Influence of bulk states on laterally confined surface state electrons
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Strong scattering by adatoms positioned with the tip of an STM has recently been used to
confine surface state electrons to nanoscale structures. We develop a model for confinement by a
circular potential on a metal surface, including substrate band structure effects. Scattering into
bulk states provides an important broadening mechanism for partially confined states. Contrary to
experiment the level width vanishes as the energy approaches the surface state band edge, indicating
an additional dominant broadening mechanism for laterally confined surface state levels seen in the

STM.

PACS numbers: 73.20.Dx, 71.20.-b

Recently, Crommie et al[l] have shown how strong
scattering by adatoms may be used to laterally confine
surface state electrons. Using the tip of a scanning tun-
neling microscope (STM), individual Fe atoms are po-
sitioned with atomic scale precision into corral geome-
tries on the Cu(111) surface. The local density of states
(LDOS) of the enclosed electrons, as measured by tun-
neling spectroscopy, exhibits sharp resonances which lie
close to values predicted by a simple “particle-in-a-box”
analysis, indicating confinement of the Shockley surface
state electrons which occur on the clean Cu surface.
An interesting aspect of the results of Crommie et al[1]
concerns the linewidth of the measured levels. Possible
mechanisms limiting the lifetime of the confined electrons
include partial lateral confinement due to leaky corrals
(the Fe atoms are separated by 7A), and scattering into
extended bulk states. The bulk electron states coexist
in energy with, but are orthogonal to, the surface state
electrons on the clean surface. However, the corral pro-
vides a coupling which allows scattering between bulk
and surface states. In this Letter we report a study of
these broadening mechanisms, for a model system which
incorporates the crystal substrate. A proper understand-
ing of these mechanisms may open up the way for im-
proved confinement, through choice of adatom species
or substrate material. This is necessary for nanoscale
applications, such as imaging “scarred” eigenstates[2] in
structures corresponding to classically chaotic systems.

We are led to develop a simplified model by the di-
mensions of the problem. Typically, the confining struc-
tures are built from 50-100 atoms, the enclosed area rep-
resenting > 1000 substrate atoms — well beyond the
capabilities of current ab-initio techniques. We there-
fore consider a continuum model where outside the sur-
face, in addition to an uncorrugated vacuum barrier Vg,
we include a confining potential Vg. The long wave-
length of the surface state electrons makes them insensi-

tive to the barrier thickness which we restrict to a delta-
function sheath of radius gg. In circular-polar coordi-
nates = (g, z,¢) = (%, ¢), with surface normal z,

V(r)=Vg(z) + %5(@ - 00) z > 0. (1)

Increasing Vs increases the degree of confinement. This
potential should be viewed as an effective pseudopoten-
tial, in principle dependent upon energy and spin, which
mimics the scattering by the true confining barrier|3].
For current purposes it is sufficient to take constant Vg.
We restrict our attention to Vg > 0, so that the extended
nature of the confining potential in the 4z direction is
not significant, since the electron wavefunction decays ex-
ponentially into vacuum[4]. The crystal, unperturbed by
the presence of the corral, occupies the half space z < 0.

The Green function G for the combined system is found
from the separate Green functions GG; for the sheath and
Gy for the bulk crystal. From the matching Green func-
tions method[5] G satisfies the integral equation

G=G;—-GII'G (2)

where multiplication corresponds to an integral over the
matching surface, S, the plane z = 0. In deriving (2), G1
and Gy are assumed to satisfy zero normal-derivative
and zero amplitude boundary conditions on S respec-
tively. I', the embedding potential, is
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with ng the surface normal to S. Unless otherwise stated,
we assume atomic units e2 =h =m = 1.

