a centre of attraction

tidal forces
physical singularity at centre

Hawking radiation

✓

SR (Rindler)GR (gravity)effect

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓






✓
*

peace, joy and long life beyond the horizon  ✓

* It's called Unruh radiation instead, but it's analogous.

3. Special relativity / Acceleration in SR
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• Coordinate time and proper time

In relativity we use the metric to relate coordinate time to proper 

time. The Rindler frame illustrates the distinction between them. 

In everyday life we're used to t being T2 - T1 (it's t = 1 hour 

between T1 = 8:00 pm and T2 = 9:00 pm) but in relativity that 

ain't necessarily so. 

Coordinate time (T in the Rindler case) is time as in "what's the 

time?" It's a label which, with 3 space coordinates, uniquely 

specifies an event, a point in spacetime. Like a runner's position 

in a race, it may put events in the right order (eg 2nd before 3rd) 

and identify simultaneous events (eg joint 4th) for a given frame, 

but may not relate simply to the passage of time. Its value may 

be different in different coordinate systems, may not be in time 

units, and may not even have physical meaning.

A spatial analogy would be using house numbers on a street to 

identify the location of a bus stop or a particularly interesting 

dead squirrel. You expect house numbers to get things in the 

right order (the squirrel at no. 17 is further along than the bus 

stop at no. 9) but they don't tell you distances. A coordinate 

singularity would be like the length of a house tending to zero so 

that an infinity of house numbers is crammed into zero distance -

without doing anything at all to the actual street.

Proper time t is time as in "how much time?" It's the physical 

time between events, as measured by a clock on a particular 

worldline. A different worldline may yield a different t between 

the same events, but it's the same for a given worldline in all 

coordinate systems (because it's given by the interval ds2, and 

ds2 is invariant), and it's always measured in time units (for us, 

metres).

3. Special relativity / Acceleration in SR
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4. Geometry

Here's another Wheeler quote: “Gravity is geometry.”

We're familiar with flat space; what about curved spacetime? 

Two routes:

flat space

curved spacetime

curved space flat spacetime

parallel lines never meet circumference: C = 2  r

interior angles: A + B + C = 180º Pythagoras: ds2 = dx2 + dy2

Flat* space

This is the "Euclidean geometry" of the ancient Greeks (like 

Euclid) that you learned at school. Of course you know that the 

following propositions are true: 

This webpage, by a philosopher of science:

http://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/index.html

contains a very readable introduction to curved spacetime. At least read 

ch. 24 "General Relativity" just over half-way down. Ch. 18-23, on non-

Euclidean geometry, provide a fuller background.

* NB "flat" here doesn't mean two-dimensional; it means not curved.

4. Geometry / Flat space

http://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/index.html
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ds2 = dx2 + dy2 + dz2

• Straight lines - two equivalent definitions:

1. Keep moving forward, don't deviate:

"metric coefficients" are what multiply the infinitesimals 

(so the metric coeff of dr2 is 1)

2 2 2 2ds dr r df= +

• The metric of flat space in other coordinate systems*

2-D plane polars

3-D spherical polars [problem set, B3]

2 2 2 2 2 2 2sin  ds dr r d r dq q f= + +

the metric of flat 3-D space in cartesian coords.

• Pythagoras in 3-D / "solid" geometry

* Because coordinates change direction in general, we'll need to use infinitesimals dx 

etc instead of dx etc from now on.

3-D cylindrical polars

[plane polars with dz]
2 2 2 2 2ds dr r d dzf= + +

2. Shortest distance: minimise 
B

A
ds

(vii)

4. Geometry / Flat space
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Curved space

First explored as differential geometry in the 19th century, but 

familiar to cartographers mapping the Earth's spherical surface:

some parallel lines meet

(positive, or spherical, curvature)

or some non-parallel lines 

don't meet (negative, or 

hyperbolic, curvature)

circumference: C  2  r

interior angles: A + B + C  180º

not the geometry of Euclid & Co: "non-Euclidean geometry"

• Straight lines → geodesics in the language of curved space, 

but still defined by "don't deviate" and "shortest distance*".

eg, on a spherical surface, the geodesics are arcs of great circles

The lines of longitude at A and B are "parallel" (both ⊥ equator) 

and "straight", but they meet at the north pole N. 

* Strictly-speaking, that all neighbouring paths are longer: it's a local-minimum thing.

4. Geometry / Curved space
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* Why? Because spacetime doesn't have an outside to look at it from!

4. Geometry / Curved space

unwrap

an intellig-ant 

inhabit-ant

A + B + C = 180º

In contrast, the surface of a sphere really is intrinsically curved. 

It can't be flattened without distortion (eg there are no perfect 

map projections for the whole world).

A + B + C = 270º

Knowing nothing about the 

3rd dimension, the ant can 

still tell it lives in a curved 

space just by doing 2-D 

geometry on (big) circles, 

triangles, etc.

• Extrinsic curvature is about how a space is embedded within a 

higher-dimensional space. For example, 2-D cylindrical and 

spherical surfaces are both extrinsically curved in 3-D space.

• But in GR we only care about intrinsic curvature, measured 

within the space itself without reference to higher dimensions*. 

The "curved" surface of a cylinder is actually intrinsically flat, 

as measured by a 2-D inhabitant. It can be unwrapped to a flat 

sheet without tearing, crumpling, or distorting 2-D geometric 

figures:
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• Spheres are positively curved* (circumferences of circles are 

less than 2r, see problem B1). So are cones (a circle round the 

apex has a short circumference), but all the curvature is at the 

apex. Our ant knows it's flat everywhere else, and we can make 

a cone from a flat sheet: 

• Negatively curved surfaces* are like saddles (or Pringles). 

Circumferences of circles are more than 2r (problem B1), and 

the interior angles of triangles add up to less than 180º. (For 

weird polygons in hyperbolic space, look up apeirogon.)

On a cone made from the diagram, points A 

and A' coincide. There are two straight 

lines joining A and B so A→B→A' is the 

edge of a digon: a polygon with 2 straight 

sides and 2 corners. Even better, the 

straight line A→A' joins A to itself and 

is the edge of a monogon. 

I mention polygons just to show how weird non-Euclidean 

geometry gets, even on simple familiar surfaces. They're not 

otherwise very important in GR ...

* Also see the handout (Moodle) about simple paper models of non-Euclidean surfaces.

4. Geometry / Curved space
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• Local flatness: Even in a curved space*, a small-enough region 

is approximately flat and Euclidean (eg city maps don't need 

complicated projections).

A + B + C → 180º

• Curved metrics: eg for the 2-D surface of a sphere, take the 

metric of flat 3-D space in spherical polars

2 2 2 2 2 2 2sin  ds dr r d r dq q f= + + [(vii) on p. 42]

and set r = R (constant) to yield the metric of a curved 2-D space 

mapped by coordinates q and f:

2 2 2 2 2 2sin  ds R d R dq q f= +

The metric relates the (maths) coordinates dq and df to the 

(physics) distance ds. In doing so, it defines the geometry of the 

space. However, you can't usually tell just by looking - a 

complicated metric could just be flat space in weird coordinates. 

The definitive test is to compute the Riemann curvature tensor

from the metric but, even without tensor analysis, we can still 

explore curvature by measuring geometric shapes. (See problem 

B1 for an example using the above metric.)

* If it's well-enough behaved, unlike the apex of a cone! Even that can be tamed by 

rounding it off a bit - but then the rounded-off bit can't be made from a flat sheet.

4. Geometry / Curved space
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• Comparing vectors in different places: For example, "How fast 

is that thing over there, relative to me over here?"

This is a challenging (even meaningless) question in curved 

space or spacetime, eg distant things can seem to go faster than 

light, without breaking the c = 1 speed limit where they are.

To compare vectors in different places, you need to "parallel 

transport" a vector from one place to the other. On each step of 

the path, make sure the vector is parallel to its copy in the 

previous step. However, in curved space the final vector depends 

on the path, eg start on the equator of a sphere, and transport a 

vector to the north pole via two different routes:

Going directly in 3-D space in this example doesn't solve the 

problem (the ant can't do that), nor does insisting on a geodesic 

path (try travelling to the antipodes on a great circle via the 

equator versus via the pole).

In fact the changes to such vectors parallel-transported around 

small closed loops, ending back where they started, define the 

Riemann curvature tensor I mentioned a moment ago.

4. Geometry / Curved space
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Flat spacetime

This is the 4-D, or 3+1-D, spacetime of SR (without gravity), 

originated by Einstein and Minkowski.

In SR, inertial worldlines maximise the proper time dt.

In spatial geometry, geodesics minimise distance ds and hence 

distance squared ds2. Since ds2 = -dt 2 in SR is negative, 

spacetime geodesics must maximise the proper time. Therefore:

space dimensions

time dimensions

2 2 2 2 2ds dt dx dy dz= - + + + [cartesian coords]

or

[spherical polars]2 2 2 2 2 2 2 2sin  ds dt dr r d r dq q f= - + + +

by substituting for the spatial part of the metric (p. 42). See 

problem B3.

Inertial worldlines are geodesics in spacetime 

(This is a generalisation of Newton's first law of motion.)

• Geometry: Parallel worldlines stay parallel and never meet 

(they are objects with the same velocity) so spacetime in SR is 

flat. However, the minus sign in the metric makes it 

"Minkowskian" not "Euclidean" (eg the ancient Greeks would 

not recognise a 45º line as having zero length). Still, the spatial 

part (a "slice" at constant t) is ordinary 3-D Euclidean space.

• The Minkowski metric of flat spacetime (p. 30) is:

4. Geometry / Flat spacetime
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Curved spacetime

This is the spacetime of GR, generalising features of both curved 

space and flat spacetime.

• Geometry: Parallel worldlines don't stay parallel (due to tidal 

gravity), so spacetime with gravity is curved: non-Euclidean and 

non-Minkowskian. 

• Metric: "ds2 = ..." with 3 space coords and 1 time coord (it 

may not be easy to tell which is which). It relates mathematical 

coordinates to the physical interval ds2, and defines the geometry 

of the spacetime.

• Local flatness: A small-enough region is approximately flat 

and Minkowskian  SR is always valid locally. Therefore it is 

still the case that:

(as in SR)

We will be using this relation, with a negative ds2

(certainly not an ordinary square) all the time. 

Recall my advice at the bottom of p. 33!

• Space-like: ds2 > 0, proper distance ds 2 = ds2

• Time-like: ds2 < 0, proper time   dt 2 = -ds2

• Mechanics: The principle of maximal proper time, together 

with dt 2 = -ds2 from the appropriate metric, leads to the 

geodesic equation of motion (see L9), which can be solved to 

find the worldlines of free-falling (including orbiting) particles 

and light.

Inertial worldlines are geodesics in spacetime 

4. Geometry / Curved spacetime
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5. The Schwarzschild metric

The solution of Einstein's field equation outside an isolated, non-

rotating, spherically-symmetric source of gravity of mass M (eg 

outside a planet or star, or everywhere around a black hole):

1

2 2 2 2 2 2 2 22 2
1 1 sin  

GM GM
ds dt dr r d r d

r r
q q f

-

   
= - - + - + +   

   

• My shorthand: "Sch." = Schwarzschild.

• Singularities: Infinite ds2 for certain coordinate values, at 

which we can't use the metric to do geometry. There are two:

at r = 2GM  rs (the Schwarzschild radius)

and r = 0 (the centre)

Both are well inside planets and ordinary stars, so for such 

objects r > rs everywhere the metric is valid. This means we can 

forget the singularities until we study black holes.

What do the Sch. coordinates* mean?

A good coordinate system should uniquely label events, but it 

doesn't have to mean anything. It so happens that the Sch. coords 

do have meanings - but they're not quite what they appear.

• r >> rs: Far from M (or when M → 0 since rs = 2GM), the Sch. 

metric becomes flat spacetime in recognisable coords:

2 2 2 2 2 2 2 2sin  ds dt dr r d r dq q f= - + + +

 (t, r, q, f) are spherical polar coords with time in this limit. 

