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Abstract
This review explores the dynamics of two-dimensional electrons in magnetic potentials that
vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous
magnetic fields relates to important fundamental problems in the fractional quantum Hall effect,
superconductivity, spintronics and graphene physics and spins out promising applications which
will be described here. After introducing the initial work done on electron localization in
random magnetic fields, the experimental methods for fabricating magnetic potentials are
presented. Drift–diffusion phenomena are then described, which include commensurability
oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then
review quantum phenomena in magnetic potentials including magnetic quantum wires,
magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein
tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This
covers spin filtering by magnetic field gradients and circular magnetic fields, electrically
induced spin resonance, spin resonance fluorescence and coherent spin manipulation.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The use of spatially varying magnetic fields can be traced
back to the measurement of the magnetic moment of silver
atoms by Stern and Gerlach. Their experimental set-up used
an electromagnet fitted with asymmetric pole pieces to produce
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a macroscopic magnetic field gradient varying over distances
of centimetres. Conversely, magnetic fields that vary on
atomic scales are obtained with magnetic impurities. The
action of magnetic impurities is studied within the Kondo
effect. The study of magnetic fields varying on the scale of
the electron mean free path is an active field of research that
has developed over the past decade. This is in part because
recent technological advances have allowed the fabrication
of nanomagnets with well defined shapes and because of
progress in the growth of high mobility two-dimensional
electron gases (2DEGs). The impetus for the study of
magnetically modulated 2DEGs arose from the problem of
electron localization in a random magnetic field. The question
is to determine whether the wavefunction of 2D electrons is
localized or extended in the presence of a random magnetic
field with zero average. The problem is closely related to weak
localization in random electrostatic potentials. Electrostatic
disorder is known to localize the electron wavefunctions in two
dimensions making the 2DEG an insulator at 0 K. Applying
a homogeneous magnetic field (B) to the 2DEG has the
effect of breaking the time reversal symmetry of clockwise
and anticlockwise interference paths. When Landau levels
form, all electronic states remain localized except for a narrow
band at the centre where metallic conduction takes place. A
random magnetic field with zero average breaks time reversal
symmetry locally and randomly. The disruption of extended
states by the random potential a priori provides a good reason
to expect electron localization and an insulating behaviour
in the random magnetic field [1–3]. Zhang and Arovas [4]
however pointed to the existence of magnetic edge states at
the boundaries between positive and negative magnetic field
domains [5]. These states tunnel through saddle points of the
random magnetic potential and percolate through nodes of the
network to form globally extended states. Hence, it appears
that the 2DEG modulated by a random magnetic field is in fact
a metal, a result supported by numerical simulations [6–9].

Quantum transport in quasi-random magnetic fields has
been investigated experimentally when the correlation length
of magnetic fluctuations is larger than the electron mean free
path [10]. The experiment thus departs from the theoretical
scenario considered above. Instead, the 2DEG behaves as
a network of diffusive magnetic domains with their own
local Hall resistivity. In this case, theory predicts a V-
shaped magnetoresistance ρxx ∝ |B| [11], which is confirmed
experimentally [10]. Magnetic field profiles varying on scales
smaller than the mean free path were first produced by
patterning type II superconductors on top of 2DEGs [12]. In
this case, the vortex lattice threads the 2DEG with a hexagonal
array of magnetic spots separated by 50 nm/[B(T )]1/2 (Al
films). Small angle deflection of ballistic electrons by the
magnetic spots gives a positive magnetoresistance. Electron
diffraction is observed when the wavelength of Fermi electrons
is tuned to the spacing between vortices. Geim et al [13]
demonstrated this effect by detecting a maximum correction to
the Hall resistance under diffraction conditions. Over the past
decade and a half, magnetic field profiles of high amplitude and
zero average have been obtained. The electron and electron
spin dynamics in these potentials will be reviewed here.

