
Di� usion-limited aggregation: a kinetic critical phenomenon?

LEONARD M. SANDER

Di� usion-limited aggregation (DL A) is a model which represents noisy growth limited by
di� usion. T his process is quite common in nature and the simple algorithm gives a good
representation of the large-scale structure of many natural objects. T he clusters grown in the
computer and the real objects in question are tenuous and approximately self-similar. A
good deal is known about the algorithm , but a complete theory is not yet available. I review
the current state of knowledge about the model, its applications and theoretical analysis of
the results.

1. Introduction
In 1981 Tom Witten and I wrote an article [1] with the title

above Ð without the question mark. It introduced a

computer algorithm which we dubbed di� usion-limited

aggregation (DLA). DLA represents noisy growth limited

by di� usion, e.g. crystallization in a random environment. I

remember at the time that I thought that the idea was

pretty interesting mainly because I wanted to play with

computer graphics Ð we had just acquired a new Hewlett±

Packard pen plotter (now hopelessly obsolete). No one

expected that eighteen years later the subject would still be

alive.

However, a large number of scientists quickly became

fascinated with DLA and started to do research on the

subject . Our origina l paper has been cited almost 2000

times, and the literature is still growing unabated. F rom

time to time, I have felt like Conan Doyle, who repeatedly

wanted to kill o� Sherlock Holmes Ð without success. In

fact, after many years of working in other ® elds I am

amazed to see that three of my recent papers have been . . .

about DLA.

What makes this subject so interesting and, in fact,

rather peculiar are three facts.

(i) The extremely simple process seems to seize the

essential ingredients of a great many natural phenom-

ena with very little physical input.

(ii) It produces clusters of intriguing complexity which

look very much like real objects which are random,

tenuous and approximately self-similar. The mathe-

matical fact that the simple algorithm makes self-

similar (fractal) clusters is remarkable. The fact that

things very like this occur rather commonly in nature

is still more remarkable.

(iii) The simple process in the algorithm has resisted

analysis despite the fact that the model is very widely

known. This is a devilishly di� cult model to solve,

even approximately.

The algorithm is the following: suppose we start with a

nucleation centre, a single p̀article’ of radius a which we

locate at the origin of coordina tes. Then release another

similar particle at a random point some distance away. The

new particle is allowed to di� use, i.e. take steps of length a
in random directions, until it happens to be within a of the

® rst. Then it is stopped and added to the aggregate at the

point of contact. Then a second walker is released and

allowed to di� use until it is within a of either of the ® rst

two, and so on. A DLA cluster of size N is the result of the

addition of N ± 1 particles to the origina l centre. The results

of some computer runs of this type are shown in ® gures 1 ±

3 for two-dimensional DLA. These are approxima tely

fractal, as we will see below.

The algorithm has a very appealing simplicity, far

simpler than some models in quantum ® eld theory that

can be worked through in complete detail. This has led

many mathematically-inclined scientists to assume that it

must be trivial. One of my friends told me that when he ® rst

heard Tom Witten talk about DLA he decided to go home
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and exactly solve the problem that weekend. He could not

do it, and no one has suceeded since then.

The scheme was motivated by physics, though not the

right physics, as it turned out . Tom and I were interested in

some experiments of Forrest and Witten [2] on a kind of

coagulated aerosol. These are not described by DLA, but

by a related process that I will talk about below. But, from

the early work of Brady and Ball on electrodeposition [3]

we began to see real objects with a spooky resemblance to

computer generated DLA clusters. See ® gures 4±6 for some

examples. This, more than anything else has kept interest

alive in the model despite its horrid di� culty.

Witten and I suggested that , as in the case of other

geometric fractals (e.g. percolation clusters and self-

avoiding walks), there should be a renormalization theory

for this subject rather like that of critical phenomena.

However, now, despite massive e� orts we still have no idea

whether this idea is correct. The sophist icated expansion

and renormalization methods that have been so sucessful in

® eld theory and phase transition theory have not worked

here. I will give some reasons for these di� culties below. In

fact, very little is really clear about the theory of DLA.

Nevertheless it seems, if anything, more interesting now

than it originally did, For a recent comprehensive review

with many references see the book of Meakin [4].

In this article I will try to introduce this subject to a

general community. This will necessarily be a personal

view; a comprehensive treatment of the vast literature of

this subject would be impractical. I will review the essentials

of the model, talk about what natural shapes it can

describe, and explain the very sophist icated computer

simulations methods now available. F inally, I will outline

what we can say about a theory.

2. Why it worksÐ screening and the Mullins± Sekerka
instability

The ® rst question that arises in looking at a picture like

® gure 1 is to ask why the cluster has such a rough surface. If

we think of the cluster as a coastline, there are very deep

®̀ ords’ . Why don’ t they ® ll up? There are two complemen-

tary ways to understand this: if we start with a rough

surface for the cluster, we can see that the ® ords are

screened and the cluster remains rough. Addit ionally, if we

start with a smooth surface and a compact object without

® ords, a growth instability roughens the surface.

Basically, the reason that ® ords do not ® ll up in the cluster

is that random walkers coming from the outside and hit one of

the branches before they can go very deep insideÐ the ® ords

are screened. The situation would be quite di� erent if the

walkers moved in a straight line: as we will see below; then the

cluster would be compact. This is a simple idea, but it means

that the large-scale structure of a DLA cluster is dominated

by non-loca l e� ects. Any approxima tion that neglects this

feature will not work, and that makes the formulation of an

analytical theory very tricky. Screening is easily stated,

although it turns out to be one of the most elusive concepts to

incorporate correctly in a theory.

We now turn the question and ask how the cluster gets to

be very rough in the ® rst place? We could speculate that a

smooth out line, e.g. a disc, would cont inue to grow

smoothly, and never get into the trap of screening.

However, this is not so: it is easy to test that any init ial

N=10,000

Figure 1. A small DLA cluster; N= 10 000

N=100,000

Figure 2. A medium-sized DLA cluster; N= 100 000
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condition is soon forgotten in the growth [5]. If we start

with a smooth shape it roughens immediately because of

growth instability intr insic to di� usion-limited growth.

This instability was discovered in the context of

metallurgy by Mullins and Sekerka 6]. To see what they

did, I restate the problem of di� usion-limited growth in

cont inuum terms; this is known as the Stefan problem (see

[7]), and is the standard way to idealize crystallization in the

di� usion-limited case. Suppose that we have a density

u(r, t) of particles that di� use until they reach the growing

cluster where they deposit . Then we have:

­ u /­ t 5 m Ñ2u , (1)
­ u /­ n µ vn . (2)

That is, u should obey the di� usion equation; m is the

di� usion constant. The normal growth velocity, vn, of the

interface is propor tional to the ¯ ux onto the surface,

­ u /­ n . It is useful to estimate the size of the term ­ u /­ t by

noting that if there is a typical velocity of growth, v, then

­ u /­ t µv ­ u /­ x. Now |Ñ2u| » (v /D)| ­ u /­ n |. In the DLA

case we launch one particle at a time, so that the velocity

goes to zero. Hence equation (1) reduces to the Laplace

equation,

Ñ2u 5 0 . (3)

We are to solve an electrostatics problem and advance

the surface propor tional to the electric ® eld at each point.

This is called the quasi-static or L aplacian growth regime.

In the Laplacian regime the di� usion constant drops out of

the problem.

In addition to these condit ions we need a bounda ry

condition for u . For DLA this is pure absorpt ion at the

surface. In continuum terms:

us 5 0 . (4)

(In the case of crystallization equation (4) is replaced by the

Gibbs±Thompson bounda ry condition:

us 5 d0 j , (5)

where j is the curvature of the surface and d0 is a measure

of the surface tension. It expresses the well-known fact that

crystals have a higher melting point when they have a

curved surface. We will return to the signi® cance of this

term below.)