Sch. spacetime is asymptotically flat: SR is valid far from M, 

and hence Newton's laws as well for speeds slow compared to c.

[see p. 48]

5. Schwarzschild metric / Meanings of coords

* Sch. coords = the coords (t, r, q, f) used above. (For other coords see L14 and L16.)
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• Meaning of t:

The square of the proper time dt between events in the same 

place is -ds2 with dr = dq = df = 0 (p. 49):

[from the Sch. metric]

For large r >> rs (where gravity is weak), dt = dt

 coordinate time t is the proper time experienced by an 

observer at rest at large r (the observer at infinity).

However, for smaller r, proper time t does not match coordinate 

time t  gravitational time dilation. The time t experienced by 

an observer at rest at finite r is less than the time t experienced 

by the observer at infinity*.

1/2

1 srd dt
r

t
 

= - 
 

rs  2GM

• Meanings of q and f:

The square of the proper distance ds between neighbouring 

events is ds2 when the time displacement dt = 0. On a shell of 

constant r (ie, dr = 0):

2 2 2 2 2 2sin  d r d r ds q q f= + [from the Sch. metric]

which is the same as the metric of a spherical surface of radius r

(see p. 46).

 q and f are the angles of ordinary spherical polars for any 

value of r, not just r >> rs. q is the angle down from an 

arbitrarily-defined pole (co-latitude) and f is the angle around 

from an arbitrarily-defined prime meridian (longitude).

Lecture 7

* The expression on p. 13 from the equivalence principle used approximations. The one 

here is exact.

5. Schwarzschild metric / Meanings of coords
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Because the constant-r shell has the same metric as a spherical 

surface of radius r, it has the same geometry: its circumference 

is C = 2r, its surface area is A = 4r2, etc.

There will be times when we don't care much about q and f, 

especially since they behave so normally. Then the q and f parts 

of the metric can be abbreviated to

• Meaning of r:

This is the trickiest. It is not the distance from the origin - we 

can't measure distances through the singularities! But we can

measure the circumference C of a constant-r shell: we find that 

it's C = 2r, because (see above) the geometry of the shell is the 

same as that of a spherical surface of radius r.

 r is the reduced circumference or circumferential radius of 

the surface of constant r

2 2 2 2sin  d d dq q f  +

and the Sch. metric looks like
1

2 2 2 2 21 1s sr r
ds dt dr r d

r r

-

   
= - - + - +    

   

Lecture 7

2

C
r


=

["solid angle form"]

5. Schwarzschild metric / Meanings of coords
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The preceding point is not merely pedantic. The square of the 

radial proper distance ds between neighbouring values of r is 

ds2 when dt = dq = df = 0, so

Lecture 7

1/2

1 s

dr
d

r

r

s =
 

- 
 

For finite r, ds > dr: there's more distance between concentric 

shells than you'd expect from their circumferences. This is a 

non-Euclidean result: an example of gravity warping spacetime.

We can still loosely call r "the radius", but don't forget it isn't!

Here's an oblique view of some concentric circles on a flat 

Euclidean plane, with their separations Ds = r2 - r1 marked:

And here are constant-r shells in Sch. spacetime (in units of rs), 

with their proper-distance separations Ds marked*:

* You'll derive the formula to calculate extended values of Ds in problem B6.

5. Schwarzschild metric / Meanings of coords
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How can we visualise this excess space between shells of given 

circumferences?

(a) Don't try: it's non-Euclidean curved spacetime!

(b) OK, if you must: imagine a (Euclidean) hyperspace, with an 

artificial fake not-really-there extra z dimension into which we 

"push" the shells until their separations are right:

Lecture 7

This is an example of an

• Embedding diagram: An imagined surface z(r, f) in cylindrical 

polars, with the same relationship between the arc length s and 

coords r and f as the Sch. metric at fixed time t. (Spherical 

symmetry, so fix q = /2 without loss of generality.) 

For a given f, our Sch. proper distance ds should match the arc 

length ds for increments dr and dz:

2 2 2d dr dzs = +

ds

dr

dz

1/2

1 s

dr
d

r

r

s =
 

- 
 

Euclidean 

arc length:

actual proper distance:



5. Schwarzschild metric / Meanings of coords
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1

2 2 21 sr dr dr dz
r

-

 
- = + 

 



2

s

s

rdz

dr r r

 
= 

- 
[ both sides by dr2]

This is a separable differential equation, which is easy to 

integrate to yield the embedding diagram z(r, f):

1/2 1/2( , ) 2s s s

s

dr
z r dz r r r r k

r r
f = =  =  - +

-
 

constant of integration (just moves 

the whole surface up or down)

from the  (arc lengths are the same 

with the surface either way up) 

This surface (shown on the previous page) is known as Flamm's 

paraboloid, and I'm sure you've seen it before. Indeed there was 

probably a lump of something in the middle, pulling down a 

rubber sheet across which you roll a marble to illustrate curved 

spacetime acting like a gravitational force blah blah.

So, what exactly is pulling the lump down so that it deforms the 

sheet??

In fact an embedding diagram is just a picture of how proper 

distances relate to changes in r. Our z axis has no physical 

existence - there is no conceptual need for a hyperspace in which 

to embed the surface. And there are several reasons (see 

problem B7) why rolling a marble across the surface does not 

relate to particle motion in GR!

Equate ds 's:

5. Schwarzschild metric / Meanings of coords
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Gravitational time dilation

We saw in the last lecture that the Sch. metric predicts time 

dilation. This is of course one of the classical tests of GR. Now 

we can compare Einstein's answer to Newton's:

Classical test #1, gravitational time dilation

Newton: There is no time dilation - time is absolute.

Einstein:

Time slows down in a gravitational field.

1/2
2

1
GM

d dt
r

t
 

= - 
 

The "slow down" factor is close to 1 in most cases:

1/2

9

8

5

3

2
1 1 10

1 10

1 10

1 10

1 0.5

1 1

GM

r

-

-

-

-

 
-  - 

 

 -

 -

 -

 -

= -

[Earth's surface due to Earth]

[Earth's orbit due to the Sun]

[Sun's surface due to the Sun]

[white dwarf's surface]

[neutron star's surface]

[black hole event horizon]

• Approximate expression: if r >> rs, use a binomial approx

1

(1 )

GM
d dt

r

gr dt

t
 

 - 
 

= -
2

Mm
F mg G

r
= =[Newton:                                ]

(matches the result on p. 13 from the equivalence principle)

[(1 + x)n 1 + nx]

5. Schwarzschild metric / Time dilation



57

• Global Positioning System (GPS)

Lecture 8

Radio signals from 3 (out of 24) satellites specify their positions 

and times. Comparison with the receiver's own clock  time 

travelled by each signal  the distance di to the satellite  the 

position of the receiver is at the intersection of 3 spheres of radii 

di centred on the satellites. (The satellites carry precise atomic 

clocks, but obviously a cheap receiver doesn't. A fourth satellite 

is therefore required to provide accurate time information.)

The timing calculations must include the effect of gravitational 

time dilation between the satellite's orbit and the ground. There 

will also be some SR time dilation due to the motion. Use the 

Sch. metric to find the time dilation for the satellite (in orbit "up 

there") and the receiver (on a rotating Earth "down here").

Sch. metric for equatorial motion (q = /2) at fixed r (dr = 0):

2 2 2 2 2

2 2 2

2
1

2
1

GM
d ds dt r d

r

GM
dt r

r

t f



 
= - = - - 

 

 
= - - 

 
[ ]

d
d dt dt

dt

f
f = =

Divide dt for the satellite by dt for the receiver:

5. Schwarzschild metric / Time dilation
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1/2

2 2

2 2

2
1

2
1

sat sat

sat sat

rec
rec rec

rec

GM
r

d r

GMd
r

r


t

t 

 
- - 

 =
 - - 
 

Use a binomial approx to dispose of the square root (both 

numerator and denominator are close to 1), and subtract 1 to 

write the answer as a relative discrepancy in time:

2 2 2 2

2 2

sat rec rec rec sat sat

rec rec sat

d d r rt GM GM

t d r r

t t  

t

-D
= = + - -

For GPS satellites in 12-hour orbits, and a receiver at the equator 

(for simplicity), the discrepancy is 38.6 µs / day, of which 45.7 

µs / day is due to gravitational time dilation and the rest is due to 

the satellite's relative velocity and SR.

• Gravitational redshift

Use the period T of an e.m. wave as a clock.

2

T


 = 

1/2
2

1 r

GM

r
 

 
= - 

 
frequency at  frequency at r

Light of frequency r emitted at r is redshifted to  as it travels 

to . (Or, light emitted at  is blueshifted as it travels to r.)

WS Adams' 1925 redshift measurement in light from Sirius B (a 

white dwarf) seemed to confirm Einstein's classical test, but was 

later shown to be contaminated by light from Sirius A. The first 

reliable astronomical redshift was measured in 1962 by JW 

Brault in light from the Sun, confirming GR to 5% accuracy.

5. Schwarzschild metric / Time dilation
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• Pound and Rebka experiment

The first successful measurement of gravitational time dilation 

(confirming the classical test) was not astronomical but an 

experiment on the Earth by R Pound and GA Rebka in 1959, 

confirming GR to 10% accuracy.  rays from a source at the 

bottom of a tower travelled to the top, 22.5 m above. Their 

frequency was measured using the Mössbauer effect, a very 

precise solid-state method, tuned using the Doppler effect by 

oscillating the source.

• Shapiro delay

Light appears to slow down in gravitational fields, eg consider 

radial (dq = df = 0) motion of light (ds2 = 0), Sch. metric:  

1

2 2 22 2
0 1 1

GM GM
ds dt dr

r r

-

   
= = - - + -   

   

2
1

dr GM

dt r

 
=  - 

 
["coordinate velocity" dr/dt]

|dr/dt| < 1 doesn't mean light has actually slowed down. r and t

are just coordinates, not real distance and time except at . 

However, it does represent a time delay as seen from large r. 

This was measured by II Shapiro by bouncing radar signals off 

Venus and Mercury in 1966-7, confirming GR to 20% accuracy.

• Atomic clocks

State-of-the-art strontium clocks are so accurate that the effects 

of gravitational time dilation over height differences of 1 mm are 

noticeable in the lab.

5. Schwarzschild metric / Time dilation
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6. The geodesic equation of motion

3 3
2

0 0

ds g dx dxm 

m
m = =

= 

The gm are the metric coefficients (and form the metric tensor 

when collected together, perhaps as a 44 matrix). Writing it out 

in full, the coeff multiplying a diagonal term like (dx1)2 is g11.

But, mixed / off-diagonal / cross terms like dx0dx1 appear twice, 

as g01dx0dx1 and g10dx1dx0, even though dx0dx1 and dx1dx0 are 

the same. We could subtract an amount from g01 and add it to g10

without changing the overall sum. To remove this unwanted 

freedom we define gm to be symmetric (gm = gm), so the term 

containing dx0dx1 in the overall sum is 2g01dx0dx1, etc.

2 0 0 0 1 1 0 1 1

00 01 10 11ds g dx dx g dx dx g dx dx g dx dx= + + +[eg 2-D: ]

This reduces the 16 independent components of gm to 10 in 

actual (4-D) spacetime.

A diagonal metric is one where the cross terms are all zero.

2 0 2 0 1 1 2

00 01 11( ) 2 ( )ds g dx g dx dx g dx= + +[eg 2-D: ]

6. Geodesic equation / General metric

0gm = if m   (diagonal metric)

In a diagonal metric, the time coord can be recognised 

by having a negative metric coefficient g00 < 0,

because we need a time-like ds2 when the other coords are fixed.

General metrics

Say the spacetime coords are xm = x0, x1, x2, x3. The superscripts 

(m = 0, 1, 2, 3) are index labels not exponents, with m = 0 as time 

if possible. A general metric is written as a sum:
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Example: the Sch. metric

1

2 2 2 2 2 2 2 22 2
1 1 sin  

GM GM
ds dt dr r d r d

r r
q q f

-

   
= - - + - + +   

   

In the above notation: x0 = t, x1 = r, x2 = q, x3 = f (though we 

could shuffle the numbers around for the spatial coords).