The paper will provide several examples of the importance
of magnetic edge states for both fundamental physics and
applications. It describes milestone results from the first
demonstration of lateral magnetic superlattices to the coherent
control of the electron spin.

The review is organized as follows. Section 1 introduces
the problem which motivated the study of magnetically
modulated 2DEGs; section 2 reviews the experimental
methods used for applying magnetic modulations to 2DEGs;
section 3 describes semiclassical transport anomalies due
to drift–diffusion processes; section 4 focuses on quantum
mechanical properties; section 5 reveals the advantages
of using fringing magnetic fields for manipulating the
electron spin and in particular the possibility of activating
spin resonance by driving a direct current through a
magnetically modulated 2DEG. Section 6 discusses prospects
and applications.

2. Experimental strategies for making
inhomogeneous magnetic fields

2.1. Micromagnetic and superconducting elements

One way to obtain a microscopically inhomogeneous magnetic
field is to fabricate micromagnets in the proximity of a 2DEG.
The stray magnetic field applies a local Lorentz force that
deflects ballistic electrons. The magnetic modulation profile
can be calculated to an excellent degree of accuracy [14]
provided the magnetization M is homogeneous. Uniform
magnetization is obtained by using hard uniaxial magnets
such as SmCo5 or by saturating the magnetization with an
external magnetic field. The dimensions of micromagnets are
otherwise measured to a high degree of accuracy from AFM
imaging. The thickness of the buffer layer separating the
2DEG from the micromagnet is known to within an atomic
monolayer. These data allow the stray magnetic field at the
site of the 2DEG to be calculated accurately. Consider for
instance the one-dimensional magnetic superlattice shown in
figure 1(a). The grating of cobalt finger gates modulates
the GaAs/AlGaAs heterojunction set a distance z0 beneath
the surface. The stray magnetic field emanating from a
periodic array is easily obtained from Fourier transformation
of Maxwell’s equations [15, 16]. One obtains

B1,x(x, z0) = μ0 M
hd

a

∞∑

n=1

qn F(qn)e
−qn(z0+h/2) sin(qnx − θ),

B1,y(x, z0) = 0, (1)

B1,z(x, z0) = μ0 M
hd

a

∞∑

n=1

qn F(qn)e−qn (z0+h/2) cos(qn x − θ),

where qn = 2πn/a, a is the period of the array, h the height
of the cobalt fingers and d their width, θ is the tilt angle of the
magnetization and

F(qn) = sin(qnd/2)

(qnd/2)

sinh(qnh/2)

(qnh/2)
, (2)

is the form factor of rectangular stripes. Since electron motion
is confined to the plane, magnetoresistive effects will only
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Figure 1. (a) Cobalt finger gates at the surface of a 2DEG. (b) Magnetic modulation profiles at different tilt angles of the magnetization.
(c) MFM image of the cobalt grating magnetized along the short axis of the stripes, in the plane of the 2DEG. The magnetic poles appear as
the black lines. (d) MFM image of the grating magnetized along the long axis. The magnetic poles are absent. Parameters: a = 400 nm,
d = 200 nm, h = 160 nm and z0 = 90 nm.

depend on the perpendicular magnetic field component, B1,z ,
which is plotted in figure 1(b). When the magnetization rotates
from normal to in-plane (‖ x), the magnetic field modulation
changes from rectangular to triangular shape. At saturation,
the magnetization of cobalt is μ0 Ms = 1.82 T, which gives
a modulation amplitude of ±0.3 T. The magnetic modulation
can be switched off by magnetizing the grating in the y-
direction. This device is very useful to the experimentalist
for demonstrating the effects of the magnetic modulation. The
MFM images of the grating are displayed in panels (c) and (d)
when the magnetization is respectively along the short axis and
the long axis of the stripes. Note that the formation of magnetic
poles in the former case corresponds to the situation where a
magnetic modulation is applied.