The bounda ry condition on u far from the cluster

depends on the dimensiona lity. In dimensions greater than

two we can take u ® u ¥. However, in d 5 2 we must

generalize this. I will adopt the convent ion that the c̀harge’

on the aggregate is ® xed at unity: u(r) ® log (r ).
Now why do equations (1)±(4) not simply describe a

smooth surface which advances in time? In fact, if we start

with a ¯ at surface it does advance in time (with v µt1/2)

but this solution is not stable [6, 7]. To see why this is so it is

su� cient for our purposes to reason qualitatively. Suppose

we start with a ¯ at surface with a small bump. Consider the

electrostatic interpretation above. We are asked to ® nd the

potentia l, u , near a grounded conductor with a bump, and

then advance the di� erent parts of the surface at a speed

propor tional to ­ u /­ n |s, the surface electric ® eld. The ® eld

is largest near the bump, as is known in elementary

electrostatics: this is the principle of the lightning rod. Thus

the bump grows larger.

In DLA bumps form on the surface due to the shot noise

on the arrival of particles. They grow as a result of the

instability and then tip-splitting occurs, in this case, again

because of noise. The proliferation and interaction of tips

through screening appears to give rise to a fractal, but the

details of that process still remain obscure.

3. Examples of DLA-like growth

Our motivation in introducing the model was to describe

growth where the limiting step is di� usion to the surface of

the growing object. Such processes are quite common in

nature. For example, when a crystal grows by deposition of

matter of a new layer on a crystal surface an atom lands on

a terrace, wanders about (di� use) until it ® nds an island

and attaches. Suppose we idealize the attachment process,

and assume that the atom sticks with 100% probability

where it ® rst arrives, and does not rearrange later. Clearly

the DLA model should have something to do with the

shape so formed. Cystallization from a solut ion, electro-

deposition , and many other processes can be idealized the

same way under some conditions. We will see in this section

that the results of such processes often really do look like

DLA clusters.

3.1. Crystallization and island growth on surfaces
Materials scientists often grow surfaces using molecular

beam epitaxy. In this technique a beam of material is

generated in high vacuum and is allowed to fall on a clean

surface. The atoms from the beam stick to the surface Ð

they are then known as adatoms. At all but the very lowest

growth temperatures they di� use on the surface until they

® nd a stable site and start to form a new layer. Usually

through the nucleation and growth of islands. In the proper

temperature regime (see below), islands with striking

tenuous shapes are formed which look very much like

DLA clusters.

This phenomenon is easily understood from the discus-

sion above and the continuum description of equations (1)±

(5). Island growth clearly has a di� usive instability [8]: the

adatoms move by di� usion and stick to the edges of islands

that are already nucleated. For an example, see ® gure 4 for

DLA-like islands on Rh [9]. Often, as the temperature is

raised, compact islands are formed because there is

adequate di� usion around the island periphery to ® ll in
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the ® ords. This is how the di� erence between equations (4)

and (5) manifests itself: if there is negligible rearrangement,

surface tension, which favours compact islands, plays a

small role in the growth.

However, the story only begins there. The interaction

between the island shape and the formation of new layers

has been studied intensively for about a decade [9].

Basically, if the islands are DLA-like, they usually do not

trap adatoms on top. Thus we have island nucleation and

growth followed by merging of islands until a new layer is

formed. This is layer-by-layer growth. Compact islands,

however, often have an Ehrlich±Schwoebel barrier [11],

that is, there is a barrier for adatoms to fall o� . (Why this

barrier is suppressed for DLA-like islands is not precisely

known Ð it may be that the extra edge length is enough to

allow escape of the second layer adatoms.) Then new

islands can be formed on top of the existing ones and the

growth is not layer-by-layer. At still higher temperatures

the adatoms can jump the Ehrlich±Schwoebel barrier, and

layer-by-layer growth returns. This re-entrant layer-by-

layer growth created considerable interest in the materials

science community.

3.2. V iscous ® ngering
Equations (2)±(3) are a system which has been intensively

studied in another context, that of ¯ uid ¯ ow. In a classic

paper Sa� mann and Taylor [12] considered the displace-

ment of a viscous ¯ uid (like oil) by an inviscid one (like air)

under conditions of creeping ¯ ow, for example in a porous

medium, or between thin parallel plates with a small gap (a

Hele±Shaw cell). They showed that an air bubble does not

simply displace oil: because of an instability identical in

form to the Mullins±Sekerka instability, it forms a steady-

state ® nger in the middle of the channel.

The relationship to equations (1)±(5) is easy to see: we

need only point out that ¯ ow in porous media or a Hele±

Shaw cell is described by an empirical rule called D ’Arcy’ s

law which gives for the ¯ uid velocity, V 5 2 K ÑP , where P

is the pressure in the viscous ¯ uid. The propor tionality

constant depends on the viscosity. Since most ¯ uids are

almost incompressible,

Ñ.V 5 2 K Ñ2P 5 0 . (6)

We take the zero of pressure to be that in the inviscid ¯ uid

(since it has small viscosity, its pressure there is approxi-

mately constant). We have

Ps 5 r j , (7)

resulting from the pressure drop due to the curvature of the

interface, where r is the surface tension. At the interface

D’Arcy’s law reads

Vn 5 2 K ­ P /­ n . (8)

These three equations are the same as equations (2), (3) and

(5). Presumably DLA has a close relationship to Hele±

Shaw ¯ ow in the presence of noise and for small surface
tension.

Figure 4. Islands on the surface of Rh observed with a scanning
tunnelling microscope. Each island is about 50 AÊ across. The
grey levels represent heights: there are a few muiltilevel islands.
Courtesy of R. C larke.

Figure 3. A large DLA cluster, N= 100 000. The radius of this
object is roughly 15 times that of the cluster in ® gure 1. The
colours represent the time of arrival: thus white is the ® rst 1/10
of N, grey the second 1/10, etc. There are ten colours in all.
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Paterson pointed out this relationship [13] and another

fascinating fact: experiments on the Hele±Shaw problem

look like DLA in some cases with the air bubble playing the

role of the cluster. Speci® cally, when noise plays a role, in a

porous medium or in fast ¯ ow in a Hele±Shaw cell, then the

Sa� mann±Taylor ® nger breaks up into sub® ngers that

strikingly resemble DLA clusters. Even more striking is the

fact that for radial ¯ ow there is no need to introduce

external noise, and radial Hele±Shaw ¯ ow makes patterns

which simply look like DLA clusters. See ® gure 5 for an

example.

3.3. Electrodeposition
When Witten and I started playing with our model in the

early eighties, I began to wonder if it was just a

mathematical curiosity, or whether we could see some real

example of DLA growth in nature. My doubts were laid to

rest once and for all by a very elegant paper in Nature by

Ball and Brady [3] who made electrodeposits of copper on

the end of a thin wire in di� usion-limited conditions. The

process is the familiar one, the reduction of Cu from

CuSO4. By examining electron micrographs and from

indirect evidence Ball and Brady showed that the clusters

seemed to be self-similar over ® ve orders of magnitude in

size.

This was an impressive achievement, but the deposit s

were fragile and could only be rather small. The aesthetic

appeal of the subject took a big jump when a Japanese

group [14] and two American groups [15,16] made two-

dimensional deposits which could be quite large because

they were supported on a glass cell. I will describe the

Michigan experiment [16] as an example.

We made a thin cell by con® ning a ® lm of electrolyte

between two plexiglass plates spaced by about 0.1 mm.

There was a cathode in the centre and a ring anode of

about 10 cm diameter around the periphery. The metal

deposited on the cathode, and we found that for slow

growth (voltages less than 1 V and small concentrations

of electrolyte) we indeed got structures that looked like

DLA, see ® gure 5. (Note, however, that our voltages are

always very high compared to a conventional electro-

chemistry experiment). For other conditions we produced

other patterns: for example, for the highest voltages we

used (on order 5 V) we could make ordered crystalline

arms.

It soon became evident that the situation was quite

complicated, even for the low-voltage case. In fact, we

showed that our cells were ohmic, so that the drift current,

not the di� usion current was the main contribution to the

growth, unlike the case of the Ball±Brady experiment.

However, as I pointed out above, the pattern formation in

Figure 5. A radial viscous ® ngering pattern. Air is injected
through the tube in the centre and displaces ¯ uid (glycerin) which
is con® ned between two plates held 1 mm apart. The pattern is
about 20 cm across.

