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The mapping of marine habitats mainly relies on acoustic techniques and there is a clear need for reliable
classification methods supplementing the interpreter with as much quantitative information as possible.
This article presents textural analyses of multibeam sonar imagery from Stanton Banks, on the continen-
tal shelf off Northern Ireland. TexAn, originally developed for the textural analysis of sidescan sonar
imagery, was tested over an area of �72 km2 surveyed in 2005 by the European MESH project. The mul-
tibeam imagery is affected by several artefacts, including strong uncorrected angular variations in some
tracks, and the acquisition of some tracks with very different aspects. The results from unsupervised clas-
sification of the imagery, using K-Means, match well the interpretations that can be made using concur-
rent bathymetric data and visual observations acquired in a later cruise. Textural analyses successfully
detect faint trawlmarks and distinguish between the different types of seafloor, including variations
within sediments, rocky outcrops and gullied terrains.

� 2008 Elsevier Ltd. All rights reserved.
1. Rationale systems and users of sonar imagery and (potentially) classified
Large-scale acoustic mapping of marine habitats began in ear-
nest about a decade ago, with the collaborative research efforts
of North American institutions to create national marine sanctuar-
ies like Stellwagen Bank (e.g. [1]). It has now become a full-blown
field of study, with many successful applications throughout the
world (e.g. [2–5]). Habitat mapping aims at integrating biological
and geological studies with sonar imaging of the seabed and
overlying features. Although each mapping system has its own
advantages and limitations (e.g. coverage vs. resolution), multi-
beam sounders have proved the most versatile and complete
instrument, providing background topography and showing
seabed features in relatively high detail (e.g. [6]). For most modern
surveys, repeatability and time evolution have become key factors
(e.g. [7]). Owing to the amount of data collected in a typical survey,
and the subtle variations in acoustic responses of some seabed
features, visual interpretation of sonar records is no longer an
option. Acoustic classification systems must provide quantitative
data in a reasonable time, and supplement the interpreter with
as much information as possible.

There are many approaches to acoustic seabed classification,
and end-users from different fields aim for different objectives.
To conciliate the different aims, a workshop was organised in
2006 to bring together both providers of acoustic classification
ll rights reserved.
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maps [8]. This workshop was held at the University of Ulster,
Coleraine, Northern Ireland, within the framework of the Interreg
IIIB project MESH (‘‘Mapping European Seabed Habitats”) [9]. A
common dataset of multibeam bathymetry and imagery was
issued to all participants before the meeting, for treatment with
different approaches. These included reprocessing of the raw
acoustic measurements as well as processing with acoustic
classification systems, and the results are presented in companion
papers in this issue. The present article focuses on the analysis of
the multibeam imagery with TexAn, a proprietary software from
the University of Bath originally designed for textural analyses of
sidescan sonar imagery [10,11]. Section 2 describes the general
method used to analyse acoustic textures of sonar images with
TexAn. Section 3 shows its application to the multibeam imagery
from the common MESH dataset. Section 4 discusses the results,
comparing them with those from other studies and with available
ground-truth. It also makes recommendations for improving the
processing of the input multibeam imagery. Finally, Section 5 pro-
vides a synthesis and guidelines for further uses of the textural
analyses of multibeam imagery.
2. Method

2.1. Acoustic textures – TexAn software

Images, whatever their origin, are intuitively mapped on the ba-
sis of their tonal and textural properties. In the case of sonar
analyses of multibeam sonar imagery from Stanton Banks, ..., Appl
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images, whether acquired with a sidescan or a multibeam, tonal
information is directly related to the amount of acoustic energy
backscattered, generally represented as grey levels. Different sta-
tistical indices (e.g. extrema and median values) can be used to
quantify local information. These first-order statistics quantify
the distribution of the grey levels, but do not take into account
their positions relative to each other (i.e. the acoustic textures).
These textures, however, account for most of the information in
acoustic images, as countless studies have shown (e.g. [7,10–21]).
The local textural properties can be summarised as rough or
smooth, varied or homogeneous, repetitive or random, and hence
can help in distinguishing between different areas and features
in the images. Quantitative textural measurements (second-order
statistics) can be extracted from the image with various tech-
niques, the most efficient being stochastic [12]. This original theo-
retical work was supplemented with practical applications to sonar
imagery by [10,13–16] and others, showing that Grey-Level Co-
occurrence Matrices (GLCMs) are optimally adapted. GLCMs ad-
dress the average spatial relationships between pixels of a small
region. Experiments on human vision (Julesz, 1973, in [10]) dem-
onstrated that the eye could not distinguish between textures with
different second-order statistics, proving GLCMs could be used to
go further than traditional, visual interpretation alone.