Superconducting elements may also be used to screen
the applied magnetic field using the Meissner effect. The
screening mechanism is however complicated by the fact
that most type I superconductors, such as lead, exhibit type
II superconductivity when laid in thin films. Below the
first critical field, Bc1, the superconducting element is a
perfect diamagnet with magnetization given by μ0 M =
−B . The stray magnetic field emanating from a 1D
superconducting grating is obtained by substituting μ0 M with
−B in equations (1). Between the first and the second
critical field, vortex lines penetrate from the edges of the
superconductor to weaken the modulation. The strength of
the magnetic modulation decreases with increasing B until
it vanishes at Bc2. When Bc1 < B < Bc2 the pinning of

vortices plays a crucial role as the sign of magnetic modulation
depends on whether the external magnetic field is ramped up
or down. When the magnetic field is ramped down, the flux
lines pinned inside the superconductor cannot easily migrate
outside. Conversely, when the magnetic field is ramped up
the flux lines cannot easily penetrate inside. The pinning of
vortices is responsible for a change in the phase of the magnetic
modulation by π between sweep up and sweep down.

The generation of fringing magnetic fields by driving
a current through a metal stripline has been considered
theoretically [18] and is implemented in MRAM technology. It
is however not an effective way of producing inhomogeneous
magnetic fields because semiconductor heterojunctions impose
a buffer layer between the stripline and the 2DEG, over which
the stray magnetic field decays to negligible levels.

Magnetic modulations produced by the above methods are
generally accompanied by parasitic electrostatic modulations.
These arise from the build-up of strain at the metal–
semiconductor interface as the sample is cooled down to
cryogenic temperatures. Polar semiconductors such as GaAs
develop a piezoelectric potential of the order of the millivolt.
Magnetostriction in the ferromagnet may also modify the
piezoelectric potential to the extent where the magnetization
curve becomes detectable by voltage measurements alone.
This effect is shown in figure 2, where a 2D hole gas is
modulated by a dysprosium stripe. The piezo-voltage exhibits
a hysteresis curve at 1.7 K that resembles the magnetization
curve of dysprosium. The thermal activation of holes at
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Figure 2. The piezo-magnetostrictive effect. A finite piezoelectric
voltage is measured across a 2D hole gas modulated by a dysprosium
finger gate. The stripe, at the centre of the Hall bar, applies variable
strain to the semiconductor through magnetostriction. The
magnetization curve of dysprosium is detected in the piezo-voltage.
No current is applied. The finger gate is magnetized along its short
axis and in the plane.

20 K is sufficient to screen the piezoelectric potential causing
the hysteresis curve to vanish. Taking the magnetostrictive
constant of dysprosium as εy = 10.6 × 10−3 and the valence
band deformation potential as � = 2.7 eV, the maximum
piezo-voltage is Vy = 1.6 mV. The residual electrostatic
modulation may be attenuated by aligning stripes with the
[100] crystallographic axes or by equalizing the distribution of
strain with a metal gate.

2.2. Non-planar two-dimensional electron gases

An alternative method to obtain magnetic steps is to
overgrow GaAs/AlGaAs heterojunctions on non-planar sub-
strates [19–21]. The Hall bar in figure 3(a) incorporates an
etched facet on which the 2DEG was re-grown. The magnetic
modulation being the vector component perpendicular to the
2DEG, an external magnetic field applied in the plane will
give a modulation field which is finite in the facet and
zero elsewhere. Mendach et al [22] have extended this
idea to cylindrical 2DEGs—see figures 3(b)–(d). They have
micromachined a free standing 2DEG and rolled it up around a
cylinder to obtain a sinusoidal modulation. The electronic band
structure corresponding to this geometry has been calculated
by Foden et al [23]. Non-planar structures are attractive for
making arbitrarily large magnetic modulations.