Figure 6. A zinc electrodeposit produced in a thin cell. The
electrolyte is con® ned between two plexiglass plates held 0.1 mm
apart. The cathode is inserted through a hole in the plate, and
there is a ring anode (not shown). The pattern is about 3 cm
across.
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this case is expected to be similar, and the DLA pattern is

really no surprise.

There are many fascinating details of this process which I

have glossed over. In fact, [15,16] have spawned a minor

industry which attempts to take into account the real

details of the chemistry in this case. For more information

the reader should consult [17].

3.4. Bacteria colonies and other examples from biology
The growth of bacteria colonies in Petri dishes is a common

experimental technique. Normally the overall shape of the

colony is rather uninteresting: starting from an infection

site a rough, more or less round colony develops. However,

this is not necessarily true if the growth takes place under

conditions of stress. In 1989 Matsushita and collaborators

[18] showed that if the food supply of a colony of bacillus
subtilus was reduced, the overall outline of the growth

looked very much like a DLA cluster! See ® gure 6 for an

example (with another type of bacterium). The reasoning

was that multiplica tion of the bacteria at the surface could

be bottlenecked by the di� usion of the food supply (in this

case, peptone) and that the growth of the tips of arms of the

colony is enhanced. The bacteria inside are not nourished

and, in fact, become dormant.

This observation gave rise to a large amount of activity,

and a peculiar incursion of physicists into biology. When

examined in detail, the situation is very complicated indeed.

Many e� ects have been considered such as chemotaxis,

mutations and the secretion of ¯ uid by the bacteria.

Bacteria can do many more things than just exhibit

unstable growth. For example they can grow spirals. A

recent informal review is given by Ben-Jacob [19] who

reviews both experiments and modelling. However, it

remains true that the general observation of Matsushita

et al. remains valid: the shape of colonies in some limiting

situations is like DLA, and this is embodied in models such

as the `communicating walkers’ model of Ben-Jacob and

collaborators [19] which has a di� usive instability [20].

Other branching patterns in biologica l systems look very

much like DLA, and a number of workers have tried to see

whether this is mere coincidence, or corresponds to a real

e� ect. For example, F amily et al. [21] measured the fractal

scaling of the blood vessels in the retina, and found that the

self-similarity was very much like a two-dimensional DLA

cluster. Quite recently Fleury and Schwartz [22] have given

a model based on the formation of blood supply in an

embryo which gives DLA patterns.

I am aware of several other examples of biologica l

patterns which are governed by di� usion-limited processes

and give rise to DLA-like patterns (e.g. in the growth of

certain sponges [23]), and there are undoub tedly a large

number that I have not heard of. The application of DLA

and related models for the case of living systems is still in its

infancy.

4. DLA and di� usion-limited growth
There is a good deal of general theory associated with

di� usion-limited growth without disorder [24]. In this

section I will mention some results from this theory and

see how they help us understand DLA.

Figure 7. A colony of Paenibacillus dendritiform is bacteria, T
morphotype, grown on hard agar and under severe starvation.
The pattern is about 10 cm across. Courtesy of E. Ben-Jacob.

Figure 8. The radius of gyrationof a DLA cluster as a function
of N.

L . M. Sander208



4.1. Orderly viscous ® ngers
The mathematical theory of viscous displacement in Hele±

Shaw ¯ ow is very well developed [25]. The general picture

that emerges is as follows. Suppose we consider the

development of a ® nger in a channel geometry where we

inject air from one end. Then, independent of the exact

form of the initia l condition a ® nger will develop which

moves down the channel and which occupies a ® xed

fraction of its width. This fraction goes to one-half as the

surface tension goes to zero. The selection of the width is

thought to depend on the existence of surface tension in an

essential way. This solution to the problem is known as the

Sa� mann±Taylor ® nger.

The disorderly clusters of ® ngers that look like DLA are

formed in cases where noise plays a role. Theory [25] shows

that the threshold for stability of a single ® nger decreases as

the velocity increases and as surface tension decreases. Fast

® ngers have small thresholds and, as a practical matter,

quickly destabilize. Arneodo and collaborators [26] discov-

ered a fascinating and unexplained relationship between

disorderly ® ngers of this type, DLA, and the orderly

Sa� mann±Taylor ® nger. They superimposed a collection of

disorderly ® ngers and an ensemble of DLA clusters grown in a

channel. Then they chose a reasonable criterion for tracing an

average outline of the fuzzy superpositions. This turned out to

be exactly the Sa� mann±Taylor ® nger for small surface

tension! Levine and collaborators have used this insight as a

motivation to develop a mean-® eld theory [27] based on

earlier work of Witten and Sander and others [5,28] which

tries to describe the superposition of members of the ensemble

of DLA clusters. There remain many ambiguities in this area.

For the radial case with surface tension very lit tle is

known from a mathematical point of view. It appears that

there is no stable steady state Ð the noise threshold may be

zero. We associate this lack of a steady state with the

presence of a dynamically evolving pattern which even-

tually becomes fractal.

There are many known exact solutions to the problem

without surface tension [29], but these are probably

unstable. For a generic initia l condition without surface

tension the surface will develop cusps in ® nite time: that is,

without surface tension the Stefan problem is ill-posed and

some ® nite r is necessary to regulate the problem.

4.2. Dendritic growth and anisotropy
Many mathematicians and mathematical physicists have

studied the Stefan problem, equations (1), (2) and (5) [24],

which models the di� usion-limited growth of a crystalline

solid. The relevant results may be summarized as follows.

Crystals grow in many modes, but one of them, the

formation of dendritic tips (such as one of the branches of a

snow¯ ake) is of particular interest to us. In this case a single

®̀ nger’ can form, although usually with sidebranches, and

it can grow so that its steady-state shape translates with

constant velocity.

The steady-state tip is not a stable solution to the

problem unless a new feature is introduced which

corresponds to an important e� ect in real crystals, the

anisotropy of the lattice. This manifests itself because

di� erent crystal faces have a di� erent surface energy and we

should write us 5 d0(h )j in equation (5), where h is the

angle with respect to the crystalline axes. The surprise in all

this is that an arbitrarily small anisotropy can stabilize

single tip growth Ð this is important since the actual

anisotropies in crystals are usually less than a few percent.

In the absence of anisot ropy, numerical solutions [24]

show a sequence of tip-splittings where tips form, split and

reform. Thus crystal growth is stabilized by anisotropy, and

in its absence, we expect tip-splitting. There are direct

analogues of this statement in simulations of DLA, as we

will now see.

5. Variations on the theme

When the DLA model was ® rst proposed there was a

natural scepticism in the community about the relevance

and meaning of this simple process. One of the ® rst

quest ions we asked was how robust the process was. In the

course of time many variations of the original model have

been tried, and many of them lead to interesting insights

about the process, and about disorderly di� usion-limited

growth in general.

5.1. O� -lattice and on-lattice DL A; anisotropy

The DLA model in our original paper was not quite the one I

described above. Instead, I had the random walkers and the

cluster de® ned on a square lattice: particles could only live on

lattice points. The computations were much easier in that

case, and given the primitive state of computer resources at

that time, the increase in speed was very much worthwhile.

However, it was obvious that it was necessary to check

whether the results were lattice dependent . I was very proud

to be able to produce a small cluster on a triangula r lattice

which looked very much like the square lattice results, and

looked like it had the same scaling. Indeed, for small clusters

(N < 100000) the growth appeared to ignore the lattice.

The situation changed radically when the Brady±Ball

algorithm (see below) was introduced and very large

clusters became available so that lattice e� ects started to

be visible [30]. Robin Ball visited Ann Arbor for a summer

and we worked together to make some very large DLAs.

We proved de® nitively that for large (N ~ 106) clusters the

overall shape of the cluster became elongated along the x

and y axes of the lattice. This is presumably related to the

extreme sensitivity of dendrit ic growth to anisotropy.
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Family and Hentschel [31] have given some arguments

which show why the square lattice shows the extreme

distortions that we found. In a very interesting develop-

ment Ball et al. [32] showed how to understand the

overall shape distor tions in the special case where the

sticking probability along the x and y directions were not

the same. However, a complete understanding of the

matter must await a theory of the growthÐ then we may

be able to add the anisotropy back in as a perturbation.