00

2
1tt

GM
g g

r

 
= = - - 

 

1

11

2
1rr

GM
g g

r

-

 
= = - 

 
2

22g g rqq = =
2 2

33 sin  g g rff q= =

There are no cross terms like drdq so the metric is diagonal, and 

we identify t as the time coord because gtt < 0 (if r > 2GM).

Lecture 9

6. Geodesic equation / General metric

* We can informally write g00 as gtt because x0 is t, etc.

*

The geodesic equation

As outlined on p. 49, to study the motion of free-falling particles 

we derive a new equation of motion (replacing F = ma) using:

The proper time between two events on a worldline is given by 

integrating the metric along the worldline with ds2 = - dt 2. The 

calculus of variations, which most of you won't know, can then 

be used to maximise this proper time. (There's a derivation on 

Moodle if you're interested, but it won't be in the exam.) The 

result is the geodesic equation, a differential equation for each 

coord x(t) as t (acting as a parameter) varies. This is our new 

equation of motion, which we solve to find the inertial / free-fall 

/ geodesic worldline between two events:

The principle of maximal proper time: the inertial worldline 

between two events maximises proper time.           [SR, p. 29]
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These are 4 equations, one for each coord xa (a = 0, 1, 2, 3), like 

F = ma is really a vector equation with 3 components. (In 

contrast, b, m and  are dummy indices that get summed over.)

This is a fundamentally-important equation for GR, but as a 

replacement for F = ma it's not pretty! Further tensor notation 

improves its appearance a bit (p. 64) but not much. However, 

often some useful simplifications will apply.

• Simplifying the geodesic equation:

(#1) If there's a coord xa which none of the gm depends on, then 

gm / xa = 0 and the double sum in that xa 's equation vanishes

3 3 3

0 0 0

1
0

2

gd dx dx dx
g

d d x d d

b m 
m

ab a
b m t t t t= = =

 
= - 

 
 

[geodesic 

equation]


3

0

dx
g

d

b

ab
b t=



is a constant of the motion, ie it is conserved (because its t

derivative is zero).

(#2) Many metrics (including the Sch. metric) are diagonal:

0   if   gm m = 

If there's a coord xa which none of the gm depends on (as in #1), 

only the term with b = a survives:


dx

g
d

a

aa
t

is conserved.

Lecture 9

(viii)

6. Geodesic equation / Simplifications
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(#3) If all the gm only depend on one of the coords xa, the 

equations of motion for the other xm can be found as in #1 and #2 

above. Then we can get the remaining xa equation of motion 

directly from the metric:

 [ dt 2]

This can be solved for the dxa/dt that we seek, given that the 

other dxm/dt are already known.

If the metric is diagonal, the equation further simplifies to

Lecture 9

3 3
2 2

0 0

ds d g dx dxm 

m
m 

t
= =

- = = -

3 3

0 0

1
dx dx

g
d d

m 

m
m  t t= =

= -

2
3

0

1
dx

g
d

m

mm
m t=

 
= -  

 
 [diagonal metric]

All three of these simplifications can be used when considering 

motion under the Sch. metric.

Trivial example: free-fall motion in the absence of gravity, use 

the Minkowski metric in cartesian coords

2 2 2 2 2ds dt dx dy dz= - + + + [p. 48]

0

dt
k

dt
=

A diagonal metric with coeffs: gtt = -1, gxx = gyy = gzz = 1

None of the gm depends on any of the coords, so (viii) 

1

dx
k

dt
= 2

dy
k

dt
= 3

dz
k

dt
=

constant time dilation constant velocity (magnitude and direction)

6. Geodesic equation / Simplifications
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• Aside: the Einstein summation convention (not used in this 

unit, and certainly not examined)

Why write indices as superscripts, risking confusion with 

exponents? It's the Einstein summation convention of tensor 

analysis: if an index is repeated in a product, once as a subscript 

and once as a superscript, summation over that index is implied 

and the S signs are dropped. Thus the general metric on p. 60 

becomes
2ds g dx dxm 

m=

m and  appear as super/sub pairs, so each is a dummy index 

summed from 0 to 3. The geodesic equation becomes

1
0

2

gd dx dx dx
g

d d x d d

b m 
m

ab at t t t

 
= - 

 

Again m,  and b are summed, but a is not repeated: it is not a 

dummy index to be summed over, but simply takes the four 

values 0, 1, 2 or 3 in turn, giving four separate equations. 

This upstairs-downstairs feature represents an important 

distinction within tensor analysis, but it won't be important for 

us in PH30101. Because we don't use tensors in this unit, we'll 

just keep the S signs. However, we will use the superscripts in xa

etc for consistency, to help those who are going to study GR 

further.

The geodesic equation can be (and usually is) written as

by those who know tensor analysis (and know what        is).

2

2
0

d x dx dx

d d d

a m 
a

m
t t t

= + 

a

m

6. Geodesic equation / Tensor notation
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7. Orbits in Schwarzschild spacetime

Now we can use the Sch. metric and the geodesic equation to 

study the motion of free-falling particles - ie, their orbits. 

Equations of motion

• Symmetry

The orbit must lie in a plane through the origin: the particle can't 

leave the plane in any preferred direction (left/right) because, by 

symmetry, there is none. Since the origins of q and f (pole and 

prime meridian) are arbitrary, without loss of generality we can 

orient the coords so that the q = /2 plane coincides with the 

orbit. This means sinq = 1 and dq = 0, and yields the equatorial 

Sch. metric for the remaining 3 coords:

1

2 2 2 2 22 2
1 1

GM GM
ds dt dr r d

r r
f

-

   
= - - + - +   

   

• f equation

The metric is diagonal and none of its coefficients depends on f, 

so
2d d

g r
d d

ff

f f

t t
= [(viii) on p. 62]

is constant. Since this matches specific angular momentum l in 

the Newtonian limit [(i) on p. 19] and is conserved, we will call 

it the relativistic specific angular momentum:

2 d
l r

d

f

t
=

2

d l

d r

f

t
=

and our "angular velocity" f equation of motion is

[l constant]

7. Orbits / Equations of motion
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• t equation

Motion through spacetime  an equation of "motion" for t(t). 

None of the metric coefficients depends on t, so

2
1tt

dt GM dt
g

d r dt t

 
= - - 

 

is constant. For large r, only SR time dilation makes the 

particle's t differ from the static observer's t, so dt/dt =  (p. 29). 

Now, in SR, energy per unit mass is e =  (p. 30). Since minus 

our constant is specific energy at r →  but conserved 

everywhere, we will call it the relativistic specific energy:

2
1

GM dt
e

r dt

 
= - 

 

2
1

dt e

GMd

r

t
=

 
- 

 

and our "time dilation" t equation of motion is

• r equation

The metric coeffs do depend on r so there's no constant for r. 

But since r is the only such coord, we can use simplification #3 

of the geodesic equation (p. 63) and get "radial velocity" dr/dt

directly from the metric and the other equations of motion:

[e constant]

2
3

0

2 2 2

2

1

2 1
1

2
1

dx
g

d

GM dt dr d
r

GMr d d d

r

m

mm
m t

f

t t t

=

 
= -  

 

      
= - - -      

       - 
 



[(viii) on p. 62]

[diagonal metric]

7. Orbits / Equations of motion
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Solve to obtain:

22 2
2

2 4

2 1
1

22 11

GM e dr l
r

GMr d rGM

rr

t

   
= - - -   

      --      

1/2
2

2

2

2
1 1

dr GM l
e

d r rt

    
=  - - +   

    

2 1

2

e
E

-
=

The reason is that, far from M (where e = ) and at non-

relativistic speeds (where  2 = (1 - v2)-1  1 + v2), E tends to the 

Newtonian kinetic energy per unit mass ½v2. We can therefore 

compare E to the energy EN we used to study Newtonian orbits 

in L3, and see that the expressions are almost the same.

The only difference is an extra Einstein term in the effective 

potential V(r), compared to (iii) on p. 20. It's negligible for

r >> rs, where GR and Newtonian gravity agree. But it 

completely changes the behaviour of V(r) for small r, going to 

- instead of + as r → 0.

[then subst e2 from here]

These 3 equations of motion can in principle be solved for the 

spacetime coords t, r, q (= /2) and f as parametric functions of 

t, tracing out an orbital path.

The effective potential

For now, though, we get more insight by defining an effective 

(specific) energy E from the true energy e:

7. Orbits / Equations of motion
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2 2 2

2 3

1

2 2

dr GM l GMl
E

d r r rt

 
= - + - 

 

2 2

2

1

2 2
N

dr GM l
E

dt r r

 
= - + 

 

GR:

cf Newton: [(ii) on p. 20]

effective 

energy / m

effective 

KE / m

effective

potential V(r)

2 2

2 3
( )

2

GM l GMl
V r

r r r
= - + -

gravitational 

potential

centrifugal term 

(from angular KE)

extra

"Einstein" term



Plot V(r) for big-enough* fixed l: the centrifugal barrier rises to a 

peak before falling to - as r → 0, allowing new types of orbits:

* If l is too small, the peak subsides and V(r) becomes monotonic.

7. Orbits / Effective potential
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Recall that allowed orbits are where E  V(r):

E = Vmin and r > point F  stable circular bound orbit at A. This 

is the only allowed value of r (beyond F) for this energy.

Vmin < E < 0 and r > point F  ellipse-like bound orbit between 

perihelion B and aphelion C.

0  E < Vmax and r > point F  hyperbola- or parabola-like 

escape orbit with perihelion D and no aphelion.

The above are analogous to the Newtonian cases, but now we 

also have:

E = Vmax  unstable circular "knife-edge" orbit at F.

E > Vmax  plunge orbit, the particle falls all the way to r = 0   

(if it's moving inwards) even though l  0, or it escapes (if it's 

moving outwards).

E < Vmax and r < point F  trapped orbit with aphelion at G 

before falling to r = 0.

Lecture 10

7. Orbits / Effective potential
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N

ew
to

n
ia

n

the only Newtonian 

plunge orbit: l = 0

bound: escape: plunge:

trapped:

We'll need more space to draw possible orbits than we did in the 

Newtonian case! The V(r) curves were schematic sketches, but 

here are some actual computer-generated orbital paths. The 

Newtonian curves are of course also GR curves in the 

appropriate limit:

re
la

ti
vi

st
ic

precessing 

"ellipse"

almost the unstable 

circular orbit

ellipse hyperbola

7. Orbits / Effective potential
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Bound orbits

Now we will study bound orbits in a little more detail. Follow 

the procedure from L3 on p. 22, but with GR's l and E:

2 2 2

2 3

1

2 2

dr GM l GMl
E

d r r rt

 
= - + - 

 

2 d
l r

d

f

t
=

like (i) and (ii) on 

pp. 19-20 but with 

the Einstein term

2

2 3

2 2

1 1

2 2

E du GM
u u GMu

l d lf

 
= - + - 

 

then differentiate w.r.t. f to get an orbit equation:

2
2

2 2
3

d u GM
u GMu

d lf
+ = +

just like the Newtonian one but with an extra term at the end.

• Circular orbits

The orbit equation has exact solutions for u = u0, constant:

Work with u = 1/r and the chain rule as before to get

2

0 02
3

GM
u GMu

l
= +

Solve this quadratic* for u0 and use r = 1/u to get the radius:

0 1/2
2

6

1 1 12

GM
r

GM

l

=
  

 -  
   

* Or, derive more directly by seeking the maximum and minimum of V(r) - problem C3.

7. Orbits / Bound orbits
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There are real solutions r if the square root is non-negative:

12 l GM

which are a stable (minimum V) circular orbit with r0 > 6GM and 

an unstable (maximum V) circular orbit with r0 < 6GM.