The University of Bath software TexAn uses the indices derived
from GLCMs calculated for each pixel in the images and clusters
relevant textural indices into appropriate groups, related to spe-
cific acoustic processes and structures on/in the seabed. This soft-
ware has been validated on sidescan sonar imagery in a variety of
environments (e.g. [10,11,15,17,18]), and recent developments
[19,20] showed its promise with multibeam sonar imagery.

To quantify the textures, TexAn calculates GLCMs {PD(i,j)} over
the entire image, within moving windows of a set size. Each ele-
ment PD(i,j) expresses the relative frequency of occurrence, within
the window, of two pixels with the respective grey levels i and j at
D(SZ,h) (Euclidian distance SZ and angle h) from one another. If the
image is quantified with NG grey levels, the GLCMs will be
NG � NG arrays. The distance D(SZ,h) is very sensitive to the orien-
tation h. This is particularly true for sonar images, in which the
insonification angle can vary both along and across track. In order
to avoid changes in the textural indices of a feature with non-iso-
tropic texture, insonified at different angles, the GLCMs are calcu-
lated for the angles h = 0�, 45�, 90� and 135� and then averaged,
following Refs. [13] and [10]. Hence the only remaining computa-
tional parameters are the inter-pixel displacement SZ, the number
of grey levels (NG) and the size of the computational window (WS).
The matrices resulting from the calculations described above, how-
ever, cannot be interpreted directly in an easy way (as can be seen
from the examples in Fig. 1). Therefore, their information is sum-
marised in a set of statistical measures, called ‘indices’. More than
25 different textural indices have been described in the literature
(e.g. [10,13]), but a detailed evaluation of their performance has
shown that the combination of two indices (entropy and homoge-
neity) seems sufficient to explain nearly all the textural variability
in sidescan sonar images [10,14]. The entropy index measures the
lack of spatial organisation within the computational window, and
hence is a measure of the local amount of ‘chaos’. It will be higher
for rough textures, and lower for organised heterogeneities such as
ripples. Textural homogeneity is a measure of the amount of local
similarities within the window. The index is similar to the ‘inverse-
difference moment’ of [15] and will increase in windows with less
contrast (fewer grey levels). An additional factor was introduced by
[10] in the calculation of this index to ensure invariance during lin-
ear grey-level transformations (such as those caused by variations
in TVG or AVG from one computation window to another). Fig. 1
shows how GLCMs can vary for even simple textures, and how
entropy and homogeneity can clearly distinguish between even
Please cite this article in press as: Blondel Ph, Gómez Sichi O, Textural
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complex textures. The textural indices having been chosen, there
is now a need to identify the best combination(s) of inter-pixel dis-
placement SZ, number of grey levels NG and computation window
size (WS) that maximise the difference between regions in the en-
tropy/homogeneity space (also called feature space).

2.2. Optimisation of textural parameters

This optimisation is performed by choosing Training Zones rep-
resentative of the acoustic facies encountered in the entire image
and which one wants to distinguish. These Training Zones need
to be square (to avoid over-emphasis on one direction in the im-
age). They need to be large enough to be statistically significant
for a large range of window sizes, WS, as their size influences the
number of times independent values can be measured. For exam-
ple, for a Training Zone of 100 � 100 pixels, choosing WS = 90 pix-
els can only yield 100 independent measurements of entropy and
homogeneity, whereas choosing WS = 10 pixels can yield 8100
independent measurements. Conversely, Training Zones need to
be small enough to encompass only one type of acoustic texture.