The important electron states are those in the vicinity
of the gap opened near the surface Brillouin zone centre,
I, by the z-Fourier component g of the crystal potential,



strength V. For these we adopt the two-band model,
taking free-electron dispersion parallel to the surface[6]:

P
Plrsrs) = / Gt he T (4)

Making the further simplification of the narrow gap ap-
proximation, |Vy| < ¢°, and measuring energies relative
to the centre of the gap at T' gives|7]

De = 9 /VZ — 2/ [4(V, + ) (5)

where ¢ = F—k?/2. The band gap extends between £V,
at T, and taking for the vacuum barrier Vz(z) a potential
step at z = 0, height A, a surface state exists for V, < 0,
the Shockley condition. In the computations reported
here we have used V;, = —0.1 and A = 0.13, giving a
surface state of energy Eg = —0.032612 at I

Using symmetry to expand G and G as e.g.

1 . /
Gilr,) = 5= > e NGT 0 x), (6)

we expand the corral Green function G7' in terms of
the two-dimensional corral eigenstates |km) of the radial
Schrédinger equation with the sheath:

(olkm) = a'[Jm(ko) + ©(0 — 00)7VsIm(koo) X
(Jm(kQO)Nm(kQ) - Nm(kQO)Jm(kQ))

where the normalisation constant is
o = VE/|1 + inVs B (koo)Jm(koo).  (8)

Then:
G (x, %) = /dk;(g|l<;m>g(z,z’;e)(k;m|g’> )

where g(z, 2’; E) is the Green function at energy E for
the one-dimensional barrier potential Vp(z), subject to
the relevant boundary conditions. Using (9) and (4) in
(2) and following through the analysis allows the Green
function outside the surface (z, z’ > 0) to be determined.
We find

G =G+ Gaa+Gs (10)
where G is the Green function for the potential (1) with

an infinite barrier at z = 0. This does not contribute to
the density for F < A. The other terms are

Ghy(x,x') = /dk;(g|k;m>fk(k;m|g’>e_'”‘(z+zl) (11)

ng(x, X/) = //dkidk;/<g|k;m>g’7g€,<k/m|g/>e—%z—'yk,z'
(12)
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= /2(A — E) 4 k2 is the decay constant into

where
vacuum,

fe =2/ (v + 2T%) (13)

and G}, is found from the integral equation

g/:tr;it' = _kaZ;g'fk' - fk /dk;//QZ;c//g;;/L/k/ (14)

with the scattering amplitude ) between corral states
given by

(km|T|k'm) = Tpd(k — k') + Q.. (15)

The LDOS is p = (1/7)SG, and we first consider the
contribution from Gog,

1
paa() = = [{elkom)[*e=>0%/ [y + 20y,

: %;/kc dk|{elkm) S [ fi] e~ (16)

with prime here denoting d/dk, and E assumed below the
vacuum level. The dominant first term comes from the
polein fi at ko, where g, +2I'y, = 0 — the surface state
condition at E = Eg + k3 /2. The second term is a rela-
tively unimportant background, coming from the contin-
uum of states which exists for k > ko = /2(E — |Vg]).
Apart from the background, ps4 is precisely the LDOS
given by a two-dimensional treatment in which the sur-
face state electrons scatter off the corral potential. The
role of the crystal is simply to provide the surface state
band, with a particular weight outside the surface. This
is also the approach used by various authors [8, 9] in
analysing other surface state scattering problems.

The contribution p3 to the LDOS from G3 in (12) is
a correction to pog derived from the scattering into bulk
states. This term was evaluated by solving the integral
equation (14) for G™ using a Chebyshev polynomial ex-
pansion method[10].

In Fig. 1, we show the calculated LDOS (p24 + p3) at
the centre of a circular corral, radius 135a.u. — to which
only states with m = 0 contribute — in the limit of weak
confinement. On the clean surface the surface state band
gives rise to a constant LDOS above the band minimum.
A non-zero sheath potential introduces a modulation to
this band, with peaks appearing roughly at

En=FEo+j¢,/(20%), (17)

where jp,, is the n’th zero of the Bessel function J,.
With increasing Vs the amplitude of the oscillations
in the LDOS increases, and successive peaks gradually
emerge as well-defined resonances, beginning with those
of lowest energies. Also shown in Fig. 1 is the corre-
sponding LDOS from py4 alone, i.e. when scattering into
bulk states is neglected. The qualitative features are the
same, but it is clear that for similar sheath potentials



p2q greatly overestimates the structure induced by lat-
eral confinement.