V(r)

r

As l is reduced, the peak in V(r) declines until at

the two orbits coincide (at a point of inflection in V) to become 

the innermost stable circular orbit or ISCO with r0 = 6GM:

12 l GM=

For smaller l, no circular orbits are possible. This contrasts with 

the Newtonian case, where circular orbits exist for any l or r.

l > 12 GM

l < 12 GM

7. Orbits / Bound orbits
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• Perihelion shift

The extra term in the orbit equation prevents an exact solution 

for non-circular orbits, but we can find an approximation for 

orbits that are well outside the Sch. radius. First consider again a 

circular orbit (p. 71), for which

Now consider an almost-circular orbit that differs from the 

circular orbit by a small f-dependent perturbation f(f): 

2

0 02
3

GM
u GMu

l
= +

0 0( ) ( )u u u ff f= +

Substitute into the orbit equation on p. 71:
2

2 2 2 2

0 0 0 0 0 02 2
3 6 3

d f GM
u u u f GMu GMu f GMu f

d lf
+ + = + + +

equal  cancel (small)2  neglect

  
2

02
1 6 0

d f
GMu f

df
+ - =

This is the s.h.m. equation, and has the solution

  1/2

0( ) cos 1 6f A GMuf f= -

where the origin of f is chosen so that there is a perihelion 

(max f  max u  min r) at f = 0. The period of the 

perturbation (ie f at the next perihelion) is

 
1/2

0

2

1 6GMu


f =

-
["2/"]

7. Orbits / Bound orbits
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( ) ( )
1/2

0 0

2

2 1 6 2 1 3

2 6

GMu GMu

GM

l

f  

 

-
= -  +

 
 +  

 
[u0 = GM/l2 + 3GMu0

2  GM/l2]

This period exceeds 2 (one revolution) by

2

6
GM

l
f 

 
D =  

 

Subst. for l using the (approximately valid) Newtonian result (v) 

from p. 23 for the semi-major axis a in terms of l:
2

2(1 )

l
a

GM 
=

-
2

6

(1 )

GM

a


f


D =

-


Unlike Newtonian orbits, GR orbits don't quite close, which is 

one of the classical tests:

Classical test #2, perihelion shift

Newton: In the absence of other influences, a bound 

orbit is closed and its perihelion does not shift, Df = 0.

Einstein: In the absence of other influences, the 

perihelion of a bound orbit precesses by angle

per orbit.
2

6

(1 )

GM

a


f


D =

-

Since we're assuming r >> rs, GMu0 = GM/r0 is small compared 

to 1 and we can safely use a binomial approx:

7. Orbits / Bound orbits

* Aphelion shift is easier to see because it's further out, but the angle is the same.

*
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• Mercury

Careful astronomical observations in the late 19th century found 

that the perihelion of the planet Mercury shifts at the rate of 

574" (arc seconds) per century. Newtonian theory successfully 

explained most of it (due to known "other influences" like the 

effects of Venus, Jupiter etc), but a residual shift of 43 "/century 

could not be accounted for. This value was large compared with 

measurement uncertainty, so could not be ignored.

Previously, a 300"/century irregularity in the orbit of Uranus led 

UJJ Le Verrier to propose the existence of an unknown planet 

further out - Neptune, discovered in 1846. Making the most of a 

good idea, he then proposed another unknown planet to explain 

the discrepancy in Mercury's orbit. He called it Vulcan, and 

expected it to orbit closer to the Sun than Mercury. However, it 

was never found.

Then Einstein calculated the perihelion shift for Mercury due to 

GR (using the preceding equation) and got the answer: 

43 "/century! Hence the anomaly was explained by a new theory 

of gravity, rather than a new planet.

This was perhaps not as impressive as the other two classical 

tests. Here Einstein explained an old observation, rather than 

predicting the outcomes of new ones. (If it had failed the test, 

maybe Einstein wouldn't have published his theory and none of 

us would ever have known of the failure.)

A much bigger perihelion shift >4º/year has since been measured 

in the binary neutron stars PSR 1913+16, also matching the 

predictions of GR.

7. Orbits / Bound orbits
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For a vertical drop or rise, f does not change at all, so

2 0
d

l r
d

f

t
= =

We therefore find r as a function of proper time from:

[f equation of motion]

1/2
2

2

2
1 1srdr l

e
d r rt

    
=  - - +   

    

1 sdt r
e

rdt

 
= - 

 

[r equation of motion, p. 67]

[l = 0]

For r in terms of coordinate time t rather than proper time t, use 

the t equation of motion (p. 66) and the chain rule:

dr dr dt

d ddt t t
=

If the particle falls from rest at a given r = r0, its energy e is 

given by (ix) with dr/dt = 0 at r0:

1/2

srdr

d rt

 
=  

 
1/2

1s sr rdr

dt r r

   
=  -   

   

[free fall from 

rest at large r]

All these equations can be integrated to give r(t) or r(t), but in 

most cases the exercise is no fun at all. We are going to need 

them later on though.

(ix)

(x)

(xi)

7. Orbits / Radial motion

An important example is free fall from rest at large r (r0 → ), 

so e2 = 1 and:

1/2

2 1 sre
r

 
=  - + 

 

2

0

1 sre
r

= - 

1/2

0

s sr rdr

d r rt

 
=  - 

 
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Photon orbits

We'd like to use our equations of motion from pp. 65-66

2

d l

d r

f

t
=

1 s

dt e

rd

r

t
=

 
- 

 

to study light paths near gravitating masses. But, for light-like 

worldlines ds2 = -dt 2 = 0 so we can't use proper time t! (Recall 

from SR that light does not experience proper time.) Instead we 

divide the equations and use t instead of t as the parameter:

2

1 2
1

d l GM

dt e r r

f  
=  - 

 

As we did with particle motion, we get the r equation directly 

from the Sch. metric. Set ds2 = 0 (light-like) and divide by dt2:

2 22

2

2 2

2 2

1
1

22 11

1 1 2
1

2
1

dr r d

GMdt dtGM

rr

dr l GM

dt e r rGM

r

f   
= +   

      --      

     
= +  -     

      
- 

 

[subst. df/dt]

We now have equations of motion for f(t) and r(t).

7. Orbits / Photon orbits

• The meaning of l/e (angular momentum per unit energy?)

Consider a light beam approaching M with impact parameter b. 

Its path is straight while it is far away:

[chain rule]



2 2

1 2 1
1

d l GM l

dt e r r e r

f  
=  - →  

 
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sin
b

r
f f = [r >> b  small angle f]


2

d b

dr r

f
= -

2

d d dr b

dt dr dt r

f f
= →

[speed of light, towards M]

Also the light is heading almost directly towards M, so

1
dr

dt
→ -

 [chain rule]

Compare with our f equation of motion for r → :

 l / e is the impact parameter of the light path far from M:

• Effective potential

Our r equation (previous page) can now be written as
2

1

2 2

1 1 2 1 2
1 1

GM dr GM

b b r dt r r

-    
= - + -    

     

[differentiate]

7. Orbits / Photon orbits

l
b

e
=



which is of the form:
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constant = (function of velocity)2 + function of r

just like an energy equation! The light is only allowed where the 

"pretend energy" 1/b2 exceeds a photon effective potential

2 3

1 2
( )p

GM
V r

r r
= -

Unlike V(r) for particles there's no local minimum so no bound 

orbits, but there is a maximum where Vp(r) = 1/b2
crit:

Allowed photon orbits are where Vp(r)  1/b2:

b > bcrit and r > point F  hyperbola-like escape orbit with 

perihelion D and no aphelion.

b = bcrit  unstable circular orbit at F.

b < bcrit  plunge orbit, the light falls all the way to r = 0 (if it's 

moving inwards), or it escapes (if it's moving outwards).

b > bcrit and r < point F  trapped orbit with aphelion at G 

before falling to r = 0.

7. Orbits / Photon orbits
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• Orbit equation for light

To find the photon orbits, follow the steps we did on p. 22 and 

p. 71 but with the f and energy-like equations:

2
2

2
3

d u
u GMu

df
+ =

an orbit equation like the one for particles but with a bit missing.

• Deflection of light

We'll use the equation to find out how much light is deflected by 

a massive object. The geometry is like that on p. 24:

Use u = 1/r and the chain rule (as before) to write the 2nd 

equation with du/df instead of dr/dt, then differentiate w.r.t. f:

2

2
1

d b GM

dt r r

f  
= - 

 
2

1

2 2

1 1 2 1 2
1 1

GM dr GM

b b r dt r r

-    
= - + -    

     

7. Orbits / Photon orbits
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First consider the straight path followed when M = 0:

sin ( )
( )

f
u

b b

f f
f  +

Subst. into the orbit equation, neglect second-order terms with 

f  2GM/b and f 2, and use a trig identity to write sin2f in terms 

of cos2f:

consider an almost-straight path that differs from the straight 

path by a small f-dependent perturbation f(f): 

2
1

GM

b


( )
2

2

3
1 cos 2

2

d f GM
f

d b
f

f
+ = -

This is the equation for forced s.h.m., which can be solved using 

YR1 methods:

( )( ) 3 cos 2
2

GM
f

b
f f= +

To get the overall deflection angle q, use the fact that as r → 

(u = 0), incoming rays approach from f = -q/2:

 ( )
1

( ) sin 3 cos2
2

GM
u

b b
f f f

 
= + + 

 

( ) ( )0 sin / 2 3 cos
2

GM

b
q q= - + +

7. Orbits / Photon orbits

sinb r f= 
1 sin

( )u
r b

f
f  =

is the equation of an undeflected path with impact parameter b.

For weak deflection, where the impact parameter is large 

compared to the Sch. radius:
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Small deflection angle:

Classical test #3, deflection of light

Newton: Light approaching mass M with (large) impact 

parameter b is deflected by an angle* of

Einstein: Light approaching mass M with (large) impact 

parameter b is deflected by twice that angle

2GM

b
q =

* I've put c = 1 into the expression from p. 25.

4GM

b
q =

• Observing deflection of light

The deflection of starlight by the Sun was measured in 1919 by 

A Eddington during a total eclipse, when stars near the Sun in 

the sky could be observed. His expedition measured a deflection 

of 1.98" for a certain star, compared with the GR value of 1.74" 

and a Newtonian value of 0.87".

This was the first successful prediction of a new observation by 

GR (the perihelion shift of Mercury was an explanation of an old 

observation), and it made Einstein world-famous.

The deflection of light has since been observed on a much 

bigger scale by the imaging of distant galaxies by closer ones: 

gravitational lensing. See problem C6.

7. Orbits / Photon orbits

So this is our final classical test for GR:

cos 1q 



( )sin / 2 / 2q q

4GM

b
q =
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8. Schwarzschild black holes

black hole = massive object with an event horizon

event horizon = surface that can only be crossed in one direction

Sch. black hole = spherically-symmetric black hole, without spin

Recall that the Sch. metric has singularities (infinities) at r = 0 

and r = rs. Because the metric is only valid outside an object, we 

ignored them for planets and ordinary stars that are bigger than 

their own Sch. radius. For black holes, where the mass is entirely 

within rs, the r = rs singularity lies in a valid part of the metric 

and can't be ignored any more.

The singularity at the Schwarzschild radius

1

2 2 2 2 21 1s sr r
ds dt dr r d

r r

-

   
= - - + - +    

   

• Sch. metric →  at r = rs  apparently weird things:

Time dilation:
1/2

1 srd dt
r

t
 

= - 
 

[from p. 56]

 time stops (and infinite redshift) at rs?

Vertical drop, eg from rest at large r:
1/2

1s sr rdr

dt r r

   
= - -   

   
[(xi) on p. 76]

 falling objects stop at rs?

"coord velocity"

8. Black holes / Singularity at the Sch. radius

[from p. 52]
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Inside r < rs: coord velocity:

Lecture 13

0
dr

dt
 [previous with r < rs]

 free-falling objects rise upwards to rs?

or, time goes backwards?

• Types of singularity:

A metric relates the geometry of spacetime (ie physics) to the 

coords used to pinpoint events (ie maths). Either can blow up:

physical singularity: spacetime becomes infinitely curved?