The first parameter to vary is the size WS of the computation
window. It can in theory take any value smaller than the size of
the Training Zones, but is in fact constrained by its physical signif-
icance. Smaller values (10 pixels or smaller) will increase the con-
tributions of very close pixels and measure the high-frequency
backscatter variations in the image (generally attributable to
speckle, particularly in multibeam imagery). Larger values (close
to the size of the Training Zones) will instead look at lower-fre-
quency variations in the image, and will have a higher probability
of mixing two texturally distinct regions or missing intrinsic tex-
tural characteristics. Finally, the difference in insonification angles
from one edge of the computation window to the opposite edge
will need to be taken into account, although it will be smaller for
multibeam systems than for sidescan sonars.

The second textural parameter is the displacement size SZ with-
in the window. It is intricately linked to its size WS. Values close to
WS will emphasize variations of the same size as the computation
window, whereas the smaller values will emphasize the noise with-
in the window. Again, the influence of the variations in ensonifica-
tion angle between pixels separated by SZ should be accounted for.
If small-scale variations in large structures are to be detected, a
small SZ should be associated to a large WS. However, if the struc-
tures to be observed are characterised by variations of a wavelength
comparable to their dimensions, SZ should be slightly less than the
size of the window. Based on practice with both sidescan and mul-
tibeam imagery, the optimal values of SZ usually lie close to WS/2.

Last but not least, the number of grey levels NG will affect both
the speed of the computation and its accuracy. As NG decreases,
there are less and less variations around the mean grey levels
(smoothing of the dynamic range). For high values (as close to
the full dynamic range as possible), the textures are more likely
to appear rougher and more heterogeneous. Systematic tests show
that, as NG decreases from 256 (8-bit dynamics) to 16 (4-bit
dynamics), entropy will decrease linearly by 50% at most, and
homogeneity by 30%. The overall computation time varies approx-
imately as o(NG2). For 8-bit dynamic ranges, practice shows that
optimal numbers are usually between 32 and 128, depending on
the quality of the processing and the amount of noise in the image.

The combination(s) of optimal values are found by systemati-
cally varying NG, WS and SZ and calculating entropy and homoge-
neity at each point in the Training Zones. The separation between
Training Zones is visualised in the feature space. It can be tested
quantitatively, but it is very sensitive to the overlap of poorly
defined (or complex) classes and a contextual assessment of the
separation is preferred. For example, dunes will be seen either as
‘‘dunes” for large values of WS or as alternate ‘‘strips” for small
analyses of multibeam sonar imagery from Stanton Banks, ..., Appl



Fig. 1. (a) Sonar image of a smooth texture (mud) with very few grey levels and its resulting GLCM, with one peak showing the most common grey level (the width of the
peak is proportional to the variations around this most common level); (b) Image of a regular texture (sonar image of sand ripples) with two main grey levels and resulting
GLCM; the main peaks are related to the two levels, their occurrences close to each other and their relative distributions. As can be seen, even for very simple textures, GLCMs
cannot be interpreted easily on their own. (c) Three images of distinct terrains can be distinguished from the entropy and homogeneity of the GLCMs (see text for details).
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values of WS. Similarly, poorly contrasted rocks might be seen as
‘‘smooth sediments” for too low values of NG. The optimal separa-
tion between classes has therefore to be balanced with the choice
of textural computation parameters. Systematic tests are carried
Please cite this article in press as: Blondel Ph, Gómez Sichi O, Textural
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for NG = 2n (with n varying from 3, i.e. 8 possible grey levels, all
the way to the full dynamic range available), WS varying from 10
to 80 pixels by steps of 10 pixels, and SZ ranged from 10 to
(WS � 10) by steps of 5 pixels. In the entropy/homogeneity feature
analyses of multibeam sonar imagery from Stanton Banks, ..., Appl
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space, it is important that the different clouds of points be well
separated, but that there still is enough variation to identify differ-
ences within each facies/potential habitat type.

2.3. Classification of textural indices

The optimisation of the textural computation parameters pro-
duces (generally) one or (sometimes) several combinations of (NG,
WS, SZ) values for which the Training Zones can be well separated
from their entropy and homogeneity values alone. The next step of
TexAn is then to extend these calculations to the entire image, calcu-
lating entropy and homogeneity for each point in the dataset and
classifying them into different regions or clusters, which then have
to be identified and associated to image facies and processes on/in
Fig. 2. Top: Multibeam imagery from Stanton Banks provided as part of the MESH datase
visible nadir (note that a few lines cross at sub-perpendicular angles) The areas selected
draped on bathymetry.