For the moment it is universal practice to work only with

o� -lattice DLAs.

5.2. L aplacian growth
Thus far we have regarded the Laplace equation (3) with

the boundary condition of equation (4) as a representation

of the probability of the arrival of a random walker at a

point outside of the cluster. It is possible, however, to solve

this equation directly using, say, the relaxation method.

Pietronero and collaborators [33] did this, and modelled

growth by saying that the probability to grow at a point on

the surface of the cluster is given by:

Ps µ ­ u /­ n , (9)

cf. equation (2). The model de® ned by equations (3), (4)

and (9) might be expected to be the same as DLA

neglecting some details, and the experiments of Paterson

on viscous ® ngering (see above) also were in accord with

this expectation. The simulations of [33] were consistent

with the picture.

This development is quite signi® cant for several

reasons. F irst, we can regard this scheme, now known

as L aplacian growth, as a model in its own right. Most

modern theoretical developments on DLA go back and

forth freely between particle language and Laplacian

growth. Second, the author s pointed out (following a

suggestion in the original Witten±Sander paper) that the

equations stated can be viewed as a representation of

dielectric breakdown (or lightning), where u represents the

electrostatic potent ial in the insulator breaking down, and

equation (9) says that the probability of further break-

down on the surface of the ionized region is taken as

propor tional to the electric ® eld at that point. They also

did measurements of real breakdown patterns (Lichten-

berg ® gures) and showed that they had the fractal

dimension of DLA. F inally, Pietronero and collaborators

generalized the growth condition to read:

Ps µ [ ­ u /­ n ]g , (10)

where g is a parameter representing nonlinea rities in the

breakdown characteristics. They found that for each g

there is a di� erent fractal growth process with a di� erent

fractal dimension. For g 5 1 the problem reduces to

ordinary DLA.

5.3. Surface tension
The role of surface tension in di� usion-limited growth has

been glossed over in all of our discussion so far. For the

noise-free problem, as we saw above, surface tension plays

a central role in the pattern formation. However, DLA has

no surface tension and still gives rise to patterns similar to

those seen, for example, in radial Hele±Shaw growth, where

r ¤5 0.

There are two aspects of the problem to be considered.

One, surface tension regulates the usual Hele±Shaw

problem by eliminating small scale singula rities. In DLA

the ® nite particle size plays this role, although the

regulation is quite di� erent, and simply cuts o� features

which are too small. On the large scale, on the other hand,

surface tension determines the overall shape of a Sa� mann±

Taylor ® nger and the fraction of the channel which it ® lls.

For DLA the overall pattern is determined by noise, not r .

Thus the role of surface tension is secondary and usually

only gives rise to clusters with thickened branches which

look very much like noisy Hele±Shaw patterns.

This has been demonstrated numerically in various ways.

The most primitive version of surface tension [5] is to

idealize this e� ect in the most basic way possible, in terms

of bond counting and to suppose that the sticking

probability for a site was higher if there was more than

one occupied neighbour. If we set j 5 number of occupied

neighbours to a growth site, we might put pj µp42 j
o for a

square lattice, with po < 1.

However, this is not a complete description of macro-

scopic surface tension which corresponds to rearrange-

ments of matter because the surface is in local equilibrium.

Kadano� [34] and others [35] have shown how to deal with

this in a particle simulation. Basically, they allow particles

to be re-emitted from the surface with a probability

proportional to the local curvature. Then, if the particle

is reabsorbed before it escapes to in® nity, the growth is

allowed.

5.4. Cluster± cluster aggregation
The origina l problem that Tom Witten and I thought we

were solving had to do with the formation of a wispy bit of

smoke by aggregation of small particles. This is an

interesting process and gives rise to an interesting model,

but it is not DLA. The reason is that aggregates in an

atmosphere have some mobility: they can move and

combine. In this case we have a di� erent sort of physics,

namely the aggregation of aggregates or cluster±cluster

aggregation. A model for the process [36] produces fractals

of a di� erent sort than DLA. This model is directly

applicable to many situations in colloid and aerosol

chemistry.

In the model, one begins with a large collection of

particles each of which is allowed to di� use until it

L . M. Sander210



encounters another. Then the resulting cluster continues to

move until large clusters result. Cluster±cluster aggregates

have a fractal dimension which is much smaller than that of

DLA. Some results [4] are D(2) » 1.43, D(3) » 1.75
(compare DLA with 1.7, 2.5 respectively). The reason is

simple: however since particles have much di� culty in

wandering down ® ords, clusters will have much more

trouble and will stick near to the surface. This is true if the

kinetics is such that at any time the cluster size distribut ion

has a mean that increases in time so that a cluster does not

encounter many individual particles, and the aggregation is

dominated by aggregation of clusters of similar sizes. Any

ǹormal’ kinetics turns out to have this property, as we will

now discuss.

We noted that we must continue to let aggregates di� use.

In order to completely de® ne the model, we must decide on

how fast they are to di� use, namely, what the di� usion

coe� cient of an aggregate is to be. If we take Stoke’ s law of

friction for the di� usion, the retarding force is propor tional

to the inverse radius of the cluster. In the simulations it is

usual to take the di� usion coe� cient, m , of the clusters to be a

power law of the mass [36,37]:

m µM c . (11)

For Stoke’ s law c 5 D 2 1. In the simulations it is usual to

take c to be a free parameter. In fact, the fractal dimensions

are independent of c (and equal to the values above) if c < 1.

In contrast to the DLA case, theory for this process has

been quite sucessful, and its applications have turned out to

be useful in many contexts [4]. The deep puzzles that plague

the DLA model are absent here, and we can, without too

much exaggeration, think of cluster±cluster aggregation as

a solved problem.

6. Fractal scaling
The fact that DLA clusters look like macroscopic objects is

really very odd. The biggest computer generated two-

dimensiona l DLAs now have ~ 107 particles [38]. However,

this is a tiny number compared to those for a real

macroscopic object which has ~ 1020 particles.

From the beginning we realized that what we were doing

was unconvent ional. When I ® rst started plotting pictures

of DLAs (in 1980) we used our wonderful pen plotter and it

made a lot of noise. My colleague, Bob Lewis, walked by

one day and asked what the racket was about. I explained

that we were looking at the shape of crystals. `By simulating

them molecule by molecule?’ he asked. I will never forget

the are-you-crazy look on his face when I said yes. This is

clearly a hopeless enterprise, but for the striking fact that a

small DLA cluster and a large one look more or less the

same (cf. ® gures 1, 2 and 3)! This feature, (approximate)

scale-invariance, is what caught everyone’ s attention, and

which remains a puzzle to this day. It also meant that we

were not as crazy as we looked.

6.1. Scale invariance and the correlation dimension
The most obvious way to quantify the scale-invariance of a

DLA cluster is to use the fractal geometry of Mandelbrot

[39]. The word f̀ractal’ is de® ned in many ways by di� erent

authors. For the purposes of this article I will use the term

to mean a geometric object in which the part is like the

whole. This amounts to saying that if we take a subbranch

from a cluster and blow up the picture, it will be statistically

the same as a main branch. An equivalent statement is that

the correlations of the matter in a cluster have no

characteristic scale. Thus the correlation functions must

be power laws in distance.

A quantitative way to put this is to de® ne a generalized

dimension (the correlation dimension) by assuming that the

number of particles within a distance, r , of any particle on

the cluster obeys:

áM(r )ñ 5 A r D2 , (12)

where A is some constant. Then the two-point correlation

function for the matter density, q (r ), is also a power law:

C(r) 5 á q (r 1 s)q (s)ñ /á q (s)ñ (13)

µ rd 2 D2 ,

where d is the dimension of space. For a non-t rivial fractal

D2 is not an integer.

The correlation dimension has been measured many

times for DLA clusters. Most often equation (12) is used in

the simple form of looking at the mass dimension, i.e.

® guring out how many particles (the total mass) lie within r
of the origin, see ® gure 8. For DLA in two dimensions the

data ® ts very well to D2 5 1.71. Some workers have looked

at DLA in dimensions up to eight [40].