For example, the tip of a cone is an infinitely-curved physical / 

geometric singularity.

coordinate singularity: the coord system fails but the physics is 

well-behaved?

For example, a 2-D spherical surface of radius R has no physical 

singularities - it's smoothly curved. A sensible way to map it is to 

use the spherical polar angles q and f:

2 2 2 2 2 2sin  ds R d R dq q f= + [from p. 46]

This is a well-behaved metric, with no singularities for any 

values of q and f, which cover the whole surface.

An alternative (and less intelligent) way to measure from the 

pole is to use the projected distance r = R sin q on a tangent 

plane instead of the angle q. It certainly acts as a coord in the 

northern hemisphere: pairs (r, f) uniquely specify points, which 

is all a coordinate system has to do.

8. Black holes / Singularity at the Sch. radius
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2
2 2 2 2

2 2
 

R
ds d d

R
r r f

r
= +

-

This metric has a singularity at r = R. The physical surface 

remains well-behaved, so it is only a coordinate singularity.

Because we constructed that metric ourselves we can see why it 

goes wrong: the coords just stop working at the equator. But if 

we're given the metric without explanation, it's not so obvious.

• Which type is rs?

Re-visit the vertical drop, but with proper time instead:

1/2

srdr

d rt

 
= - 

 
[(x) on p. 76]

This describes how r changes with time t experienced by the 

falling object, rather than the time t of an observer at infinity. 

There is no strange behaviour at or within rs. The object keeps 

falling and reaches r = 0 in finite proper time (the equation is 

easily integrated, see p. 93). It seems perfectly well-behaved, 

and indicates that rs is merely a coordinate singularity, due to a 

failure of the t coord. (We'll prove it in the next lecture by 

finding alternative coords that eliminate the singularity at rs.)

r can be substituted for q to give the metric in (r, f) coords:

8. Black holes / Singularity at the Sch. radius
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• Light cones: the set of time-like worldlines through a given 

event, with edges defined by light-like worldlines (p. 33). They 

depict causality: past and future. What do they look like in Sch. 

spacetime, on a t versus r spacetime diagram?

Find the bounding worldlines, for light going radially in or out. 

Light means ds2 = 0, and radial motion means d2 = 0 since

Lecture 13

2 2 2 2sin  d d dq q f  +

1

1 s

dt

rdr

r

= 

-

Plotting these slopes for r values from 0 to  gives: 



8. Black holes / Singularity at the Sch. radius

Take the Sch. metric of p. 83, set ds2 = 0 and d2 = 0, divide by 

dr2, and solve for the slopes dt/dr of the light-like worldlines:

[from p. 52]

12

0 1 1s sr rdt

r dr r

-

    
= - - + -    

    

But which way do the light cones open? In other words, are 

time-like worldlines more vertical or more horizontal (on the 

diagram) than light-like ones?

At large r the Sch. metric looks like the Minkowski metric of 

flat spacetime (p. 50), so light cones open vertically here (p. 33). 

This behaviour is continuous down to rs. However, the coord 

singularity at rs means we can't assume it continues for r < rs. A 

more-careful analysis is needed, which you'll do as problem 

C10. The result is that light cones open horizontally for r < rs!
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For large r the light cone is upright with 45º sides, as in the 

Minkowski spacetime of SR (p. 33). As r decreases the cone 

narrows, to become infinitely thin vertically at rs. Then there's a 

discontinuity (because of the singularity) to a wide-open light 

cone on its side, facing towards r = 0. As r decreases further the 

light cone closes to become infinitely thin horizontally at r = 0.

Why do the light cones flip at rs? Look again at the Sch. metric:

1

2 2 2 2 21 1s sr r
ds dt dr r d

r r

-

   
= - - + - +    

   

When r < rs, the coeffs of dt2 and dr2 swap signs. Recall that for 

a diagonal metric (like this one) the negative coeff identifies the 

time coordinate. So, for r < rs, r becomes the time coordinate 

and t becomes a space coordinate!

The Sch. radius rs is an event horizon passable only inwards. 

Just as t inevitably increases outside the horizon, an object's r

inevitably decreases once inside. Then the object's unavoidable 

future is r = 0 where (or rather, when!) its worldline terminates.

On the other hand, t can go in either direction inside. It follows 

from the t equation of motion on p. 66: dt/dt = e/(1 - rs/r)

that both positive and negative energies e are possible inside the 

horizon, since dt/dt can take either sign. Negative e is not 

possible outside the horizon, where t is always increasing.

8. Black holes / Singularity at the Sch. radius

* I've shown only the future light cones here: the past light cones just go the other way.

*
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Painlevé-Gullstrand (PG) coordinates

The Sch. time coord t (time at rest at large r) behaves badly at

r = rs but the proper time t of a free-falling object behaves well. 

It is therefore just a coordinate singularity that can be eliminated 

by replacing t with a different time coord. There are several 

ways to do this. Here is P Painlevé and A Gullstrand's:

• The PG time t' (of an event): the time read from a free-falling 

clock that was dropped from rest at large r and that happens to 

fall past the event as it occurs. The PG coords are t' together 

with the three spatial coords (r, q, f) of the Sch. metric.

Note that t' is well-defined whatever the observer's location and 

motion, including inside the event horizon. Most importantly it's 

measured locally to the event, unlike t. Now we'll relate t to t'.

If we start with the clock's reading t' at the event and subtract the 

proper time tjourney of the clock's fall from its release at large r, 

we get the clock's reading when it was dropped. This is also the 

Sch. time when it was dropped, because until then it was at rest 

at large r and so read Sch. time. If we then add the Sch. time 

tjourney of the clock's fall, we get the Sch. time t of the event:

journey journeyt t tt= - +

and how it varies with the event's r coord:

journey journeyd dtdt dt

dr dr dr dr

t
= - +

But we already know dr/dt and dr/dt for the journey of an object 

falling from rest at large r, from (x) and (xi) on p. 76. Here they 

are again, with the "journey" subscript added and the appropriate 

choice of sign for an inward fall:

[differentiate]

8. Black holes / PG coords
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Substituting these in, and multiplying by dr:

1/2

s

journey

rdr

d rt

 
= - 

 
1/2

1s s

journey

r rdr

dt r r

   
= - -   

   

1/2
1/2

1/2

1 1

s

s

s ss

r r

rr r
dt dt dr dr dt dr

r rr

r r

   
         = + - = - 
     - -   
   

This can (with difficulty) be integrated to give a transformation 

between t and t', but we won't bother because we can substitute 

it straight into the Sch. metric to yield the PG metric:

1/2

2 2 2 2 21 2s sr r
ds dt dt dr dr r d

r r

   
 = - - + + +    

   

The physics is unchanged. It's still Schwarzschild spacetime, just 

using different coords*. Notice:

No more singularity at rs! (There is still one at r = 0.)

gtt is positive for r < rs but this does not mean t' is a space coord 

inside the horizon. The "negative-g" rule applies to diagonal 

metrics, and this one has a cross term. In fact t' is manifestly a 

time coord for all r, because it's measured by a (local) clock.

For r < rs every term on the RHS except the cross term is 

positive, but time-like or light-like (ie allowed) worldlines 

require ds2  0. Therefore it is necessary that dt'dr < 0: future 

(dt' > 0) motion inside the horizon must be inwards (dr < 0).

8. Black holes / PG coords

* It's Sch. spacetime in PG coords, instead of Sch. spacetime in Sch. coords.
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1

dt

dr b


= -

+
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• Light cones

Repeat the exercise on p. 86 but with PG coords, to get light 

cones on a t' versus r spacetime diagram. Writing b for the 

mixed velocity* of the falling PG clock (just as a convenient 

proxy for r)
1/2

s

journey

rdr

d r
b

t

 
= =  

 

* It's "mixed" because it's the change of coord distance r w.r.t. proper time t.

As before, find the bounding worldlines by setting ds2 = 0 (light) 

and d2 = 0 (radial motion), divide by dr2, and solve the 

resulting quadratic equation for dt'/dr: 

[                                   ]
1

1

dt

dr b


=

-
and

8. Black holes / PG coords

( )2 2 2 2 2 21 2ds dt dt dr dr r db b = - - + + + 

the PG metric is

2

1

1

dt

dr

b

b

 
=

-

Plotting both slopes for r values from 0 to , with b(r) defined 

at the top of the page, gives: 

( )
2

20 1 2 1
dt dt

dr dr
b b

    
= - - + +   

   

21 (1 )(1 )b b b-  - +
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Like the Sch. metric, the PG metric looks like the Minkowski 

metric of flat spacetime at large r, so again the light cones open 

vertically here. But, unlike the Sch. metric, the PG metric has no 

coordinate singularity at rs. Hence the openings can be tracked 

continuously all the way down to r = 0, without the more-careful 

analysis of problem C10: no singularity gets in the way. 

As r decreases, the initially-upright light cone tips over towards 

the left and narrows. At rs the outward slope is vertical: this is 

where b = 1, so the 1 - b denominator in the second expression 

for dt'/dr (on the previous page) is zero.

Inside the horizon both edges have negative slope, so all future 

worldlines are inward. This confirms that the future light cones 

in Sch. coords on p. 87 should indeed open to the left (not to the 

right) inside the horizon.

Remember that the physics here and on p. 87 is the same - it's 

Schwarzschild spacetime in both cases. We've only changed the 

coordinate system used to describe it.

8. Black holes / PG coords

* Again, I've shown only the future light cones here.

*
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• The river model

There are other ways to get rid of the singularity at rs, but the PG 

metric in particular has an intuitively-appealing property. The 

metric can be written (prove by working backwards) as 

2 2 2 2 2( )ds dt dr dt r db = - + + + 

2dr

This looks like the (flat) Minkowski metric of SR in spherical 

polars, but with an r' coord that "flows inwards" at the speed
1/2

sr

r
b

 
=  

 

of the falling clocks that defined the PG time t'. (A point of 

constant r', ie dr' = 0, moves as dr/dt' = -b.) It's as if spacetime 

itself flows inwards at this speed, and the PG clocks are carried 

along inertially in the flow. The flow gets faster at smaller r, and 

exceeds the speed of light* (b = 1) inside the horizon.

Particles and light move in this flowing spacetime like fish in a 

river. For r > rs, fast-enough fish can overcome the flow and 

swim upstream. For r < rs, even the fastest fish (light) cannot 

make headway against the flow, and are carried downstream.

Is this real physics? It's no more fanciful than the cosmological 

picture that "spacetime itself is expanding" after the Big Bang...

* Should we worry about the flow exceeding the speed of light? No. SR is always valid 

locally (p. 49) so local measurements "in the river" will always be limited by the speed 

of light. But attempts to measure non-locally (measuring "here" the speed of something 

"there") can give strange answers, see p. 47. It's like at the edge of the observable 

Universe, where galaxies recede at the speed of light: another non-local velocity.

8. Black holes / PG coords
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The central singularity (r = 0)

We now know that rs is merely a coordinate singularity. There is 

no extreme physics at rs, and the singularity can be removed by 

changing the coords. What about the other singularity, at r = 0?

Tensor analysis: The Riemann curvature tensor is infinite at

r = 0, meaning that spacetime is infinitely curved. No change of 

coords can eliminate the singularity. It is a real / physical / 

geometric singularity, and is referred to as the singularity.

• A journey to the singularity

An observer falls from rest at large r (like a PG clock):
1/2

srdr

d rt

 
= - 

 
[(x) from p. 76]

This equation is easily integrated to find the proper time to fall 

from arbitrary r to the singularity:
3/2

2

3

s

s

r r

r
t

 
=  

 

so the time spent inside the horizon is

2

3

srt =

For a solar-mass black hole (with a mass of the order of the 

Sun's), t is a few microseconds. You'll need a much bigger black 

hole to "enjoy" the experience of life inside.