Please cite this article in press as: Blondel Ph, Gómez Sichi O, Textural
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the seabed. Different algorithms have been used, ranging from fea-
ture-space guided clustering [10,17] to classification using Look-Up
Tables for specific objects (e.g. mines in [11]) and unsupervised clas-
sification algorithms like ISODATA [7]. Because of the higher control
it allows on the different processing parameters, more recent appli-
cations have tended to use the K-Means algorithm.

K-means clustering is a rapid and simple method to partition a
feature space [21]. Here, it aims at dividing the individual measure-
ments of entropy and homogeneity into several mutually exclusive
clusters. It works iteratively by minimising the mean of the distance
between each sample and the nearest cluster centre, moving mea-
surements between clusters until convergence. The points in the
clusters will be as close as possible, whilst the distance between
clusters will be as large as possible. Several metrics can be used
t. High acoustic reflectivity is coded as dark. Bottom left: overlaid track lines with a
as Training Zones are shaded in grey. Bottom right: 3-D view of multibeam imagery

analyses of multibeam sonar imagery from Stanton Banks, ..., Appl
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for the distance (e.g. Mahalanobis and Euclidean) but our tests
showed that a simple Euclidean metric was sufficient for this appli-
cation. The use of other metrics would require a proper assessment
of how physically appropriate they are for the type of data used. The
K-Means algorithm is particularly suitable for clustering large
amounts of data. It is made faster here by using initial values for
the cluster centroids calculated using a random sample of 10% of
the dataset. The total number of iterations necessary usually does
not exceed 100 until convergence. The initial number of classes
should be commensurate with the expected number of terrains to
be classified. Adequate provision should be made for ‘‘mixed” clas-
ses, ‘‘unexpected” classes, etc. After K-means clustering, contextual
editing can combine some of these classes if warranted by the
application and supported by the ground-truth or other data. For
sidescan imagery classification, the number of initial classes is gen-
erally close to the final number of distinct terrains. For multibeam
imagery, the few examples so far ([19,20] and present study) seem
to indicate that the number of initial classes should be substantially
larger before reduction through contextual editing.
3. Application to multibeam imagery

3.1. Brief presentation of the dataset

The MESH dataset consists in multibeam bathymetry and
imagery from the Stanton Banks and is presented in more de-
Fig. 3. Training Zones selected in representative portions of the imagery. Each image
measurements remains statistically significant. These Training Zones are used to identif
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tails in Brown et al. (this issue). It was collected during a mul-
tibeam echosounder survey of the Stanton Banks by R/V Celtic
Explorer in 2005, with a Kongsberg Simrad EM-1002 sounder,
hull-mounted and operating at a frequency of 93–95 kHz [22].
The multibeam data were processed with the CARIS HIPS sys-
tem, accounting for sound velocity variations, tides and basic
quality control. The image is affected by a few artefacts, such
as striping (noted in [22] but beyond immediate correction
during processing). Imagery at the nadir has not been corrected
either: regular lines with very high acoustic variability are vis-
ible along all tracks. The multibeam dataset was supplemented
in summer 2006 with a ground-truthing cruise by R/V Corystes,
which gathered a series of still photographs from the seabed in
selected areas. The processed imagery was supplied as a Geo-
TIFF file, covering an area of approximately 8 by 9 km with a
resolution close to 7 m/pixel (Fig. 2). This mosaic image, com-
bining the different (already processed) survey lines, was used
as input throughout this entire study. It shows a series of rock
outcrops and plateaus (dark features in the centre of the im-
age), generally less than 80 m higher than the surrounding sed-
iments (light features in the image). The outcrops are incised
by gullies and crevices, often filled in with sediments. The gen-
eral background depths vary from 120 to 160 m. Ground tru-
thing reveals that the SE sediments are made of mud, those
in the SW of sandy mud and sand with pebbles closer to the
outcrop.
is 100 � 100 pixels wide, ensuring the number of derived entropy/homogeneity
y the optimal computation parameters for textural analyses with TexAn.

analyses of multibeam sonar imagery from Stanton Banks, ..., Appl
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3.2. Training Zones

