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We discuss the application of the embedding method to the problem of finding the eigenstates of
confined quantum systems. Embedding is a general way of tackling boundary condition problems,
giving a true variational principle, and we apply it to the confinement problem by embedding
within an isotropic medium with a very large potential. Corrections for incomplete confinement are
described. The method is tested on examples recently studied by Brownstein (Phys. Rev. Lett. 71,
1427 (1993)), namely an electron in two dimensions confined within the quadrant of a circle, and a
H atom off centre in a spherical cavity.

In this report we show how the embedding method [1],
a variational method for taking care of boundary condi-
tions on the wavefunction, can be used to find the eigen-
states of quantum systems confined by an effectively in-
finite potential barrier. There have been several papers
recently on this type of problem, in particular for solving
the Schrödinger equation for a H atom confined in cylin-
drical [2–4] and spherical [5–7] cavities. These have used
trial wavefunctions vanishing on the boundary walls (the
requirement on the exact solution of the problem) [2–5],
non-vanishing basis functions with constraints that the
trial function vanishes at a finite set of points [6], and
a stationary principle due to Brownstein [7] for a trial
function not necessarily vanishing on the boundary. The
embedding method can tackle this class of problem, and
it gives a minimum variational principle. Advances in
nanostructure fabrication techniques mean that this is
not of purely theoretical interest – for example the cylin-
drical confinement problem is relevant to an impurity
atom in a quantum wire [4], and the spherical case to an
impurity in a quantum dot [8].

In the embedding method [1] we consider the region of
interest I joined on to region II, and derive a variational
principle for a trial function φ defined explicitly only in
region I – the boundary condition that the wavefunc-
tion must be joined on to the solution of the Schrödinger
equation in region II is replaced by additional boundary
terms in the Hamiltonian for region I. The original mo-
tivation for this approach was to develop a method for
solving the Schrödinger equation in a defect region of a
solid, using basis functions of finite extent in the defect
region (I) and the embedding potential taking care of
the infinitely extended substrate (II) (a recent applica-
tion is to adsorbates [9]). Here region I is the cavity,
and the very high potential beyond the boundary of the
cavity constitutes region II. The variational principle is
derived by notionally extending φ into II with an exact
solution of the Schrödinger equation at some energy ε (in
fact a parameter), which matches in amplitude onto φ

over the boundary surface S separating I and II. The
contribution of the wavefunction in II to the expecta-
tion value of the Hamiltonian is then eliminated using
Green’s theorem [1]. Using Hartree atomic units, with
e = h̄ = m = 1, the resulting expression for the expecta-
tion value is:
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The first integral in the numerator is the expectation
value of the Hamiltonian through region I, the region of
interest; the second is an integral over the boundary sur-
face S involving the normal derivative of the trial func-
tion – combined with the kinetic energy operator in H ,
the surface normal derivative ensures a Hermitian oper-
ator for integrals restricted to I; and the third term is
a double integral over S, involving the surface inverse of
the Green function G0 for region II evaluated at energy ε
with zero normal derivative on S. G−1

0 is the embedding
potential, and it ensures that when the energy is mini-
mized, φ not only satisfies the Schrödinger equation in
I but also matches in amplitude and derivative onto the
exact solution in II. The energy derivative of G−1

0 which
appears in both the numerator and denominator gives
the normalization of φ in II, and provides a correction to
the embedding potential so that it is evaluated (to first
order) at the energy E rather than the trial energy ε.

The embedding potential cannot be defined for an in-
finite potential in II, and so to apply this method to
confined systems we choose a constant but very large po-
tential V in II. As a result, the variational principle will
converge from above to the lowest eigenvalue of this sys-
tem, but this will in principle lie below the true eigenvalue
of the actual confined system, as there is slight leakage
of the wavefunction out of I. We discuss below how this
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error may be assessed. The large potential leads to a
great simplification in the embedding formalism. Let us
consider for example confinement in a spherical cavity
of radius R, for which the embedding potential can be
expanded as a sum over spherical harmonics:

G−1
0 (rS , r′S) =

∑
L

GLYL(Ω)Y ∗
L (Ω′). (2)

For large V GL is given by

GL =

√
2V

2R2

[
1 + O

( ε

V

)]
+ O(1), (3)

so

G−1
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√
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2
δ(rS − r′S). (4)

Because ∂G−1
0 /∂ε is negligible compared with G−1

0 for
large V , the variational expression (2) then simplifies to
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This holds for a cavity of arbitrary shape, as minimiz-
ing E leads to a wavefunction φ not only satisfying the
Schrödinger equation within I, but also satisfying

∂φ

∂nS
= −

√
2V φ (6)

over S, which for large V and well-behaved functions
means:

φ(rS) ≈ 0, (7)

as we require.
In practice very large values of V can be used, so the

error in the eigenvalue due to leakage can be made as
small as we require. Furthermore, the error varies ap-
proximately as 1/

√
V , and so extrapolation of the eigen-

value to complete confinement can be made. To show
this behaviour, we consider ψ – the solution we require
– which satisfies the Schrödinger equation in I with zero
amplitude boundary condition on S at energy E0. Then
from Green’s theorem the difference between E0 and E,
the energy of φ satisfying the Schrödinger equation with
boundary condition (6), is given by
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FIG. 1. Variational estimates of the E4,1 eigenstate (Eq.
(11)) of a two-dimensional free electron confined to a quad-
rant of radius R = 1 a.u. Energies evaluated with the em-
bedding method for confining potentials V , 4V and 1024V ,
where V = 8×104, are compared with those given by Brown-
stein’s method (Ref. [7]) as a function of M (see text — basis
set size M2). The inset shows the variation of the eigenvalue
given by the embedding method with the confining potential
V , for the basis set with M = 22. Similar behaviour occurs
for smaller basis sets. The exact value of the eigenvalue is
E4,1 = 28.7915.