2.3. Chern–Simons effective magnetic field

In the fractional quantum Hall effect near filling factor ν =
1/2, the system of strongly correlated electrons is equivalent to
non-interacting composite fermions with a well defined Fermi
surface. A composite fermion consists of an electron paired
with two flux quanta which oppose the applied magnetic field.

Figure 3. Inhomogeneous magnetic fields in non-planar 2DEGs: (a)
GaAs/AlGaAs heterojunction grown on a step etch and fabricated as
a Hall bar; (b)–(d) micromachined and rolled-up Hall bars.
Reproduced with permission from [22]. Copyright 2006, American
Institute of Physics.

The net effective field experienced by composite fermions
is Beff = (1 − 2ν)B . Since ν depends on the local
electron concentration ns(x) through ν(x) = ns(x)(h/eB), the
spatial modulation of the electron concentration is equivalent
to a spatial modulation of the effective magnetic field. The
observation of both commensurability oscillations [24] and the
channelling of composite fermions in snake orbits [25] have
given direct evidence for the effective modulation field.

3. Drift–diffusion transport phenomena

Now consider the magnetic superlattice of figure 1. The
electron mean free path l � 10 μm is larger than the period
of the magnetic field a = 400 nm. This makes transport
ballistic on the scale of about 20 superlattice periods. While
the local magnetic field bends electron trajectories, it imparts a
drifting motion in the direction perpendicular to the gradient of
magnetic field. This motion depends on initial conditions since
transport is ballistic. Resistance measurements by contrast are
performed with voltage probe spacings larger than the mean
free path. The measurement averages the drift motion over
the entire set of initial conditions, thus probing the diffusive
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Figure 4. Magnetoresistance of (a) cobalt and (b) nickel superlattices as a function of the perpendicular component of the applied magnetic
field, B cos θ : up sweep (full lines), down sweep (dash–dotted lines). The applied magnetic field is tilted by θ with respect to the normal to
the 2DEG. Parameters: a = 400 nm, d = 200 nm, h = 160 nm, z0 = 35 nm. The stripes are aligned with the [100] crystallographic axis,
i.e. at 45◦ from the cleaving edge of the (001) wafer.

regime. This section reports on drift–diffusion phenomena in
inhomogeneous magnetic fields.

3.1. Commensurability oscillations in the magnetoresistance

Commensurability oscillations in the magnetoresistance are
observed when the amplitude of the periodic magnetic
modulation B̃1 is weaker than the external magnetic field,
namely B̃1 < B . The total magnetic field B + B1,z(x) does
not change sign. The commensurability oscillations of cobalt
and nickel superlattices are shown in figure 4 at θ = 0◦. These
oscillations originate in the periodic enhancement of the drift
velocity of the cyclotron guiding centre. To understand this,
consider a cyclotron orbit of radius Rc = h̄kF/(eB) on the
Fermi surface (kF = √

2πns). The effect of the periodic
magnetic field is mostly felt at the edges of the orbit where
the electron spends a large amount of time in one magnetic
domain. When magnetic domains at the opposite edges of
the orbit have equal magnetic field, the cyclotron orbit is
closed and stationary. Otherwise, a difference in curvature
radii appears which sets the guiding centre of the orbit in
motion. Ramping up the external magnetic field reduces
Rc and induces oscillations of the diffusion coefficient δDyy .
These oscillations are periodic in B−1 like Shubnikov–de Haas
oscillations, but are essentially classical phenomena. The
maxima in δDyy correspond to maxima in ρxx . This prosaically
means that while an electron spends time drifting sideways,
the longitudinal resistance is high. Note that the periodic
modulation does not modify the ρxy component. This is
because an equal number of cyclotron orbits drift along y > 0
and y < 0. The averaging over all initial conditions means
that there is no net additional charge on the Hall probes. This

effect is also responsible for the absence of commensurability
oscillations in ρyy . The anisotropy in the diagonal components
of the resistivity tensor is one important difference between
the commensurability oscillations and the Shubnikov–de Haas
effect.