The selection of Training Zones in the mosaic image was per-
formed before the ground-truthing exercise, and the different areas
(highlighted in grey on Fig. 2) were chosen so as to cover represen-
tative sections of the entire multibeam image. Fig. 3 presents them
in detail. Each Training Zone covers a square area of 100 � 100 pix-
els, ensuring the number of points for textural analyses varies from
8100 (for a window size of 10 pixels) to 1600 (for a window size of
60 pixels) and still remains statistically significant. Each zone is la-
belled with a generic description, sometimes just referring to its
morphological appearance (e.g. ‘‘branch” or ‘‘ripples”) to avoid pre-
mature interpreting. The Training Zone labelled ‘‘Sediments #1”
was taken in the NW corner of the multibeam image, and corre-
sponds to the shallow sediments. Another Training Zone, labelled
‘‘Sediments #2”, was taken in the SE corner of the image, opposite,
to look at the acoustic textures of the deeper sediments (later
interpreted as mud during the ground-truthing exercise). Two
Training Zones, respectively labelled ‘‘rock #1” and ‘‘rock #2”, were
taken in the outcrops in the centre of the image. The former corre-
sponds to pinnacles (visible in the 3-D view draped over bathym-
etry: Fig. 2) and shows some degree of acoustic contrasts. The
latter is poorly contrasted and shows a dark, mottled texture; it
corresponds to the more rounded outcrops visible in the 3-D view
of Fig. 2. Faint marks, tentatively interpreted as trawlmarks from
their acoustic patterns and morphology, are visible in the image
and two examples were taken as Training Zones (respectively la-
belled ‘‘mark #1” and ‘‘mark #2”). Although they occur in exactly
the same sediments as the Training Zone ‘‘sediments #2”, they
Fig. 4. Entropy-homogeneity values calculated for the Training Zones presented in Fig. 3.
systematically varying the number of grey levels NG, the size of the computation w
electronically). (For interpretation of the references in colour in this figure legend, the r
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were deemed interesting to investigate whether the perturbations
induced by the trawlmarks could be detected from entropy and
homogeneity variations. Another Training Zone (‘‘branch”) was ta-
ken in the area of ravines at the bottom of the outcrops, in the SW
of the image. The southern end of the central outcrops is marked
by a series of mottled acoustic patterns, presumably associated
to changes in the sediments (sand/mud proportions), correspond-
ing to the Training Zone labelled ‘‘ripples”. Finally, the easternmost
outcrop and its surrounding sediments were selected as a ‘‘combi-
nation” Training Zone, labelled ‘‘outcrop”.

Systematic tests on the number of grey levels NG, the size WS of
the computation window and the inter-pixel displacement SZ show
an optimal separation for NG = 64, WD = 40, SZ = 25 (Fig. 4). The im-
age is actually smoothed by using less grey levels than its full dy-
namic range and the speckle visible in some areas is filtered out
from the textural calculations. Using more grey levels (e.g. 128 or
256) was shown to increase significantly the computation times,
but not the quality of the overall classifications. The size of the com-
putation window is commensurate with the scale of the structures
visible on the image, and the inter-pixel displacement is close to
WS/2, as seen in similar studies. With these parameters, there are
3600 individual measurements of entropy and homogeneity for
each Training Zone. All sample areas can be clearly distinguished
(Fig. 4). The zone labelled ‘‘rock #2” shows very low entropies
and homogeneities; it was noted that the Training Zone was poorly
contrasted (analysis reveals its grey levels are in fact mostly close to
saturation). Sediments (in green) show large variations in homoge-
neity (i.e. the amount of local similarities) and smaller variations in
entropy. They are clearly separated from the pinnacles (yellow) and
The optimal separation of the Training Zones in this feature space were obtained by
indow WS and the inter-pixel displacement SZ (a full-colour version is available
eader is referred to the web version of this article.)