(xiii)

[r = rs]

8. Black holes / The central singularity

• Tidal forces

A coordinate acceleration* a can be defined for our observer:

* This is an acceleration relative to the coordinate system, which is not inertial: static 

(fixed r) observers feel an acceleration due to gravity, ie a weight.
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2

( )

2

s

d dr d dr dr
r

d d dr d d

r

r

a
t t t t

   
 =    

   

= -

[chain rule]

[dr/dt on previous page]

But, because a varies with r, different parts of the observer's 

body try to fall with different accelerations, setting up tidal 

forces. We can use a to work these out because r is a proper 

distance for our observer (in the PG metric, keep t' and the other 

space coords fixed and get ds2  ds2 = dr2). 

If there's an acceleration difference Da along the distance Dr

between the observer's extremities, a tensile tidal force (problem 

A2) of the order of 

~
d

F m m r
dr

a
a

 
D = D 

 

will be set up. The force depends on their height Dr, and on the 

tidal acceleration gradient da/dr. From a(r) above:

3

srd

dr r

a
=

* Interestingly, gives the Newtonian expression if you substitute rs.

*

[chain rule]

8. Black holes / The central singularity

The free-falling observer moves inertially, and so does not feel 

any acceleration. a is just an acceleration relative to the 

coordinate system (see problem D3).
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The tidal gradient da/dr →  as r → 0: an example of an 

extreme physical effect, and strong evidence for a physical 

singularity at r = 0 even without knowledge of tensors.

The observer's body (and, soon afterwards, constituent atoms) 

will be irresistably stretched and torn apart as the singularity is 

approached, a phenomenon known as spaghettification.

• Will it hurt?

Assume we can endure a tidal acceleration gradient of

d
q

dr

a
=

The tidal gradient will reach this value at the "pain radius"
1/3

s
pain

r
r

q

 
=  

 

The pain will last at most until r = 0, for a "pain time" given by 

substituting rpain into (xiii) on p. 93:

Remarkably, this is independent of the mass of the black hole. It 

only depends on the observer's pain threshold. Reasonable 

values of q [see D3(d)] give tpain of the order of 0.1 s, similar to 

a typical reaction time. Spaghettification probably doesn't hurt!

3/2

1/2 1/2

2 2

3 3

pain

pain

s

r

r q
t = =

[da/dr on prev. page]

8. Black holes / The central singularity
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• Maximising survival time

The "free-fall from large r" trajectory doesn't maximise the time 

experienced inside the black hole. From the Sch. metric:

2
2 2 2 2 21

1

s

s

rdr
d ds dt r d

r r

r

t
 

= - = - - -  
   - 
 

 0 inside the horizon

To maximise t we need (a) d2 = 0 (ie radial motion) and (b) 

dt = 0. From the t equation of motion for free fall:

ie, dt = 0  free fall with e = 0. So, to maximise experienced 

time, get yourself into a radial e = 0 trajectory* asap then switch 

your engines off. The maximum proper time is

0 0
2

1/2 /2
2 sin

1
s

s
r

s

dr
r d

r

r


t q q= - = -

 
- 

 

  [subst r = rs sin2q]

which for all the fuss isn't much better than 

2

3

srt =

for free fall from rest at large r (p. 93).

* An advanced optional thinking question: how do you get into an e = 0 trajectory?? A 

closely-related question, given the t equation of motion: how do you change your motion 

in the t direction, which is a space coord inside the black hole?

2
sr


=

2
1

dt e

GMd

r

t
=

 
- 

 

[see p. 66]

8. Black holes / The central singularity
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• So, what happens at r = 0?

Nobody knows.

(GR doesn't say.)

The singularity cannot be observed: it is hidden from view, 

"clothed" by the event horizon.

All of the black hole's mass M (and anything that falls in) goes 

there.

There are infinite tidal forces and an infinite spacetime 

curvature.

It's worth remembering that, if a physical theory gives an infinite 

answer, it's either a somewhat-abstract concept (eg infinite 

temperature means that all of a system's microstates have equal 

occupancy while it is in thermal equilibrium) or it means the 

theory has broken down (eg the ultraviolet catastrophe of black-

body radiation showed that the classical theory had failed, 

leading to Planck's founding of quantum physics).

It's therefore likely that GR ceases to accurately describe physics 

at the centre of a black hole. It is after all a classical theory: a 

theory of quantum gravity (see L20) may smooth out the 

all-at-once nature of the singularity and make it "fuzzy".

Nevertheless, this is speculation, and the only reliable answer so 

far is the one at the top of this page.

8. Black holes / The central singularity
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Kruskal-Szekeres (KS) coords

This is another way to visualise Sch. spacetime and avoid the 

singularity at rs. Its advantages over PG are that the metric is 

diagonal, its light cones are simple, and it has great conceptual 

power. The disadvantages are that it is mathematically abstract 

and not much use for calculating orbits.

You are advised to focus on the concepts rather than the maths!

We replace both t and r this time, with new coords u and v:

lns

u v
t r

u v

+
=

-

/ 2 21 sr r

s

r
e u v

r

 
- = - 

 

The expression for t is straightforward but note that r is only 

implicitly defined: it can't be written "r = ..."

Substitution into the Sch. metric and 2 pages of dedicated 

algebra (problem D4, only completists need attempt) yield the 

KS metric:

( )
3

/2 2 2 2 24
sr rsrds e dv du r d

r

-
= - - + 

There is no singularity at rs. (There is still one at r = 0.)

It still contains r - we can't get rid of r, so instead treat it as an 

implicit function of u and v.

It's diagonal - no cross terms. The coefficient of dv2 is always 

negative, so v is always time-like and u is always space-like.

8. Black holes / KS coords
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• Light cones

As on p. 86 and p. 90, set ds2 = 0 (light) and d2 = 0 (radial 

motion), divide by du2 and solve for dv/du:

The edges of light cones on a v versus u spacetime diagram are 

at 45º everywhere - just like in flat Minkowski spacetime! The 

light cones always open vertically because v is always the 

timelike coord.

The price of this very-simple rule for light cones is that the other 

features of the spacetime diagram must be severely deformed to 

accommodate it. We need to consider how familiar values of r

and t map onto a KS spacetime diagram.

To plot lines of constant r, the r transformation becomes

/2 2 1 constantsr r

s

r
u v e

r

 
- = - = 

 

This is the equation of a hyperbola with 45º asymptotes.

For r > rs (the outer Universe) the RHS is +ve. Set v = 0 to see 

that the curves cross the u axis vertically at real values of u.

For r = rs (the horizon) the RHS is zero. We get the asymptotes 

v = u.

For r < rs (the black hole) the RHS is -ve. Set u = 0 to see that 

the curves cross the v axis horizontally at real values of v. The 

singularity r = 0 is v2 - u2 = 1, which crosses the v axis at v = 1.

The part of the diagram above the singularity corresponds to 

complex values of r, and so is not defined.

8. Black holes / KS coords

1
dv

du
= 

2

0 1
dv

du

 
= - 

 
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* Repeat but assuming u < v instead to give lines of constant t inside the black hole - and 

help advanced thinkers to answer the question in the footnote on p. 96.

To plot lines of constant t, solve the t transformation on p. 98 for 

v assuming* u > v: /

/

1
constant

1

s

s

t r

t r

e
v u u

e

 -
= =  

+ 

These are straight lines through the origin, with slopes from -1 

for t → - to +1 for t → .

NB singularities 

are usually drawn 

as zig-zag lines

100
8. Black holes / KS coords
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The Minkowski coords were "natural" for inertial frames in SR, 

Rindler coords representing a more-complicated accelerating 

frame. So it looks like KS coords are natural for spacetime 

around a black hole, with Sch. coords representing a more-

complicated accelerating frame! Indeed, an observer at rest in 

Sch. coords does feel an acceleration due to gravity.

• Relation to the Rindler frame

Our plots of Sch. coords (t, r) on KS spacetime diagrams (v, u) 

look a lot like plots of Rindler coords (T, X) on Minkowski 

spacetime diagrams (t, x) from p. 35-38. The light cones and 

event horizon (but not the singularity) are analogous. Both can 

be used, in similar ways, to qualitatively study causal relations 

between different observers, eg the probe P falling through the 

horizon, or what the rest of the Universe looks like to P, or 

whether P gets to see the singularity once inside the horizon.

(figs copied from pp. 36 & 38) 

8. Black holes / KS coords
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• The Kruskal extension (speculation alert!)

The Sch. coords sit in the top-right half ("east and north") of the 

KS diagram. The bottom-left half ("west and south") is a 

theoretical extension. The Rindler analogy suggests what the 

extension represents: when prompted on p. 36, did you think 

about the line t = -x in the Rindler frame (t = +x being the event 

horizon)?

East quadrant: the rest of the Universe, ie normal space outside 

the black hole, r > rs. Future worldlines (see the light cone...) 

lead only elsewhere in normal space or into the black hole, but 

past worldlines can lead from the south quadrant. There is no 

causal connection at all (past or future) with the west quadrant.

North quadrant: the black hole, r < rs. Future worldlines lead 

only to the singularity, but past worldlines lead from any of the 

other three quadrants. Matter and light can enter through the 

horizon but never leave.

8. Black holes / KS coords
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West quadrant: Exactly like the east quadrant (ie normal space) 

but causally disconnected from it  it's another Universe! 

Observers in the black hole can see both universes and meet 

travellers from the other universe (shortly before being 

spaghettified).

South quadrant: a time-reversed black hole, called a white hole. 

Past worldlines lead only from the singularity, but future 

worldlines lead to any of the other three quadrants. Matter and 

light can leave through the horizon but never enter. An object 

leaving the white hole follows the time-reverse of the trajectory 

of an object falling into the black hole. If you look at the black 

hole from outside, what you actually see is the white hole.

The Einstein-Rosen bridge: Consider the "slice" of spacetime 

represented by the u axis. On the KS diagram, it's the horizontal 

line through the diagram's origin where the horizons intersect. 

Here's a diagram with contours of r marked, now including both 

branches of each hyperbola:

As you move from right to left, see how r decreases from very 

large values down to rs at the origin, then increases again in the 

other universe. The embedding diagram along this path is just 

two Flamm's paraboloids (p. 54) joined at their throats:

8. Black holes / KS coords
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It's called the Einstein-Rosen bridge, and it's the simplest 

example of a wormhole in spacetime. Unfortunately, it can't be 

used to travel between the two universes. As we've already seen, 

they are causally disconnected: all the worldlines through the 

wormhole are space-like.

To add to the sci-fi fan's disappointment: the extra universe and 

the white hole are valid solutions of Einstein's equation, but they 

only appear for eternal black holes with no beginning in time: 

the white-hole horizon is t → -. For astrophysical black holes 

formed by the collapse and/or merger of stars sometime in the 

finite past, the in-falling matter forms a boundary beyond which 

the "vaccum solution" of Sch. spacetime is not valid.

8. Black holes / KS coords
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9. Kerr (rotating) black holes

In L7 - L16 we studied the Schwarzschild solution for spacetime 

outside a non-rotating, spherically-symmetric source of gravity. 

But real astrophysical objects (including black holes) rotate. As 

an example of how hard it is to find out how "matter tells 

spacetime how to curve", 45 years passed between K 

Schwarzschild's work and R Kerr's solution of Einstein's field 

equation outside a rotating, axially-symmetric point-source of 

gravity of mass M and angular momentum* (or spin) J.

The Kerr metric

In Boyer-Lindquist coords (t, r, q, f), the Kerr metric is

2 2 2 2 2 2tt rr tds g dt g dr g d g d g d dtqq ff fq f f= + + + +

where

2
1 s

tt

r r
g

r

 
= - - 

 
2

rrg
r

=
D

2gqq r=

2 2
2 2 2

2

sin
sinsa r r

g r aff

q
q

r

 
= + + 

 
2

2

sins
t t

ar r
g gf f

q

r
 = -

2 2

sr a r rD = + - 2 2 2 2cosr ar q= +

/a J M= the angular momentum* parameter

Positive f is defined to be in the direction of spin, so a  0.

r →  (far away)  reduces to Minkowski (flat) metric

a → 0 (no spin)  reduces to Sch. metric

rs → 0 (no mass) but fixed a  reduces to flat spacetime

There's a cross term df×dt  the sign of df/dt matters

* We'll use J or a for the spin angular momentum of the central mass, and L or l for the 

orbital angular momentum of a particle moving around it.