Still another kind of dimension is the box-counting
fractal dimension, D0. This is de® ned by covering the

fractal with boxes of size ². Then set ¸ 5 ²/R, where R is

the overall size of the cluster. Now count how many boxes

there are in the covering and call this N¸. The box-count ing

dimension is de® ned by

N¸ 5 B 2̧ D0 , (14)

where B is some constant. For DLA in two dimensions this

quantity is close to 1.7. For the relationship between D0
and D2 see the next section.

The case of d 5 3 is of particular physical interest. (The

reason for looking at d > 3 is mainly theoret ical; see

below.) The best current value of D2 is 2.49. In my opinion,

too little attention has been paid to the three-dimensional

case. As we will see in the next section, there is reason to
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believe that DLA in d 5 3 is better behaved than d 5 2.

Unfortunately, the beautiful pictures that caught every-

one’ s attention are harder to produce for dimensions higher

than 2. The intricate substructure of the cluster is hidden.

6.2. Multifractal scaling and the growth probability

The probability of growth of a DLA cluster is very
inhomogeneous. Tips of the cluster are much more likely

to grow than points inside the ® ords, and the inhomogene-

ity grows with cluster size. This fact has led many workers

to apply the theory of multifractals to DLA [41]. This

theory arose in the theory of turbulence [42] and has also

been applied in dynamical systems theory. However, the

growth probability in DLA is one of the most successful

and striking applications.

The growth probability is a measure de® ned on the

surface of the cluster, namely a function, ¹, such that

0 £ ¹ £ 1. For DLA d¹ 5 ­ u /­ n . Another interesting

measure is the uniform (or mass) measure, which is

constant on the cluster.

We divide the surface of the cluster into boxes, as above.

The probability for the i th box is pi 5 R
i d¹. F or example,

for the harmonic measure, pi is the probability that a

random walker will attach inside a box. If the probability

varies wildly, the integral will scale with the box size. A

measure is multifractal if it has two propert ies: (i) pi ~ ¸a;

that is, p has singula rities (e.g. near a sharp tip of the

cluster). Now count how many boxes have the same

singula rity strength, and call this N(a). The second

property is (ii): N(a) ~ 2̧ f (a)g(a), where g is a smooth

funct ion. If f (a) > 0 we can interpret it as a fractal

dimension of the set on which singula rity a occurs:

compare equation (14). Now a plot of f versus a is a

histogram of the information about the singula rities.

There is another way to parametrize a multifractal

measure, by de® ning generalized dimensions:

XN¸

i 5 1

p
q
i ~ (̧q2 1)Dq . (15)

The Dq and f (a) contain the same information: they are

related by a Legendre transform [41].

Now consider the uniform measure. It is easy to see that

the D0 and D2 de® ned from equation (15) are the same as

those in the previous paragraph. A cluster such that all the

Dq are the same under the uniform measure is an ordinary

(mono-) fractal. DLA is, at least approximately, a fractal in

this sense. However, some author s [43] have suggested that

there are deviations from strict scaling, and that DLA

clusters are multifractal with respect to the uniform

measure. In my opinion the evidence for this idea is not

completely convincing.

For the growth probability, things are much more

interesting [41]. There is quite a lot of evidence that for

positive a (the tips, and in general, the outside of the

cluster) there is well-de® ned multifractal scaling. Corre-

spondingly, for q ³ 0 the Dq are di� erent and well

de® ned. However, for negative a (or negative q) we are

dealing with the small probabilities which live in the

® ords. Here, at least in two dimensions, the situation is

strange. Basically, these small probabilit ies do not scale

with a power law in system size, but more like an

exponentia l. The harmonic measure varies even more
wildly than can be accomodated in the multifractal

formalism. However, in three dimensions the situation is

nicer [44]: the harmonic measure seems to be multifractal.

This is reasonable: in two dimensions ® ords are com-

pletely screened because lines of connected particles

completely block the entrance to the dead regions. In

three dimensions the local topology is still linear, so

particles can `go around’ the block and enter more deeply.

There are interesting relationships for the Dq for DLA.

For the case q 5 1 (which is, in fact, de® ned from

equation (15) by the limiting process q ® 1) there is an

exact relationship: D1 5 1 [45]. Halsey has shown that we

should expect 2D3 5 D0. In a recent paper Halsey and

collaborators have suggested that there are enormous

¯ uctuations for the D(q) for q > 3 [46].

6.3. DL A really self-similar?
In our original work on the DLA model we assumed that

we were producing self-similar fractals in the sense

mentioned above, namely that the part was like the whole.

The evidence available at that time was really insu� cient to

verify that assumption, but it seemed to be approximately

true. For example, plotting the mass±radius relationship

always gave (and gives) an excellent ® t to a power law.

However, there are other features of the simulations that do

not seem to satisfy the hypothesis. This is one of the

disturbing features of DLA which make it a continuing

mystery.

An example which appeared very early was an analysis of

the growth zone Ð the region of space over which new

particles are added Ð by Plischke and Racz [47]. Their

numerical evidence seemed to say that the growing region

was a fraction of the radius which decreased with N. That

is, the width of the growth zone was given by N m ¢ whereas

the radius grows as N (1/D). If, as seemed to be the case,

m ¢ < 1/D, we get a sharper and sharper growth zone.

However, for a self-similar object we would expect that the

growth zone would be propor tional to the radius, say

always being a certain percentage of it.

Later, more careful work for larger clusters [48] found

that m ¢ increased with N. This is an example of a slow
crossover to self-similarity, a phenomenon which plagues

this subject , and which is not understood at all. Even more

recently, another group has gone to even larger sizes
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N » 106 [38]. They claim that the data are consistent with

the possibility that DLA is never self-similar, but exhibits

ìn® nite drift’ .

There are many other examples of this kind of

phenomenon. In my opinion, all of them are crossovers,

and that the asymptotic state of DLA is self-similar. This,

however, is hard to prove, and more important , crossovers

that persist for million particle clusters are in themselves

interesting and cry out for explanation. We have no theory

which can treat these unusual phenomena, although, for

some very recent work, see below.

7. Computer simulations
My ® rst DLA program was hopelessly ine� cient, and, in

retrospect, embarrassingly naive. The worst thing that I

did, initia lly, was to start the random walker far from the

aggregate to represent the real physical situation.

Unfortunately, the program spent most of its time

aimlessly propagating the particle and not ® nding a

place to stick.

However, I was discussing this over dinner, and my

companion asked me why I did not start the particle at a

random angle on a circle near the cluster. `Because its

arrival probability at the cluster would not be random if

it started close by’ , I said. `How do you start it far

away?’ she asked. `At random’ , I said. `How much more

random do you think it will be when it gets to the

circle?’ she said. Whoops. I ® xed the program using the

trick of starting on a circleÐ and we quickly had nice

clusters to look at.

A large number of people have worked out techniques to

make DLA simulations tractable for quite large sizes

[30,40,49]. The current record is on the order of 30 000 000

particles in two dimensions. I will outline in this section

some of the methods used, including a very interesting

algorithm originally introduced by Ball and Brady [30].

7.1. Some simple tricks
One simple trick is the one mentioned above: the random

walker need not actually start far away from the aggregate.

It can start at a random point on a circle of size Rc which

just encloses the cluster since its probability of arrival on

this circle is random. (This observation is due to M. E.

Sander.)

The walker may wander away from the aggregate,

outside of Rc. In that case, it is necessary to allow a free

walk until it is quite far away (many aggregate radii). This

is not a serious problem since it is possible to allow the

walker to take large steps when it is outside. It cannot

encounter any matter, so it can take a step as large as the

distance to the enclosing circle, but in a random direction.

(This trick was invented by P. Meakin.)

However there is a better way to do this. Rather than

taking computer time to let the particle walk around

outside the circle, we can instead ® nd the probability

density on the boundary and bring back the particle in one

jump. This amounts to ® nding the Green’s function,

G(r, ro), for equation (1) for a particle outside an absorbing

disc of radius Rc. Then the probability to land on the disc is

given by ­ G /­ r at r 5 Rc. The solution is easy to ® nd using

the method of images [50], and can be adapted to di� erent

bounda ry conditions quite easily.