Magnetic commensurability oscillations were first ob-
served with 1D superconducting gratings [26], dysprosium
gratings [28] and nickel gratings [29]. The theory of the
oscillatory magnetoresistance was developed by Peeters and
Vasilopoulos [30] and Gerhardts [15] to extend the semiclassi-
cal results of Beenakker [31] to magnetic modulations. When a
periodic magnetic field B1,z(x) = B̃1 cos(2πx/a) is applied in
phase with an electrostatic potential V (x) = V1 cos(2πx/a),
the magnetoresistance is given by [30]

Rxx − R0

R0
=

[
akF

4π2

(
h̄ω1

EF

)2( l

rc

)2

+
(

V1

EF

)2( l2

a Rc

)]

×
[

1 − T/Ta

sinh(T/Ta)
+ T/Ta

sinh(T/Ta)

× sin2

(
2πRc

a
− π

4
+ φ

)]
, (3)

where l is the elastic mean free path, rc = (h̄/eB)1/2 is the
magnetic length, ω1 = eB̃1/m∗, ωc = eB/m∗, m∗ is the
electron effective mass, kF and EF are the Fermi wavevector
and Fermi energy, Rc = h̄kF/eB and 4π2kBTa = h̄ωcakF.
The phase of the commensurability oscillations is given by

tanφ = 2πV1/(akFh̄ω1). (4)

The first term in the left bracket of equation (3) is the amplitude
of the magnetic commensurability oscillations whereas the
second term relates to the electrostatic commensurability
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Figure 5. (a), (b) Magnetic flux pinning mechanism in a superconducting (Pb) grating. The Pb stripes screen the magnetic field on the way up
(a) and trap flux lines on the sweep down (b). The phase of the magnetic modulation changes by π between sweep up and sweep down.
(c) Magnetoresistance when B is swept up and down; (d) magnetic commensurability oscillations are seen in the difference between the
sweep up and sweep down curves. The oscillations vanish above the critical temperature of Pb (7 K). Inset: temperature dependence of the
cut-off magnetic field Bc. Parameters: a = 2 μm, d = 1 μm, h = 200 nm, z0 = 650 nm. Reproduced with permission from [26]. Copyright
1995 by the American Physical Society.

oscillations. In the ballistic regime, l/rc is much larger
than one. This explains why magnetic commensurability
oscillations can be observed despite the small amplitude of the
magnetic potential (h̄ω1 	 EF). The second square brackets
include the oscillatory term due to the guiding centre drift.
The phase of the oscillations varies between φ = +π/2 for
a pure electrostatic modulation and φ = 0 for a pure magnetic
modulation. This phase is determined by plotting the index of
oscillation minima i as a function of 1/B ,

i = 2h̄kF

eBa
− 1

4
+ φ

π
, (5)

to find the intercept φ/π − 1/4. An intercept value
of −1/4 indicates a pure magnetic modulation whereas
+1/4 suggests a pure electrostatic potential. Equation (3)
captures the key features of the experimental oscillations in
figure 4 and in particular the −1/4 phase. The experimental
oscillations however decay much faster at low field than the
dependence predicted by equation (3). This is partly because
of momentum scattering, which reduces the probability of
completing a cyclotron orbit as exp[−l/(2πRc)] and because
of electron–electron scattering [32]. Dampening effects aside,
equation (3) can estimate B̃1 from a fit of the amplitude of
commensurability oscillations [28, 29].

The commensurability oscillations obtained with super-
conducting stripes deserve special mention here in view of
the non-trivial mechanism yielding the magnetic modulation.