9. Rotating black holes / Kerr metric
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• Singularities: infinite ds2 when r2 = 0 or D = 0

r2 = 0   r = 0 and q = /2
2 2 2cos 0r a q+ =

This corresponds to the central singularity of Sch. spacetime 

when a = 0, so it is a physical singularity. (Why does the value 

of q matter if r = 0? Because in Boyer-Lindquist coords r = 0 is 

not a point when a  0 - problem D8(c)).

D = 0 
2 2 0sr r r a- + =

Quadratic:

1/2
2

2

2 2

s sr r
r a

  
=  -  

   

The bigger solution r+ is rs when a = 0 (the Sch. limit), so it is a 

coordinate singularity at the event horizon rH:

( )
1/2

2 2

Hr GM GM a = + -
 

Indeed, notice that grr changes sign at r < rH, suggesting that r

becomes time-like. (Although the rule about the sign of gmm

indicating the time coord only works for diagonal metrics, the 

cross term in the Kerr metric doesn't involve dr.)

For a rotating black hole (a  0), rH < rs.

The other solution r- is another coordinate singularity called the 

Cauchy horizon. In the Sch. limit a = 0, r- → 0 and vanishes. 

The Cauchy horizon is not very relevant since it is inside the 

event horizon.

[event horizon, where D = 0]
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• The Cosmic Censorship Principle

If a > GM there's no real value for rH and so no horizon. Without 

an event horizon, there's no black hole. The r2 = 0 physical 

singularity becomes a naked singularity, "un-clothed" by a 

horizon. We could observe it, or visit it and return.

The conjecture that physics does not allow naked singularities is 

called the cosmic censorship principle. For a Kerr black hole:

a GM

This conjecture is not proven, but is very likely and widely 

believed. For example, evidence suggests that an a > GM black 

hole cannot form. The limiting case of a Kerr black hole with 

a = GM is called an extremal black hole.

• The static limit

The time dilation of an object at rest relative to the observer at 

infinity is given by dt 2 = -ds2 with dr = dq = df = 0:

1/2

1/2

2
1 s

tt

r r
d g dt dtt

r

 
= - = - 

 

so there's infinite time dilation (and redshift) when gtt = 0:

2
1 0sr r

r
- =

2 2 2cos 0sr r r a q- + =

1/2
2

2 2cos
2 2

s sr r
r a q

  
 =  -  

   



like the quadratic for the horizons but with cos2q, and solutions

The r'- solution is inside the horizon, so r'+ = rE:
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marks the static limit or infinite redshift surface. Unlike the 

horizon rH it depends on q. At the poles (q = 0 and ) it 

coincides with the horizon but otherwise is outside the horizon, 

reaching rE = 2GM = rs at the equator. The space between the 

horizon and the static limit is called the ergoregion.

( )
1/2

2 2 2cosEr GM GM a q = + -
 

• The ergoregion

In Sch. black holes the event horizon and static limit coincide. In 

Kerr black holes there's the ergoregion in between, where escape 

to infinity is still possible but there's some kind of problem with 

time for static objects. What happens there? 

Consider light (ds2 = 0) moving only in the f direction "along a 

line of latitude" (dr = dq = 0). The Kerr metric becomes 

2 20 2 t ttg d g d dt g dtff ff f= + +

which is a quadratic in df/dt, with solutions 

[static limit, where gtt = 0]

* The figure has poetic licence: r is (of course) not a radius measured from the centre!

*
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1/2

2
1 1

t

tt

t

g gd
g

dt g g

f ff

ff f

f


   
 = -  -  

    

always +ve

Since nothing travels faster than light, particle worldlines are 

bounded by
d

dt

f
 - + 

What signs can the metric coeffs have? See p. 105:

gff is always +ve, gft is always -ve

gtt is -ve outside the static limit and +ve inside the static limit

So + is always positive. For large r > rE, - is negative and 

df/dt (bounded by + and -) can have either sign. But, for 

r < rE, both + and - are positive and df/dt must be positive.

 In the ergoregion, matter must orbit in the same f direction as 

the spin of the black hole. (This resolves the problem of time for 

static objects: objects cannot be static in the ergoregion, hence 

the term "static limit"). However, it is outside the horizon and is 

still free to move inward or outward in r (or escape to infinity).

This is an example of frame dragging - in the ergoregion, the 

black hole's spin drags inertial frames around it so fast that not 

even light can orbit the "wrong" way. (The fact that particles 

moving with the spin can stay outside the horizon is due to 

gravito-magnetism: the repulsive contribution to gravity between 

co-moving masses that we briefly encountered in L1.)
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Orbits around Kerr black holes

For simplicity we'll only consider orbits in the equatorial plane 

(q = /2, dq = 0) from now on. In Sch. spacetime we did this 

without loss of generality but, because Kerr black holes have 

axial not spherical symmetry, it's very much a special case here. 

Here are the q = /2 versions of the results from the last lecture:

1 s
tt

r
g

r

 
= - - 

 
2

rr

r
g =

D

2
2 2 sa r

g r a
r

ff = + +

s
t

r a
g

r
f = -

2 2

sr a r rD = + -

( )
1/2

2 2

Hr GM GM a = + -
 

[event horizon, where D = 0]

[static limit, where gtt = 0]2E sr GM r= =

[metric coeffs]

It's also possible to prove this Very Useful Identity*:

* It doesn't seem to have a name, so I'll just call it the VUI. 

2 2sint ttg g gf ff q-  D

= D

[in general]

[equatorial, q = /2]

• Equations of motion

The only coord that the metric coeffs depend on is r, but the 

metric is not diagonal because gft  0. This means we can use 

simplifications #1 and #3, but not #2, on p. 62-63:

3

0

dx
g

d

b

ab
b t=

 is constant if xa = t or f
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xa = t: tt t

dt d
g g e

d d
f

f

t t
+ = -

xa = f: t

dt d
g g l

d d
f ff

f

t t
+ =

give the 

constants names

Solve the simultaneous equations, with the aid of the VUI:

For large r,
dt

e
d


t

= =  specific relativistic energy e

2 d
l r

d

f

t
=  specific angular momentum* l

tg e g ldt

d

ff f

t

+
=

D

t ttg e g ld

d

ff

t

- -
=

D

 [t and f equations of motion]

For xa = r use simplification #3 from p. 63:

2 2 2

1 2tt rr t

dt dr d d dt
g g g g

d d d d d
ff f

f f

t t t t t

        
- = + + +        

        

Subst for dt/dt and df/dt and manipulate using the VUI 

2

2 21 2rr tt t

dr
g e g l g elg

d
ff f

t

  
+ D = + +  

   
[r eqn of motion]

We now have three equations of motion that can (in principle) be 

integrated (numerically?) for given e and l to give the particle's 

worldline r(t), f(t) and t(t). But they are somewhat unlovely. 

We'll study two cases.

* Reminder: we use J or a for the spin angular momentum of the central mass, and L or l 

for the orbital angular momentum of a particle moving around it.
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• Case 1: Free fall from rest at large r

From the large-r results on the previous page, and for the same 

reasons as the Sch. case on p. 76, l = 0 and e =  = 1. From the 

equations of motion:

t s
g r ad

d r

ff

t

-
= =

D D
2 2 2 /s

g r a a r rdt

d

ff

t

+ +
= =

D D
1/2

2 2

3
 ... algebra ... ( )srdr

a r
d rt

 
= = - + 

 

The particle has a non-zero angular velocity (in the direction of 

the black hole's spin) despite having zero angular momentum* ...

At the horizon (r = rH), dt/dt and df/dt →  while dr/dt is finite 

 both coords t and f behave badly at the horizon; it's a 

coordinate singularity. But

( )2 2 2

/

/ /

s

s

r ad d d

dt dt d r r a a r r

f f t

t
= =

+ +

Shape of orbit:
1/2

2 2

/

/

sr rd d d a

dr dr d r a

f f t

t

 
= = -  

D + 
→  at the horizon (D = 0)

 the observer at  sees the particle revolve around the black 

hole at a finite rate as it approaches the horizon, but it wraps 

around an infinite number of times.

f is basically a failed coordinate at the horizon!

finite at the horizon

* Indeed, a particle's angular velocity and angular momentum can be in opposite 

directions!
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• Case 2: Negative-energy motion (e < 0)

Meaning: to bring a particle with e < 0 to r →  (where e = 1 at 

rest) requires more energy than the particle's own rest-mass. It is 

energetically "cheaper" to abandon the particle and build a new 

one at infinity! For Sch. black holes, we have already seen that 

negative e is only possible inside the horizon (p. 87).

Rearrange the r equation of motion (p. 111) as a quadratic in e:

2

1rr

dr
Z g

dt

 
= + 

 

2 22 0t ttg e lg e l g Zff f+ + - D =

where

is +ve outside the horizon, and solve for the allowed energies e

given l. After some algebra and the VUI:

( )
1/2

1/2
2tg

e l l g Z
g g

f

ff

ff ff

D
= -  +

The minus sign gives e  -1 at r → , but e  1 at infinity so 

this solution is absurd. Consider only the plus sign:

( )
1/2

1/2 2

tg l l g Zf ff D +

gff > 0 and gft < 0 always, so both circled parts of the equation 

must be positive. The only way e can be negative is if

( )
1/2

1/2
2tg

e l l g Z
g g

f

ff

ff ff

D
= - + +

which requires l < 0: the particle's angular momentum is directed 

against the black hole's spin.
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In that case, e < 0 at the horizon (D = 0). For small -ve l, the 

inequality holds only close to the horizon: D1/2 increases with r

and the RHS soon overtakes the LHS. As l becomes more -ve, r

must be bigger before the RHS beats the LHS, and the range 

where e < 0 widens. The extreme case is when l is large and -ve, 

in which case we can neglect the Z term on the RHS and 

substitute for gft :

1/2 | |sr a
l l

r
-  D [modulus to keep RHS +ve]



2

2 2s
s

r a
r a r r

r

 
= D = + - 

 
[square]



22

2
( ) 0s

s

r aa
r r r

r r

 
- + + = 

 

 s Er r r= =

[factorise]

[2nd factor has no +ve roots]

Summary: For Kerr black holes, negative energy e is 

possible outside the horizon, but only in the ergoregion and 

only for negative l.

• The Penrose process (using negative energy) 

Send rocket R from a far-away base to the ergoregion, where R 

dispatches payload P into an e < 0 trajectory. R returns to base, 

while P falls through the horizon. R has lost a -ve energy 

payload so it returns with more energy than it started with. The 

payload's -ve energy and -ve ang. mom. are added to the black 

hole's, reducing its mass and spin. This Penrose process 

therefore mines the rotational energy of a "live" Kerr black hole. 
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At the base, R's extra kinetic energy can be used to do work, 

then a new P attached and the process repeated. This is a very 

efficient energy generation scheme for a technologically-

advanced civilisation*. (It's also good for waste disposal, if P is 

filled with junk.) The ultimate limit is when all of the black 

hole's rotational energy has been extracted, leaving a "dead" 

Schwarzschild black hole.

* A hypothetical society with "advanced technology" is one that obeys the laws of 

physics, but can do indefinitely more within them than we can.

• Electrically-charged black holes (for completeness)

The other characteristic a black hole can have besides mass and 

spin is electric charge Q. However, charged black holes are of 

theoretical interest only. Here are the names of their metrics: 

Q = 0 Q ≠ 0

J = 0

J ≠ 0

Schwarzschild

Kerr Kerr-Newman

Reissner-Nordström
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10. GR and quantum mechanics

The thermodynamics of black holes

The thermodynamic states of black holes are very simple. 

Whereas the structure of an ordinary star encompasses huge 

numbers of moving particles, the only characteristics of a black 

hole are its mass M, spin J and electric charge Q. All other 

information about what formed it, or fell in afterwards, is lost.

Wheeler (again!) expressed this as: “A black hole has no hair.”