The ® nal result for a circular geometry is this: if the

particle is at position ro 5 (xo, yo) outside of Rc, then we

calculate the posit ion on circle as follows. Pick a random

number , n , and put the particle at r 5 (x, y):

x 5
Rc

ro

(1 2 V2)xo 2 2Vyo

1 1 V2
,

y 5
Rc

r o

(1 2 V2)yo 1 2Vxo

1 1 V2
,

V 5
ro 2 Rc

ro 1 Rc

tan (p n ).

(16)

7.2. The method of hierarchical maps

The Green’s function method elegantly ® xes the problem of

® nding the cluster after the particle has wandered away.

However, a big fractal cluster has big holes, and for large

clusters most of the computer time is spent walking within

the holes without ® nding a place to stick. If we knew how

close the nearest point on the cluster was we could, as

above, take random walk steps of this distance. However,

we need to know, at any time, how far away the particle is

from the irregular cluster. A naive search would not be

e� cient.

The Brady±Ball method [30] is an extremely e� cient way

to give a quick lower bound for the distance to the cluster,

and, as a bonus provides a fast mechanism to locate the

nearby particles. One modern implementation was made by

my student, Ellak Somfai [51]. Here is how he explains

what he did.

The cluster is put on an adaptively re® ned square

mesh. That is, the whole cluster is covered with a

squareÐ which we call a map. The square is subdivided

into four smaller squares and each is further divided, but

only if the cluster is `su� ciently close’ to it. The rule is as

follows: each map is subdivided if and only if the cluster is
closer to it than half of the side of the square. The

subdivision cont inues only up to a prede® ned maximum

depth, kmax . In our simulations the smallest maps are ® ve

to ten particle diameters. All particles of the cluster will

be in one of the smallest (deepest) maps: a list of the

particles is attached to these maps.

As the cluster grows the maps are updated. Each

time a particle is added to a previously empty smallest

map, the neighbour ing maps (on all levels) are checked
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to see whether they satisfy the rule. If not, they are

subdivided until they do. When a walker lands some-

where, we ® nd the deepest map containing the point. If

this map is not at kmax, then the particle is far away

from any matter, and half the side of the map is a

lower estimate of the walker ’s distance from the cluster.

If, on the other hand, the particle lands in a map of

depth kmax, then it is close to the cluster. The particle

lists of the map and of the neighbourin g smallest size

maps can be checked to calculate the exact distance

from the cluster. Either way, the particle is enclosed in

an empty circle of known radius and can be brought

to the perimeter in one step.

Empirically, the e� ciency of this scheme is quite

impressive: the computational time, T , for an N particle

cluster obeys T ~ N 1.1, and the memory is linear in N. The

cluster of ® gure 3 was made using this algorithm.

8. Some theory
The DLA model is almost unique among well-studied

statistical models in that it has not yielded to analysis. We

have no completely acceptable t̀heory of DLA’: that is, the

the only satisfactory way to ® nd the fractal dimension, the

multifractal scaling spectrum, the crossovers and the

overall shape of the cluster is to do a simulation, although

some progress has been made on all of these questions. This

challenge has intrigued the community of statistical

physicists, and very considerable e� orts have been made.

In this section I will invoke an author’ s privilege to talk

about my favourit e approaches, and not even try to do

justice to all of the very interesting techniques that have

been suggested.

8.1. Estimates and bounds
There are a number of rather simple estimates we can make

for the DLA process which put constraints on an eventual

theory. They also make it clear why the problem is so hard.

8.1.1. A lower bound on the fractal dimension. As a

® rst example, we can rather easily show that the fractal

dimension of DLA never becomes independent of the

dimension of space, d. This is in contrast to the usual

situation in ® eld theory, or in more conventiona l

(equilibrium) macromolecule models where there is an

ùpper critical dimension’ above which the fractal

dimension is independent of the spatial dimension.

For example, a self-avoiding random walk is a two-

dimensional fractal for all dimensions above four. A

simple way to see this is to point out that if a random

walker could penetrate a DLA cluster, it would ®̀ ll up’

and become dense. However, if D %d this is exactly

what would happen because then for an aggregate

whose scale is R, the e� ective number density

q µRD /Rd would be smallÐ the aggregate would be

very wispy and tenuous, and walkers would penetrate

and increase q instead of sticking on the outside and

increasing R.

To be precise, we can estimate the number of intersec-

tions of the track of the random walk with a cluster by

noting that the number of steps the walker takes inside the

aggregate is µR2. The number of intersections of this track

with the fractal aggregate is then of order q R2. If this is to

be large enough to keep the walker on the edge, we need

R2RD /Rd µRD 1 22 d to grow with R. Therefore, a self-

consistent D must satisfy D 1 2 2 d ³ 0, that is D ³ d 2 2.

It is not di� cult [52] to make this bound tighter and show

that D ³ d 2 1. This bound on the fractal dimension has

been checked up to d 5 6 [50]. Thus the favourite technique

in ® eld theory and phase transition theory, an expansion

about an upper critical dimension, simply will not work for

DLA.

8.1.2. Singularities at the tips. We pointed out above

that the growth probability on the surface of a DLA

aggregate is a wildly varying funct ion which has strong

singula rities near all of the many sharp tips of the

cluster. A theoretical framework for this array of

singula rities was given by Turkevich and Scher [53].

They pointed out that the solution of the Laplace

equation near a sharp point naturally gives rise to a

singula rity in ­ u /­ n s: the fact that sharp points on

grounded conductors have large electric ® elds is the

essential point of the ordinary theory of the lightning

rod. A DLA cluster has many sharp points. For example,

if we consider the leading tip (which grows fastest) on a

DLA cluster to be more or less a wedge of included

angle b , then in two dimensions standard electrostatic

theory gives:

u µX am 2 1,

am 5 p /[2p 2 b ].
(17)

Here X is the distance of the observation point from the

tip. For example, for a ¯ at conductor, b 5 0, we have an

inverse square-root singula rity. Now suppose we integrate

equation (17) over some small distance near the tip. The

total probability, which gives the tip velocity, is then:

v µ(a /R)am , where we have made the natural assump-

tion that the probability must be made dimensionless by

the only available length in the problem, the radius, R.

Suppose we imagine adding particles at some constant

rate. Then

dM /dt 5 (dM /dR)(dR /dt)

µRD 2 1v (18)

µRD 2 11 am .
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Since dM /dt is constant we conclude that the singula rity

at the fastest growing tip obeys

D 5 am 1 1 . (19)

Thus an arbitrary `wedge angle’ gives rise naturally to a

non-int eger dimension for a DLA cluster. Unfortunately,

no one has yet given a geometrical argument for the

average angle at the leading tip. Working backwards

from equation (20) using D 5 1.7 gives a b about equal

to the interior angle of a regular pentagon. Further, am

should be the top of the f (a) curve mentioned above.

This relation seems to be correct [41]. A systematic way

to ® nd D itself and the rest of the spectrum is not

evident proceeding in this way.

8.2. Real-space methods and ® xed-scale transformations

A natural way to try to renormalize the DLA process is to

use the analogue to real-space renormalization techniques

from phase transition theory. One of the most interesting

attempts along this line is due to Barker and Ball [54]. In

this technique the central object is the renormalized

e� ective noise amplitude. They found that it slowly drifts

to a ® xed point, and they investigated the role of

anisotropy.

Pietronero and collaborators developed a related scheme

called the method of ® xed-scale transformations. It is a

real-space method where a small system at one scale is

solved essentially exactly, and the behaviour at the next

coarse-grained scale estimated by assuming that there is a

scale-invariant dynamics and estimating the parameters

from the ® xed-scale solut ion. This method has been

reviewed extensively recently [55], and I refer the reader

to this article.

8.3. Branched-growth theory
Halsey and Leibig [56] have given a theory which focuses on

tip-splitt ing and the subsequent competition of the daughter

tips as the key to the DLA process. In the theory a tip-split ting

process is assumed to occur in such a way that the two

daughters are slightly di� erent in their initial numbers and

probability of growth. These numbers are taken as random

init ial conditions and averaged over Ð the idea is that they

depend on microscopic details which are decoupled from the

subsequent scaling. Then the branch develops so that one or

the other of the daughters wins and totally screens the other.