The experiment by Carmona et al [26] used Pb stripes
of thickness comprised between 100 and 200 nm (type II
superconductor). Figures 5(a) and (b) show the distribution
of magnetic flux lines when the magnetic field is ramped up
and down. The modulation has troughs below the stripes
and peaks between the stripes when the magnetic field is
ramped up. When the magnetic field is ramped down, the
difficulty in expelling pinned vortices from the superconductor
causes the phase of the modulation to change by π . Flux
pinning is responsible for the hysteretic behaviour of the
magnetoresistance in figure 5(c). The difference between the
sweep up and sweep down curves represents the magnetic
commensurability oscillations. This is plotted in figure 5(d).
By plotting the cut-off magnetic field of the oscillations as a
function of temperature (inset), one obtains the B–T phase
diagram of the superconductor. The non-hysteretic part of the
commensurability oscillations in figure 5(c) originates from the
build-up of strain underneath the stripes. The difference in
thermal expansion coefficients of the metal and semiconductor
induces a parasitic piezoelectric modulation with the same
period as the magnetic modulation [27].

The commensurability oscillations are fitted in figure 6(b)
to obtain the modulation amplitude that emanates from the
superconducting grating. The theory accounts for the phase
change of the modulation [26]. The amplitude of the magnetic
modulation is plotted in panel (a) as a function of the external
magnetic field. It peaks at 3 mT at the first critical field
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Figure 6. (a) The amplitude of the magnetic modulation applied by the Pb grating to the 2DEG. Inset: linear dependence of the maxima and
minima in �Rxx on 1/B. The slope increases ∝n0.5

s when a positive gate bias is applied to the 2DEG. (b) Fit of the magnetic
commensurability oscillations with theory. Reproduced with permission from [26]. Copyright 1995 by the American Physical Society.

(30 mT) and vanishes at the second critical field (120 mT).
The flux pinning mechanism was found to produce a magnetic
modulation as long as the stripe width is large compared to
the spacing between vortices. Gratings with narrower stripes
(0.5 μm) were studied and revealed no magnetic hysteresis—
despite the formation of clear electrostatic commensurability
oscillations. It is believed that smaller superconducting
elements are unable to sustain the gradient of magnetic flux
that is needed to effectively modulate the 2DEG.

3.2. Giant magnetoresistance of snake orbits

Now consider magnetic modulations of large amplitude B̃1 >

B . The total field B + B1,z(x) changes sign within the
superlattice period and hence subjects the 2DEG to an
alternation of positive and magnetic field domains. This
situation is achieved by tilting the external magnetic field with
respect to the normal to the 2DEG. This decreases the normal
component of the homogeneous field by B cos θ relative to
B̃1. B̃1 depends on the total magnetic field B through the
magnetization which varies as M = M(B)—see for instance
equation (1). In this way, the magnetic modulation may be
saturated at an arbitrarily small value of B cos θ . In the limit
of grazing tilt angles, θ = π/2, one obtains a spatially varying
magnetic field of amplitude 0.1–1.0 T with zero average.

The effect of tilting the magnetic field is shown in figure 4.
A V-shaped magnetoresistance develops at low magnetic field
when Bz < B̃1. This magnetoresistance deserves the label
of ‘giant’ magnetoresistance since �Rxx/R0 = 1800% (Co).
The width and height of the magnetoresistance of the nickel
sample are comparatively small, indicating a dependence on
the saturation magnetization. Commensurability oscillations
are seen to resume once Bz > B̃1. The value of Bz at the
transition from giant magnetoresistance to commensurability
oscillations is therefore useful as it gives a direct reading of
the modulation amplitude. As the tilt angle increases, the
positive magnetoresistance region widens: B̃1 increases from
30 to 140 mT (Co) and from 25 to 60 mT (Ni). What happens
here is that increasing the tilt angle allows the magnetization
to saturate before Bz reaches B̃1(M). At θ = 70◦, 80◦,
the magnetic modulation is already saturated by the time the

transition is reached. As a result, the transition does not shift
any more because Bz = B̃1(Ms). The value of B̃1 at saturation
can be calculated with equation (1). Using μ0 Ms = 0.51 T
(Ni) and μ0Ms = 1.82 T (Co), the calculated modulation fields
are B̃1 = 170 mT (Co) B̃1 = 75 mT (Ni). These values are in
agreement with the experimental values.