This behaviour persists for greater values of the confin-
ing potential. Figure 2(a) shows the LDOS for gp = 125
and Vg = 64, which gives definite resonances over the
whole energy range shown. It is clear from this figure that
not only does the inclusion of bulk scattering broaden the
very sharp levels of pog4, but it also produces energy shifts
— if we describe bulk scattering in terms of a self-energy,
these are of course the imaginary and real parts respec-
tively. In fact, the shifts of the peaks from the “ideal”
values given by (17) are very small, amounting at most
to 0.01eV for the well defined resonances, and vanish as
FE approaches the bottom of the surface state band. This
means that the measured peaks can be compared directly
with the two-dimensional “particle-in-a-box” result (17)
to give information on surface state dispersion. Moreover
the smallness of the shifts means that the spin-dependent
scattering by the Fe corral atoms is unlikely to contribute
significantly to the level widths. Conversely, it is doubtful
that any useful information regarding the adatom scat-
tering may be extracted from the level positions.

The nature of the confinement and the bulk scatter-
ing may be traced to the two-dimensional sheath eigen-
states. Within the corral (o|lkm) = o' J,(ko), and as
Vs increases this becomes increasingly negligible — and
the electron increasingly excluded from the area within
the corral — except in the vicinity of kgp = jm,n. In
the limit Vg — oo only these discrete states exist within
the corral (there remains a continuum outside), and the
wavefunctions become x Jy, (km n0): the wavefunctions
within the corral at the allowed energy levels are the clean
surface wavefunctions which do not “see” the confining
potential because of the node condition. Consequently,
in this limit the scattering amplitudes @7}, vanish, and
the levels are infinitely sharp. For finite sheath poten-
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FIG. 1: Development of the LDOS at x = (0, 1) with increas-
ing sheath potential Vs for a circular corral with go = 135.
The crystal is modeled as described in the text. Left: full cal-
culation. Right: corresponding result in the two-dimensional
approximation. Horizonal divisions of 0.005 a.u. and vertical
divisions of 0.01 states/a.u. are shown. Each plot covers the
energy range [-0.035,-0.015] and are successively displaced by
(0.005,0.020) with increasing Vs.

tial, the scattering into bulk states is a consequence of
the modification of the parallel eigenstates from those of
the clean surface.

For a quantitative assessment of the importance of bulk
scattering we have evaluated the level width of the m = 0,
n = 3 level for various sheath potentials, and also within
the two-dimensional approximation (i.e. excluding ps).
These are shown in Fig. 3(a), and clearly show the dom-
inant role of scattering into bulk states in limiting the
lifetime of confined electrons for all finite Vg. Thus, we
can state that more realistic modeling of these systems,
including the atomistic nature of the confining structure,
must include the crystal substrate if quantitative infor-
mation (e.g. adatom phaseshifts) is to be extracted (the
variation of level width with Vs shown in Fig. 3(a) sug-
gests this might be possible). Note that if anything our
model band structure underestimates the importance of
scattering into bulk states compared to the real Cu(111)
surface, where the surface state lies closer to the lower
band edge at I' and disperses with a greater effective
mass, taking it closer with increasing energy[8, 11].

When we compare our results with the experimental
spectrum of Ref. [1] there are qualitative discrepancies.
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FIG. 2: a). LDOS at x = (0, 3) for a circular corral, go = 125,
with Vs = 64 (unshaded). The shaded curve is the cor-
responding result within the two-dimensional approximation
and for which the first three peaks have been omitted for clar-
ity. b). The LDOS in (a) convoluted by a Gaussian of width
0.0004.