The two variables in the treatment are the probability of

growth of the ® rst daughter branch normalized by the total

probability for the branch to grow, x 5 p1 /pb, and the

number in the ® rst divided by the total number, y 5 n1 /nb.

All of the ìnitial conditions’ of the last paragraph are near

x 5 0.5, y 5 0.5 since the branches start out exactly

equivalent and microscopic noise perturbs them a bit. As

nb increases with growth, the noise is neglected, and the

system ¯ ows in the phase plane (x, y) toward the ® nal points

where one daughter wins the competition and the other dies,

(0, 0) or (1, 1). In the language of phase plane analysis, the

Figure 9. The Hastings± Levitov mapping. The map ZN takes
the unit circle in the w plane to an N-particle cluster in the z
plane. The map transforms the circle to a circle with a bump.
Thus ZN 1 1 5 N(u (w)) is the next step in the mapping. The size
of the bump must be adjusted as explained in the text.

Figure 10. A cluster generated by the Hastings± Levitov
method. The outline is the image of the boundary of the unit
circle under the map Z, and the positions where particles were
added are shown.
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daughter branches ¯ ow along the unstable manifold of the

saddle point at (1/2, 1/2).
The main work in the theory is to ® gure out an equation

of motion for the ¯ ow, i.e. dx /d(ln nb), and thus the form

of the unstable manifold. This is done using a series of

clever approxima tions for the development of the prob-

ability of growth on the surface and, ® nally, the numerical

solution of a nasty nonlinear equation.

There are some very nice features in this approach, and

it gives a reasonable value for the fractal dimension

» 1.66. The scaling law 2D3 5 D0 and the Turkevich±

Scher scaling law equation (19) are built in exactly. Halsey

and collaborators have shown how to get multifractal

dimensions and their ¯ uctuations [46] using as input the

form of the unstable manifold. However, there seem to me

to be several problems, the main ones being that the

interaction of di� erent branches is not treated, and that

this is a òne-shot’ approxima tion with no systematic way

to improve it.

8.4. Conformal maps

The ® nal attempt at a theory that I will discuss is much

less well developed than the two others mentioned above,

but it seems to me to be very promising, and to provide

remarkable insights into the growth process which could

lead to an analytic theory. It was invented by Hastings and

Levitov [57] and developed in several recent papers [58±

60].

The conformal map method uses the Laplacian growth

version of DLA. It exploits the fact that a very convenient

way to solve the Laplace equation is to use the classic

method of conformal mapping [61]. Take the cluster to be a

grounded conductor in the complex z plane, with a

probability to grow at a point on its surface proportional

to the charge there: |Ñu|, where u is the potent ial with

bounda ry conditions of unit ¯ ux at in® nity and u 5 0 on

the surface. We can construct a complex potentia l such that

Re [ (z)] 5 u. If the cluster were merely a two-dimensional

disc of radius r o then, from elementary electrostatics in two

dimensions we have (z ) 5 ln (z /ro). It is convenient in

what follows to de® ne a new funct ion, h(z) 5 e . Clearly h

is linear for large z for any cluster (since any shape looks

like a disc from far away). Also |h| 5 1 on the cluster,

because Re ( ) 5 0 there. Now we de® ne a new (mathe-

matical) plane, w such that w 5 h(z); h is a conformal map
from the exterior of the cluster to the exterior of the unit

circle. Its inverse function Z(w) is a conformal map which

takes the exterior of the unit circle in the w plane to the

exterior of the DLA cluster in the z plane, and obeys

Z ~ row, for large |w|. We will focus attention on Z.

Now we can solve the Laplace equation in the w plane

trivially, and transform back to the z plane. On the unit

circle |Ñu| µ |d /dz | 5 |dh /dz | 5 1/|dZ /dw| so that the

growth probability is 1/|Z¢|. Intervals dh on the unit circle

in the w plane correspond to intervals of arc length ds with

equal growth probability in the z plane. Thus the image of

the growing tips is most of the circle and the ® ords occupy a

tiny region. The most useful characterization of the map is

the Laurent series:

Z(w) 5 row 1 Xk 5 0

A k /wk . (20)

The coe� cients, A k, contain lots of very interesting

information.

All of this would be of no real interest if we could not

® nd the map. However we have two independent ways to

do this. The ® rst is the original Hastings±Levitov recursive

method. Suppose we know the map at a certain stage of

growth: ZN 2 1. Now we add a `particle’ by adding to the

outline a bump of area ¸o in the z plane. ZN 2 1 will

transform the unit circle to a circle with a bump whose area

is transformed: ¸N 5 o̧ /|dZN 2 1 /dw|2; see ® gure 9. The

bump can be taken to be of the same ® xed shape and to

occur at an angle h N which is uniformly distributed in the

mathematical plane (cf. the previous paragraph). Suppose

we denote by u ¸N , h N (w). the function that maps the unit

circle to the circle with a bump. The recursion relation for

ZN (w) is given by (see ® gure 9):

ZN (w) 5 ZN 2 1(u Ņ ,h N (w)) . (21)

In practice, we choose a random angle h N , ® nd Ņ , and

generate any level of map. This is a nice method, but slow:

it takes of order N 2 steps to generate an N-particle cluster

(see ® gure 10).

The other way to get the map [60] is to use the original

DLA model to grow the aggregate. Then we stop at stage N
and record where M random walkers would attach to the

cluster. This gives a set of points zm . These are at angle

h m » 2p (m /M) in the w plane, since we are sampling the

probability, and equal increments of probability corre-

spond to equal increments of h . The A k are the Fourier

coe� cients of the function z(h m ). We have used this

method to ® nd the map up to N » 106.

So far we have a numerical procedure. However, it gives

rise to many insights and leads to analyt ical progress. For

example, in very recent work [60] we have shown that the

growth zone of Plishke and Racz [47] must scale with the

radius using only some weak assumptions about the

multifractal spectrum. We used the fact that the growth

zone can be related to the amplitude, |A k|, of the Laurent

coe� cients. The crossovers that are so puzzling can be

related to the slow crossover of the lowest multipole

moments of the probability to their asymptot ic scaling

behaviour. It is very interesting to note that the phase of the

A k’ s encode the multifractal spectrum itself. This area is in

rapid evolution.
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9. Summary

In this informal review I have tried to give the reader some

¯ avour for the progress that has been made in studies of the

DLA model. There is an enormous literature on the subject,

but, oddly enough, many of the most useful insights have

not penetrated to the physics community at large. This is

unfortunate. Many of the insights and methods (particu-

larly the numerical techniques) should be useful outside of

the DLA area, but are all too often not recognized, and

have to be rediscovered. My purpose in writing this is to

try, in part, to correct that situation.

Acknowledgements
I have had useful discussions about the subjects described

here with hundreds of people, and it would be impractical

to list them. Nevertheless, I am very grateful for their

insights. My research in this area has been supported by

several sources over the years, and at present by DOE grant

DEF G-02-95ER -45546.

References
[1] Witten, T. A., and Sander, L. M., 1981, Phys. Rev. L ett., 47, 1400.

[2] Forrest, S. R., and Witten, T. A., 1979, J. Phys. A Math. Gen., 12,
L109.

[3] Brady, R. M., and Ball, R. C., 1984, Nature, 30 9, 225.

[4] Meakin, P., 1998, Fractals, Scaling, and Growth Far From Equilibrium
(Cambridge: Cambridge University Press).

[5] Witten, T. A., and Sander, L. M., 1983, Phys. Rev. B, 27, 2586.

[6] Mullins, W. W., and Sekerka, R. F ., 1963, J. appl. Phys., 34, 323.

[7] Langer, J., 1980, Rev. mod. Phys., 52, 1.

[8] Bales, G . S., and Zangwill, A., 1990, Phys. Rev. B condens. Matter, 41,
5500.

[9] Tsui, F ., Wellman, J., Uher, C., and Clarke, R., 1996, Phys. Rev. L ett.,
76, 3164.

[10] Kunkel, R., Poelsma, B., Verheij, L. L., and Comsa, G., 1990, Phys.
Rev. L ett., 65, 733.

[11] Ehrlich, G., and Hudda, F . G., 1966, J. chem. Phys., 44, 1039;

Schwoebel, R. L., and Shipsey, E. J., 1966, J. appl. Phys., 37, 3682.