analyses of multibeam sonar imagery from Stanton Banks, ..., Appl



Ph. Blondel, O. Gómez Sichi / Applied Acoustics xxx (2008) xxx–xxx 7

ARTICLE IN PRESS
outcrop (red). The faint trawlmarks on the seabed (in grey) can even
be distinguished: their entropy/homogeneity values are smaller,
but lie on the same trend. The ‘‘ripples” (light blue) (interpreted
as varied sediments) are closely associated texturally to the other
types of sediments, whereas the ‘‘branch” (blue) (associated to
the sediment-filled ravines) are closer to the ‘‘outcrop” Training
Zone (in red). The latter shows high variations in entropy and
homogeneity, with characteristic ‘‘stripes” in the feature space cor-
responding to the boundary between the outcrop and the surround-
ing sediments. As the sliding computation window encompasses
more of the outcrop, or more of the sediments, it will vary between
Fig. 5. TexAn classification (full-colour version available electronically). Top: fully clas
through K-means and contextual editing (see text for details). Note that the colour sche
space diagram showing the distribution of classes according to their entropy/homogene
nadir lines and image boundary superimposed on the TexAn classification, showing the
references in colour in this figure legend, the reader is referred to the web version of th
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the two textural end-members. More could be said at this level
about the actual values (and extents) of entropy and homogeneity
for each Training Zone, but the objective of optimising the compu-
tation parameters to distinguish the Training Zones has been
achieved, and this can now be used on the entire image.

3.3. Texture-based classification

Entropy and homogeneity are now computed for every pixel in
the mosaic image, using the optimal computation parameters
identified in Section 3.2. K-means clustering is used in the manner
sified image: each colour corresponds to one of the 20 textural classes identified
me is different from that used for the Training Zones in Fig. 4. Bottom left: feature-
ity values. Points in grey correspond to the boundaries of the image. Bottom right:
importance of full processing to refine the classification. (For interpretation of the
is article.)

analyses of multibeam sonar imagery from Stanton Banks, ..., Appl
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outlined in Section 2.3. Initial clustering in 14 classes [19] did not
prove conclusive, as high levels of saturation in some areas and
near-nadir artefacts induced abusive grouping of some terrains. In-
stead, 40 classes were initially created, in 98 iterations with a final
convergence distance of 0.0. Some of them, corresponding to inter-
mediate textures (i.e. boundaries and edges of image) were merged
through contextual editing, and the final result of 20 classes is pre-
sented in Fig. 5. The entropy/homogeneity values of each cluster
centre are clearly distinct, and they are presented in Table 1 with
preliminary analyses of the different types of textures.

TexAn can clearly distinguish between the different terrains
present in the image. The feature-space plot (Fig. 5, bottom left)
shows the colour scheme adopted for each entropy/homogeneity
cluster. The grey classes comprise only 6.4% of the image, despite
their high entropy/homogeneity spread. They are associated to
the edges of the multibeam image (as even pixels close to the edge
were analysed), areas with no data (gaps in the mosaic) and a cou-
ple of very small, completely saturated areas. Classes coloured in
dark green (lowest entropies, lowest homogeneities) correspond
geographically to the outcrops, whose acoustic patterns show var-
iable contrasts (as seen in the ‘‘rock #2”Training Zone). Lighter
shades of green (slightly higher entropies and significantly higher
homogeneities) correspond to sediments of increasing textural
roughness, generally placed on the slopes of the outcrops and be-
tween the SE nadir lines. Increasing entropies and homogeneities
(orange/brown/ochre tones) are associated to low-contrast bound-
aries between morphological regions. Classes coloured in purple to
red tones relate to high-contrast boundaries and acoustically more
contrasted sediments, either because of their roughness or because
they are also affected by nadir artefacts. With lower entropies but
similar homogeneities, yellow and dark yellow colours correspond
to sediment infill within the ravines, and sediment ponding within
the top of the different outcrops, generally in topographically
rough terrain (hence with more variations in acoustic backscatter).
With the highest entropies and homogeneities, a clearly distinct
textural class, coloured in blue, is generally close texturally to
the ‘‘branch” Training Zone. It is interpreted as ravines and gullies.
The TexAn classification shows a few artefacts: for example, the
wide nadirs are not classified properly (as expected). Better pro-
cessing of the original image, by removing the influence of nadirs,
should remedy to it. The faint trawlmarks visible in the image were
distinguishable in the entropy/homogeneity feature space from the
Table 1
Entropy (E) and homogeneity (H) for the centres of the 20 data clusters resulting from K-