(assuming normalized wavefunctions). Hence we obtain
a 1/

√
V variation, and knowing this error behaviour re-

moves the apparent drawback of using a finite V .
As a first example we consider the same model prob-

lem as Brownstein [7], a free electron in two dimensions
confined within a quadrant of a circle with radius R.
The exact solutions of this problem have the form (using
cylindrical polar coordinates)

φp,k(ρ, θ) = Jp(λp,kρ/R) sin(pθ), (10)

where p is an even integer, Jp is a Bessel function and
Jp(λp,k) = 0. The corresponding eigenenergies are [10]

Ep,k =
1
2

(
λp,k
R

)2

. (11)

To test (5) we use the same basis functions as Brownstein,
expanding φ in (5) in terms of

ψm,n(x, y) = sin(mπx/R) sin(nπy/R), (12)

with m, n varying from 1 up to a maximum value M .
These functions automatically satisfy the zero amplitude
requirement over the straight lines x = 0, y = 0, and the
integral over S in (5) reduces to a line integral over the
perimeter of the quadrant.

Typical results for this system are shown in Fig. 1
where we study the second lowest eigenvalue obtained
with various basis set dimensions and confining poten-
tials, and we also compare with the estimates obtained
using the stationary method derived by Brownstein [7].
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TABLE 1. Ground state energy (in a.u.) of a H atom
displaced 0.5 a.u. off centre in a spherical cavity, radius 3
a.u. The embedding method results are calculated using
Brownstein’s basis set (Ref. [7]), with M = N so the
number of basis functions is N2. V in Eq. (5) is taken
to be 1.8 × 109 a.u. The number in brackets after the
eigenvalue is the position of the eigenvalue as ordered by
size.

Method N = 2 N = 4 N = 6
Embedding -0.31730(1) -0.41323(1) -0.41389(1)
Brownstein -0.44906(1) -0.41013(4) -0.41389(7)

Brownstein’s method gives a variable number of ghost
states below the ground state and so in this case we se-
lect the eigenvalue closest to the exact answer. We see
uniform convergence in the embedding results with in-
creasing basis set size, unlike the eigenvalues given by
Brownstein’s method from which it would be impossible
to deduce an accurate eigenvalue. Estimates obtained
using small confining potentials are better at small basis
set sizes due to a cancellation of errors — leakage reduces
the eigenvalue, whilst the variational solution means the
result lies above that obtained with a larger basis set —
but for large basis sizes the value converges below the
exact eigenvalue. The inset shows the behaviour of the
eigenvalue with confining potential, from which it is clear
that the error due to leakage can be accurately estimated
and corrected for.

Even for large basis sets the eigenvalues calculated for
this problem retain considerable error. This is due to the
choice of basis set, which does not contain sufficient flex-
ibility to satisfy the zero amplitude boundary conditions.
A better chosen basis set would greatly improve conver-
gence. This is shown in a second more physical exam-
ple which was also considered by Brownstein [7], and by
Gorecki and Byers Brown [5] and Diamond, Goodfriend
and Tsonchev [6], where a H atom is placed 0.5 a.u. off
centre in a spherical cavity of radius 3 a.u. Our results
are presented in Table I along with those of Brownstein,
in both cases using the basis functions

uα,β(r, θ) = e−rrα cosβ(θ), (13)

where r and θ are the radial and polar coordinate relative
to the atom at the origin, and α = 0, 1, . . .(N − 1), β =
0, 1, . . .(M − 1). Both methods converge to the same
ground state energy with rather few basis functions. The
embedding results have been obtained with a confining
potential of V = 1.8× 109 a.u. so that there is negligible
error due to leakage. Again they converge uniformly from
above, unlike the estimates obtained by Brownstein.

To conclude, we have shown how the embedding
method can be used to find the eigenstates of confined
quantum systems. Like the method due to Brownstein,

in the embedding approach there is no need to construct
basis functions which implicitly satisfy the boundary con-
ditions — which can be difficult or impossible for compli-
cated geometries — as the boundary condition is imposed
as a variational constraint. In contrast to the method
due to Brownstein embedding represents a true minimum
principle, but, in addition to requiring the evaluation of
similar volume integrals, also requires a sometimes te-
dious surface integral over S [11]. Interestingly enough,
in the case of the Neumann boundary condition on S
( ∂φ
∂nS

= 0), Brownstein’s result [7] is the same as embed-
ding (i.e. (2) with G−1

0 = 0) [12].
Finally, we would point out that ideal confinement

is invariably a theoretical approximation, and that the
embedding method can equally well handle less severe
boundary conditions (e.g. those used in Ref. [8]).
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