[12] Sa� man, P. G., and Taylor, G. I., 1958, Proc. Roy. Soc. A, 245, 312.

[13] Paterson, L., 1984, Phys. Rev. L ett., 52, 1621.

[14] Matsushita, M., Sano, M., Hayakawa, Y., Honjo, H., and Sawada, Y.,

1984, Phys. Rev. L ett., 53, 286.

[15] Sawada, Y., Dougherty, A., and Gollub, J. P., 1986, Phys. Rev. L ett.,
56, 1260.

[16] Grier, D., Ben-Jacob, E., Clarke, R., and Sander, L. M., 1986, Phys.
Rev. L ett., 56, 1264; Grier, D ., Kessler D., and Sander, L. M., 1987,

Phys. Rev. L ett., 59, 2315.

[17] For example: Garik, P., Barkley, D., Ben-Jacob, E., Bochner, E.,

Broxholm, N., Miller, B., Orr, B., and Zamir, R., 1989, Phys. Rev.
L ett., 62, 2703; F leury, V., Chazalviel, J.-N., Rosso, M., and Sapoval,

B., 1990, J. Electroanal. Chem. 290, 249; Argoul, F ., Arneodo, A.,

Elezgaray, J., and Kuhn, A., 1997, Fractals, 5, 75.

[18] Fujikawa, H., and Matsushita, M., 1989, J. phys. Soc. Jpn., 58, 3875.

[19] Ben-Jacob, E., 1997, Contemp. Phys., 38, 205.

[20] The di� usive instability in this case is unexpectedly subtle, and has led

to an interesting development in mathematical physics. See Kessler, D.

A., Ner, Z., and Sander, L. M., 1988, Phys. Rev. E, 58, 107; Kessler,

D . A., and Levine, H., 1998, Nature, 394, 556.

[21] Family, F , Masters, B. R., and Platt, D . E., 1989, Physica D, 38, 98.

[22] F leury, V., and Schwartz, L., 1999, Fractals, 7, 33.

[23] Kaandorp, J. A., 1993, Growth Patterns in Physical Sciences and
Biology, edited by J. M. Garcia-Ruiz, E. Louis, P. Meakin and L. M.

Sander (New York: Plenum), pp. 331±340.

[24] Ben-Jacob, E., 1993, Contemp. Phys., 34, 247.

[25] Pelce, P. (ed.), 1988, Dynamics of Curved Fronts (Boston: Academic

Press).

[26] Couder, Y., Argoul, F., Arneodo, A., Maurer, J., and Rabaud, M.,

1990, Phys. Rev. A, 42, 3499.

[27] Tu, Y., and Levine, H., 1995, Phys. Rev. E, 52, 5134.

[28] Ball, R., Nauenberg, M., and Witten, T. A., 1984, Phys. Rev. A, 29,
2017; Nauenberg, M., and Sander, L. M., 1984, Physica, 123A, 360.

[29] Dawson, S. P., and Mineev-Weinstein, M., 1998, Phys. Rev. E, 57,
3063.

[30] Ball, R. C., and Brady, R. M., 1985, J. Phys. A Math. Gen., 18, L809.

[31] Family, F ., and Hentschel, G ., 1987, Faraday Discuss. chem. Soc., 83,
139.

[32] Ball, R. C., Brady, R. M., Rossi, G ., and Thompson, B. R., 1985,

Phys. Rev. L ett., 55, 1406.

[33] Niemeyer, L., Pietronero, L., and Wiesmann, H. J., 1984, Phys. Rev.
L ett., 52, 1033.

[34] Kadano� , L. P., 1985, J. stat. Phys., 39, 267.

[35] Szep, J., Cserti, J., and Kertesz, J., 1985, J. Phys. A Math. Gen., 18,
L413.

[36] Kolb, M., Botet, R., and Jullien, R., 1983, Phys. Rev. L ett., 51, 1123;

Meakin, P., 1983, Phys. Rev. L ett., 51, 1119.

[37] Kolb, M., 1985, J. Phys. L ett., 46, L631.

[38] Mandelbrot, B. B., Kaufman, H., Vespignani, A., Yekutieli, I., and

Lam, C. H., 1995, Europhys. L ett., 29, 599; Mandelbrot, B. B.,

Vespignani, A., and Kaufman, H., 1995, Europhys. L ett., 32, 199.

[39] Mandelbrot, B. B., 1982, The Fractal Geometry of Nature
(W. H. Freeman).

[40] Tolman, S., and Meakin, P., 1989, Phys. Rev. A, 40, 428.

[41] Halsey, T. C., Jensen, M. H., Kadano� , L. P., Procaccia, I., and

Shraiman, B. I., 1986, Phys. Rev. A, 33, 1141; Hayakawa, Y., Sato, S.,

and Matsushita, M., 1987, Phys. Rev. A, 36, 1963; Ball, R. C., and

Rath Spivack, O., 1990, J. Phys. A, 23, 5295.

[42] Mandelbrot, B. B., 1974, J. ¯ uid Mech., 62, 331.

[43] Vicsek, T., Family, F., and Meakin, P., 1990, Europhys. L ett., 12, 217;

Vicsek, T., 1990, Physica A, 168, 490.

[44] Schwarzer, S., Wolf, M., Havlin, S., Meakin, P., and Stanley, H. E.,

1992, Phys. Rev. A, 46, R3016.

[45] Makarov, N. G., 1985, Proc. L ond. math. Soc., 51, 369.

[46] Halsey, T. C., Duplantier, B., and Honda, K., 1997, Phys. Rev. L ett.,
78, 1719.

[47] Plischke, M., and Racz, Z., 1984, Phys. Rev. L ett., 53, 415.

[48] Li, G ., Sander, L. M., and Meakin, P., 1989, Phys. Rev. L ett., 63,
1322.

[49] Meakin, P., Ball, R. C., Ramanlal, P., and Sander, L. M., 1987, Phys.
Rev. A, 35, 5233.

[50] Sander, E., Sander, L. M., and Zi� , R., 1994, Comput. Phys., 8, 420.

[51] Somfai, E., private communication.

[52] Ball, R. C., and Witten, T. A., 1984, Phys. Rev. A, 29, 2966.

[53] Turkevich, L., and Scher, H ., 1985, Phys. Rev. L ett., 55, 1026.

[54] Barker, P. W., and Ball, R. C., 1990, Phys. Rev. A, 42, 6289.

[55] Erzan, A., Pietronero, L., and Vespignani, A., 1995, Rev. mod. Phys.,
67 545.

[56] Halsey, T. C., and Leibig, M., 1992, Phys. Rev. A, 46, 7793; Halsey, T.,

1994, Phys. Rev. L ett., 72, 1228.

[57] Hastings, M. B., and Levitov, L. S., 1998, Physica D, 116, 244.

[58] Hastings, M. B., 1997, Phys. Rev. E, 55, 135.

[59] Davidovitch, B., Hentschel, H . G. E., Olami, Z., Procaccia, I., Sander,

L. M., and Somfai, E., 1999, Phys. Rev. E, 59, 1368.

Diffusion-limited aggregation 217

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1050-2947^28^2942L.3499[aid=576665,nlm=9904431]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1050-2947^28^2935L.5233[aid=576667,nlm=9898151]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1050-2947^28^2942L.6289[aid=576668,nlm=9903925]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1050-2947^28^2946L.7793[aid=576669,nlm=9908131]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0167-2789^28^29116L.244[aid=576670]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1050-2947^28^2935L.5233[aid=576667,nlm=9898151]


[60] Somfai, E., Sander, L. M., and Ball, R. C., 1999, Phys. Rev. L ett., 83,
5523.

[61] Churchill, R. V., 1990, Complex V ariables and Applications (New

York: McGraw-Hill).

L eonard M. Sander is Professor of Physics at the

University of Michigan. He did his undergradu-

ate work at Washington University in St. Louis,

and his graduate work at the University of

California, Berkeley where he was trained as a

solid state theorist. He remained in solid state

and condensed matter until 1981 when he

stumbled upon the topic of this article. Since

then he has been working in statistical physics

and pattern formation.

L . M. Sander218