E H Rough interpretation

92 62 Acoustically very homogeneous (generally close to saturation
113 84 Acoustically very homogeneous (close to saturation?) – most
124 99 Sediments, including at base of slopes, slightly rougher textu
134 111 Sediments including at base of slopes
142 123 Acoustically reflective sediments on terrain becoming roughe
148 133 ‘‘Wavy” sediments: slightly rough textures (including on top
150 148 Rough terrain (outcrops)
153 182 Sediments, including at the base of slopes in large gullies
157 141 Texturally homogeneous sediments: slightly rough textures (
159 162 Rough terrain (outcrops) (textures become rougher)
164 152 Sediments on fractured terrains, including on rough terrain
168 175 Rough terrain (outcrops) (rougher textures)
171 163 Acoustically reflective sediments (with nadirs included in the
172 193 Sediments at base of slopes in topographically rough terrain
179 175 Texturally rougher sediments
179 218 Sediments at heads of crevaces/gullies
185 186 Acoustically contrasted sediments (nadir + on slope boundari
190 197 Acoustically contrasted sediments (nadir + on slope boundari
195 208 Acoustically contrasted sediments (nadirs + higher on slopes)
199 225 Ravined terrain (at all depths) (texturally and morphological

The rough interpretations are based on examination of the entire multibeam dataset an
entire image area, rounded up to the first decimal.
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surrounding sediments (Training Zones ‘‘mark” vs. ‘‘sediments”).
But these differences are very subtle, and in the course of K-means
clustering, these regions are merged. A study interested in the
trawlmarks themselves should start with a higher number of clas-
ses, or maybe even initialise one of the starting classes with the
mean entropy/homogeneity values of these Training Zones.

4. Discussion

Overall, the TexAn classification works well, and the different
types of terrains can be recognised fairly well from their acoustic
textures. As it was made available after processing only, the local-
ised ground-truth (see Fig. 2 of [8]) could not be used to define
the Training Zones. It was, however, used to refine some of the
interpretations and compared well with what can be deduced from
acoustic textures. As interpretation of sonar imagery is increasingly
carried out quantitatively with computers, the comparison with
qualitative and visual interpretation is often used by non-special-
ists as a quick ‘‘measure” of how well a particular scheme works.
However, the purpose of a real acoustic classification system should
not be to emulate, in a visually pleasing manner, what a skilled
interpreter could achieve, but to reveal additional patterns leading
to a deeper analysis of the sonar imagery. Because it quantifies sec-
ond-order statistics, TexAn does reveal differences in acoustic tex-
tures which can then be assigned to specific processes. Examples
in this study included variations in sediments across the slopes of
the outcrops (light green shades in Fig. 5). As hinted by ground-tru-
thing, these subtle textural variations seem related to increasing lo-
cal slopes and micro-scale roughness (e.g. rougher sediments, then
small gravel, then pebbles/cobbles, and then talus).

Most uses of TexAn to date were with sidescan sonar imagery,
and it is worth discussing the differences with multibeam sonar
imagery and their potential impact on classification results. Side-
scan instruments image a wide swath of seabed, with pixels
across-track corresponding to slowly and continuously varying
incidence angles [23]. These angles depend on the height of the so-
nar and its tilt; because sidescan sonars are usually flown close to
the seabed, these incidence angles will be low and nearly grazing.
Conversely, multibeam sonars are usually hull-mounted and hence
higher above the seabed. Incidence angles will be high and vary by
steps, because of beamforming at reception [24]. The way back-
scatter is derived (e.g. from mean energy or from snippets) will
means and contextual editing and presented as coloured classes in Fig. 5

Area (%)

and/or with very poor contrasts), corresponding to the outcrops 0.4
ly very flat areas 1.7
res 3.3

4.2
r (topographically) 5.7

ographically rough terrain) 7.1
3.0
1.4

including on slopes) 6.7
3.5
7.3
3.1

0computation window + on slope boundaries) 7.2
(talus? boulders?) 2.0

8.3
0.9

es) 9.4
es) 12.2

8.3
ly close to the ‘‘branches” Training Zone) 4.5

d refined in the text using available ground-truth. The areas are percentages of the
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also influence the local variations. These factors imply that compu-
tation windows will correspond to smaller angular variations in
multibeam imagery, i.e. the textures will be more accurate repre-
sentations of the seabed processes. But they also imply that the
non-continuous variations in high incidence angles (potentially
amplified by the processing) can yield artificial grey-level contrasts
[25] and create more complex acoustic textures (i.e. additional
variations in entropy and homogeneity).