If a black hole has no other degrees of freedom in its structure, it 

has no statistical-mechanical microstates. So, what happens to 

the entropy of matter that falls through the horizon? Do black 

holes violate DS  0, the second law of thermodynamics?

• Irreversibility in black holes

Entropy is about irreversible processes, so what's irreversible 

about a black hole? Although things can only pass inwards 

through the event horizon, a black hole's mass doesn't always 

increase: the Penrose process is a counter-example. However, 

S Hawking showed that the area A of the event horizon (or the 

combined area if several black holes interact) can never decrease 

by classical physical processes. J Bekenstein then proposed that 

black holes have an entropy proportional to the area: S  A. The 

second law (for black holes + everything else) survives if

2

4

4

B

B

k A
S

G

k GM

=

=

[in general]

[Sch. black hole*, A = 4rs
2]

* Because (p.51) the event horizon of a Sch. black hole has the geometry of a sphere of 

radius rs and hence a surface area of 4rs
2
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• Temperature of black holes

A thermodynamic system whose entropy S depends on its 

internal energy U has a temperature T :

8 B

T
k GM

=

 [1st law, đW = 0]

A black hole is a black body (it absorbs all incident radiation) so 

it must emit black-body radiation according to Planck's law for 

temp T! Hawking used this to oppose Bekenstein's entropy idea -

obviously nothing comes out of a horizon, so T = 0. But then he 

discovered a quantum mechanism for black holes to radiate.

• Hawking radiation

According to quantum field theory, vacuum fluctuations 

continually produce virtual particle-antiparticle pairs. One has 

+ve energy +E and the other -ve energy -E. Since -ve energy is 

forbidden outside the horizon, the particles exist only briefly 

before recombining in a time given by the uncertainty principle:

~E tD D ~ / Et

But if they are so close to the horizon that the -E particle falls in 

within this time, its energy is now allowed* and the particles 

become real. The -E particle reduces the black hole's mass, and 

the +E particle can escape to infinity as Hawking radiation.

Hawking calculated the temperature of a black hole from this 

idea, and got the same answer as derived from Bekenstein's 

entropy. Thus he changed his mind about Bekenstein's proposal.

* -ve energy is allowed inside the horizon, see p. 87

dU TdS= 1
/

T
dS dU

=

But in relativity mass is a form of internal energy: U = M. Since 

S (previous page) depends on M, black holes have a temperature:

[differentiate dS/dM]
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• Hawking's derivation

... is beyond us. But remarkably we can derive an approximate T

from the uncertainty principle. A virtual pair fluctuates into 

existence just outside the horizon at x = x0, where r  rs + x. 

Observe the pair in a reference frame free-falling from rest at 

that point. How long does it take the virtual -E particle to reach 

the horizon at x = 0 and become real? From (ix) on p. 76:
1/2

2 1 srdr
E

d rt

  
= - - -  

  
[vertical drop, with e → E]

Close to the horizon, r  rs and x << rs , so:

1 s s s s

s s s

r r r r x r x x

r r r x r x r

- + -
- = = = 

+ +

Start at rest at x = x0:
2 00

s

x
E

r
= -  2 0

s

x
E

r
=



1/2

0

1/2

( )

s

x xdr dx

d d rt t

-
= = -

Integrate from the starting point x = x0 to the horizon x = 0:

0

0
1/2

1/20
0( )

s
x

dx
d r

x x

t

t = -
- 

 time to horizon

0

0
1/2

1/2 1/2 1/20
0

( )
2

1/ 2
s s

x

x x
r r xt

 -
= = 

 
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The uncertainty principle DEDt ~ ħ allows the fluctuation to last 

this long if

1/2 1/2

0

~
2 s

E
r xt

=

The +E particle with this energy undergoes gravitational redshift 

as it travels to infinity, where it is observed to have energy E

1/2

1/2

0

1/2

1/2

0

1/2 1/2 1/2

0

1

2 2

s

s

s s s

r
E E

r

x
E

r

x

r r x r



 
= - 

 



=  =

[from p. 58, E = ħ]

[E2 from prev page]

[independent of x0 !]

Characteristic temp corresponding to this energy E = kBT:

2 4B s B

T
k r k GM

= =

within 2 of Hawking's exact calculation!

• Black hole lifetime

If a black hole radiates, then (in a cold environment) it will lose 

mass and eventually evaporate completely. In problem E6 you'll 

use Hawking's temp & Stefan's law (→ radiated intensity) & the 

area of the horizon (→ radiated power) & U = M (→ rate of 

mass loss) to derive and solve a differential equation for dM/dt

for a Sch. black hole in a Universe at absolute zero.

 lifetime

3

67

0 2.1 10
S

M
t years

M

 
=   

 

ie a very very long time. mass of the Sun
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Quantum gravity

Attention: in this lecture (quantum gravity) we will 

revert to ordinary c  1 units, with time in seconds.

GR is a classical theory that ignores quantum uncertainty. 

Bekenstein and Hawking needed QM (quantum mechanics) -

their formulae include ħ - but they still used classical GR for the 

gravity parts of their derivations. We need to go beyond GR to a 

quantum theory of gravity to understand gravitational 

phenomena where quantum "fuzziness" on small scales is 

important - like the singularities of black holes.

The cube of physics illustrates how physical theories have been 

developed to encompass phenomena represented by non-zero 

values of G, ħ and c-1 (SR → Newton if c is infinite). Quantum 

gravity is the missing corner where all three are included:
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1/2

82.177 10   kgP

c
M

G

- 
= =  

 

• The Planck scale

The Planck units of mass, length and time* are defined (using 

dimensional analysis) to be the combinations of ħ, c and G that 

have the right unit dimensions:

Planck mass

1/2

35

3
1.616 10   mP

G
L

c

- 
= =  

 
Planck length

1/2

44

5
5.391 10   sP

G
T

c

- 
= =  

 
Planck time

These are extreme values: LP and TP are ridiculously small for 

any purpose, and MP is both ridiculously big (for a fundamental 

particle) and ridiculously small (for a black hole). 

* Other derived Planck units can be obtained from these three, eg Planck energy MPc2, 

Planck area LP
2, etc.

• GR and QM conflict at the Planck scale

Consider the "effective size" of mass M under each theory.

QM: To localise a particle within Dx, the uncertainty principle 

gives it a momentum of ~ħ/Dx. But, if this exceeds 3Mc ~ Mc

[from E2 = p2c2 + M 2c4] there's enough spare energy to create a 

new particle, preventing us localising the original one. So the 

minimum measurable quantum size of "point" mass M is

~QM cx
Mc

D = [a.k.a. the reduced Compton wavelength]

GR: Meanwhile the minimum gravitational size of mass M is

2

2
~GR s

GM
x r

c
D = [the Sch. radius, in c  1 units]
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Note that quantum size  1/M whereas gravitational size  M:



1/2

~ P

c
M M

G

 
= 

 

ie the Planck mass. The effective size (c or rs) of a Planck-mass 

particle is the Planck length. Light travels the Planck length in 

the Planck time.

So the two theories disagree about the minimum sizes of point 

particles. We can (and usually do) ignore QM at the scale of 

stars and galaxies, or GR at the scale of fundamental particles, 

but this won't work at the Planck scale, where:

Gravitational and quantum phenomena are both important;

LP is the smallest meaningful length in physics;

The quantum and gravitational sizes become equal if 

~c sr
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A point particle is heavy enough to be sufficiently localised 

(despite quantum uncertainty) to disappear inside its own event 

horizon and form a "micro black hole";

Attempts to measure down to LP require so much energy that the 

measurement process creates micro black holes;

A black hole is small enough for quantum effects to become 

important - QM affects spacetime itself, not just particles;

Spacetime becomes like foam (Wheeler), or a bucket of dust 

(Wheeler), or a bubbling sea of virtual black holes (Hawking), or 

a weave of knots and tangles (Smolin), or whatever ...

• The need for a theory of quantum gravity

Quantum gravity is needed to make sense of physics at the 

Planck scale. Neither QM nor GR on its own is good enough, 

and they can't both be right.

Unfortunately there is as yet no adequate theory of quantum 

gravity. Candidate theories are largely speculation, untestable 

hypothesis, or even metaphysics.

Nor is there any prospect of guidance from observations: no 

foreseeable experiment could probe the small distances and 

times, or the heavy point particles, at the Planck scale. And, 

indeed, experimentally it's not a pressing problem.

So, for now, classical GR remains our best theory of gravity.
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Nevertheless, quantum gravity is needed to explain:

- what happens at the singularity of a black hole;

- what happens before time TP after the Big Bang;

- how black-hole evaporation ends, when M ~ MP;

- the nature of the microstates that give black holes entropy;

- to reveal "unknown unknowns" in physics;

- to complete physics!

We can already look at some features a theory of quantum 

gravity may have:

10. GR and QM / Quantum gravity

• The black-hole information problem

(Sometimes called the black-hole information paradox.)

It is a feature of quantum-mechanical theories that physical 

information is conserved: so-called unitarity. However, GR's no-

hair theorem says that all information carried by objects falling 

into a black hole (besides mass M, spin J and electric charge Q) 

is destroyed. There have been many proposals (and a famous bet 

by Stephen Hawking) addressing this disagreement, but no real 

solution yet. Quantum gravity should tell us.

* Basically, the gravity of the "½ħ" zero-point energy of the vacuum, with a high-

frequency cutoff at  ~ 1/TP or else the answer is infinite ...

• The cosmological constant (dark energy) problem

Simple QM calculations* predict a cosmological constant that is 

~10120 bigger than observed. This has been called the worst 

theoretical prediction in the history of physics! We'd like 

quantum gravity to fix it.
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• Origins of black-hole entropy

3

4

Bc k A
S

G
=Bekenstein: [from p. 116, in c  1 units]

2(2 )
B

P

A
S k

L
=

One unit of entropy kB for every 

~Planck area (2LP)2 of the event 

horizon - something deep there! 

This suggests that a black hole 

stores information uniformly on its 

horizon, in tiny Planck-sized bits. 

This is known as the holographic 

principle, by analogy with the way a

Extensive variables in thermal physics scale with volume, but 

here S scales with area. And, given the no-hair theorem (p. 116), 

where are the microstates that give rise to S? Subst LP:

hologram stores a 3-D image on a 2-D surface.

But, the event horizon is not a material surface, it's just empty 

space - does this mean spacetime itself is granular?

• The graviton

The force-carrying quantum of gravity, like the photon is for 

electromagnetism. It has zero rest-mass like the photon, because 

both forces are long range. Tidal displacement has two-fold 

rotation symmetry, so the graviton is a tensor boson with spin 2. 

(The electric field vector has one-fold rotation symmetry, so the 

photon is a vector boson with spin 1.) Gravitons interact very 

weakly, so there is no prospect of detecting them experimentally.
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• Current theories of quantum gravity

The most well-known is string theory / superstrings / M-theory 

(the same theory in different stages of development):

Particles are excitations of 1-D Planck-scale strings rather than 

the traditional 0-D points.

The theory unifies all fundamental forces, not just gravity.

It attempts to eliminate free parameters (like particle masses, 

charges, force strengths etc) from physics.

It introduces 6 or 7 extra Planck-sized dimensions to spacetime.

The maths has not been completed and is only approximate so 

far. Consequently there are ~10500 possible topologies for the 

extra compactified dimensions - a lot more free parameters!

Supersymmetry (hence superstrings) predicts new "partner" 

particles, eg photinos, squarks, sleptons etc. The LHC hasn't 

found any of them yet - how long do we wait?

It is controversial, highly speculative, and has metaphysical 

baggage (extra dimensions, unfalsifiable multiverses, anthropic 

reasoning - see "Occam's razor"). But, simplified cases correctly 

yield the microstates needed for black-hole entropy, and it 

reproduces the holographic principle.

It is not testable for the foreseeable future, so is it really physics?

Other theories of quantum gravity are available. The most well-

publicised is loop quantum gravity, in which spacetime itself is 

quantised on the Planck scale. 

10. GR and QM / Quantum gravity
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