The envelope of the peaks in the experimental spectrum
reaches a maximum at the third level, while our calcu-
lations (Fig. 2(a)) show an envelope increasing rapidly
as the energy approaches the surface state band mini-
mum. Moreover the calculated level widths go to zero in
the same limit (Fig. 3(b), also apparent in Fig. 2(a)),
whereas experimentally they decrease to a finite value.
The vanishing of the level width as E — Ej is a gen-
eral effect which will persist in a more realistic treatment,
being due to the effective barrier height of the corral po-
tential behaving like an infinite-strength sheath potential
(the reflection coefficient — 1) as k — 0. In this limit,
as we have seen, the width of the states goes to zero. In
order to reproduce the features of the experimental spec-
tra, it is necessary to introduce an additional broadening
mechanism which dominates for the lowest levels. In Fig.
2(b) we have convoluted the LDOS in Fig. 2(a) with a
Gaussian of constant width 0.0004a.u., comparable with
the unconvoluted width of the n = 5 level. The resulting
spectrum is now qualitatively similar to the experimental
dI/dV measurements. Possible origins of this broaden-
ing are instrumental or many-body effects, which might
be clarified by similar experiments on substrates where
Ey lies closer to the Fermi level (e.g. Ag(111) [12]).

To summarise, we have developed a model, including
the crystal substrate, for surface state electrons confined
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FIG. 3: a). Calculated width (FWHM) of the m =0, n = 3
level in a circular corral, go = 125, for different confining
potentials, as obtained from a full calculation and within the
two-dimensional approximation (scaled by a factor 10). b).
Variation of the level width with level energy, for m = 0
states in a corral with go = 125.

by a circular corral. We have established the impor-
tant factors governing the positions and widths of the
energy levels, and the quantitative information they con-
tain. We find only small shifts in energy levels from ideal
positions, which therefore reflect little beyond the sur-
face state dispersion relation. Coupling to bulk states
is much more important than partial lateral confinement
in determining the level widths, indicating that more at-
tention should be paid to the choice of substrate than
adatom species if the lifetime of the confined electrons is
to be maximised. We find, also, that the level widths go
to zero as the energy approaches the surface state band
minimum, revealing that in the spectra seen in the STM
there must be a broadening mechanism present in addi-
tion to leaking from the corral and scattering into the
bulk.

SC wishes to thank Chris Nex for useful discussions
regarding numerical techniques.



[1] M.F. Crommie, C.P. Lutz, and D.M. Eigler, Science, 262
218 (1993).

[2] E.J. Heller, Phys. Rev. Lett. 53 1515 (1984).

[3] We neglect the angular character of the corral, which
would only couple states with Am > 48.

[4] The case Vs < 0 may be considered in a similar ap-
proach by “double embedding”, embedding again on a
plane above the top of the sheath potential. Bound states
of the sheath potential provide an extra complication.

[5] J.E. Inglesfield, J. Phys. C: Solid State Phys. 4 L14
(1971).

[6] With an uncorrugated barrier the surface state will also
disperse with m™ = 1. This could be modified e.g. by

making V; k-dependent.

[7] F. Garcia-Moliner, V. Heine, and J. Rubio, J. Phys. C 2
1797 (1969).

[8] S.D. Kevan, Phys. Rev. Lett. 50 527 (1983).

[9] L.C. Davis, M.P. Everson, R.C. Jaklevic, and W. Shen,
Phys. Rev. B 43 3821 (1991); M.F. Crommie, C.P. Lutz,
and D.M. Eigler, Nature 363 524 (1993).

[10] S. Crampin, M. Boon, and J.E. Inglesfield, unpublished.

[11] S.L. Hulbert, P.D. Johnson, N.G. Stoffel, W.A. Royer,
and N.V. Smith, Phys. Rev. B 31, 6815 (1985).

[12] S.L. Hulbert, P.D. Johnson, N.G. Stoffel, and N.V.
Smith, Phys. Rev. B 32 3451 (1985).