One clear advantage of multibeam sonars over sidescan sonars
is the constant co-registration of bathymetry and imagery, en-
abling the correction for true incidence angles [25] or at least the
removal of the angular dependence of backscatter by referencing
to a common angle [26–28]. This technique would also remove
the high variations close to the nadirs, which greatly affect the
present dataset (Fig. 2). Processing (and mosaicking) parameters
have an important effect on resulting interpretation or quantitative
analysis (e.g. [20,29]). Variations within individual swaths have
been compounded here with the presence of tracks at acute angles
to each other. Their mosaicking should account for the differences
in imaging geometries, as it is not clear which part of the image
was imaged from which direction: this could have been easily cor-
rected when merging swaths referenced to a common angle. None
of this reprocessing was performed here, as it was beyond the main
objective of this study, namely the test of textural analyses on mul-
tibeam imagery. Although this affected the results of textural anal-
yses, especially in flat, smooth sediments (Fig. 5), the main regions
in the image could still be clearly delineated, and variations in
some seemingly homogeneous regions (e.g. top of outcrops and
sedimented slopes) could be revealed.

5. Conclusions

TexAn, a textural analysis technique, has been well validated on
sidescan sonar imagery from a variety of contexts, including
habitat mapping. Acoustic textures are quantified with Grey-Level
Co-occurrence Matrices (GLCMs) and two indices, entropy and
homogeneity (Section 2). These measurements can be merged into
statistically meaningful groups with K-means clustering in partic-
ular. TexAn has been applied to a multibeam dataset acquired dur-
ing the MESH project over Stanton Banks on the Irish continental
shelf (Section 3). Optimisation of the processing parameters shows
that a reduced number of grey levels (64, in this case) is sufficient,
that the size of the computation window is commensurate with
the scale of the structures visible on the image, and the inter-pixel
displacement is close to WS/2, as seen in similar studies. Contex-
tual editing is used to regroup obviously associated classes, yield-
ing a final of 20 texturally different classes. Entropy and
homogeneity variations are consistent with those expected from
the Training Zones. TexAn can clearly distinguish between the dif-
ferent types of terrains and reveals in particular subtle variations in
slope sediments. This is consistent with still photographs from the
relevant portions of the seabed.

Because it was originally developed for a different type of sonar
imagery, there are some limits to the use of TexAn with multibeam
backscatter. The main one is the quality of the input data: unpro-
cessed angular variations and the intersections of swaths at signif-
icant angles all limit the accuracy of the classification. But
multibeam sonars provide some very positive points too. It was ob-
served in Section 4 that subtle textural variations are related to
increasing local slopes (i.e. the second derivative of the bathymetry)
and to micro-scale roughness. This hints that classification might be
improved by incorporating first-order statistics and depth-related
information. Multi-dimensional clustering techniques exist to iden-
tify the optimal parameters (e.g. local contrast and slope variations)
and they will need to be implemented cautiously, to ensure physi-
Please cite this article in press as: Blondel Ph, Gómez Sichi O, Textural
Acoust (2008), doi:10.1016/j.apacoust.2008.07.015
cally important variations in acoustic patterns are not lost in com-
parison with statistically more important background features.
They will also need to be implemented transparently, to ensure that
the physical meaning of these variations can still be assessed. First-
order statistics can for example vary with the level of processing of
the multibeam imagery, and this needs to be accounted for. This ap-
proach had shown promises in earlier work (Micallef and Blondel,
unpublished, 2006) using sidescan imagery and multibeam
bathymetry. The exact and accurate co-registration of imagery
and bathymetry offered by multibeam sonars, along with the cali-
bration of the backscatter measurements, make this approach more
attractive for multibeam-only datasets.

This study is one of the first applications of TexAn analyses to
multibeam backscatter. It does not pretend to be perfect, and more
work needs to be done. Nonetheless, the results from unsupervised
classification of entropy/homogeneity measurements using K-
Means match well concurrent bathymetric data and later visual
observations. Textural analyses successfully detect faint marks
and distinguish the different types of seafloor, including variations
within sediments, rocky outcrops and gullied terrains. The success-
ful translation from sidescan to multibeam imagery is promising
and opens new avenues for continental shelf mapping, and in par-
ticular habitat mapping.
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