The V-shaped magnetoresistance is due to the formation
of open ‘snake’ orbits, which we now explain. Given that the
magnetic field Bz + B1,z(x) changes sign over one period, the
2DEG experiences alternate stripes of positive and negative
magnetic field. Between two magnetic domains, the Lorentz
force changes sign and redirects trajectories towards the
domain boundary [33]. Electrons thus undulate back and forth
in snake-like fashion as they propagate along contours of zero
magnetic field—see figure 7(a). The large magnetoresistance
arises from the guided motion of electrons which propagate
at velocities close to the Fermi velocity. To derive the
magnetoresistance of snake orbits, one first calculates the drift
velocity of an orbit that crosses the line of zero magnetic field
at angle φ:

vd � vF
sinφ

φ
. (6)

There exists a angle φmax where snake states break free from
the zero field contour and bifurcate into cyclotron orbits.
This is shown in figure 7(a). In the case of a sinusoidal
modulation of amplitude B̃1, φmax is given by the condition
cos[(π−φmax)/2] = Qlb, where Q = 2π/a, lb = √

h̄kF/(eb).
b = QB̃1 is the effective magnetic field gradient at the domain
boundary. For our cobalt superlattice, we find φmax = 43◦.
Cyclotron orbits at φ > φmax drift at a speed much slower
than the Fermi velocity and may be considered as stationary
compared to snake orbits. One therefore obtains the correction
to the diffusion coefficient δDyy =< v2

d > τ/2 by taking the
average over the bundle of snake orbits. The resistivity tensor is
then obtained from Einstein’s equation 
ρ = (Ne2 
D)−1, where
N = 4πm∗/h2. The longitudinal resistivity is

�ρxx

ρ0
= (2φmax/π)(μBz)

2, (7)

where μ is the mobility of the 2DEG. Figure 7(b) compares
the magnetoresistance of the cobalt superlattice (dotted lines)
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Figure 7. (a) Electron orbits calculated in the periodic magnetic field
of figure 1(b). At φmax, the dynamics bifurcates from snake orbits
localized to one period of the superlattice (vertical interlines) to
cyclotron orbits that span several periods. (b) Snake orbit
magnetoresistance calculated with equation (7) (full lines) and
experimental curves (dotted lines) for different angles θ . Reproduced
with permission from [17]. Copyright 1997 by the American
Physical Society.

to the solution of equation (7) (full lines). At low field
the quadratic dependence gives a satisfactory explanation of
the experiment. As B increases, the domains of negative
magnetic field shrink and disappear. Snake orbits disappear
(φmax = 0) at Bz = B̃1, leading to the collapse of the
related magnetoresistance. The angular dependence of the
magnetoresistance is fitted using a standard function for the
magnetization curve [17]. Given that the theory contains no
other adjustment parameter, the fit validates the snake orbit
hypothesis.

The semiclassical nature of snake orbits is revealed
by the temperature dependence of the magnetoresistance.
Figure 8(a) shows that the magnetoresistance remains finite
at room temperature (�1%). The decrease in �ρxx/ρ0 with
temperature is mainly due to the increase in background
resistance ρ0, which is activated by phonon scattering. The
width of the positive magnetoresistance is also independent of
temperature. This is consistent with the above interpretation
since B̃1 is expected to have no temperature dependence
as long as the temperature remains well below the Curie
temperature of the ferromagnet. The temperature dependence
of the magnetoresistance amplitude is shown in figure 8(b).
This exhibits a shoulder at 100 K, which represents the

crossover from ballistic to diffusive transport. When ωcτ < 1
the magnetoresistance depends inversely on Dxx (dotted line),
whereas at ωcτ > 1 it is proportional to Dyy (dashed line) [34].

3.3. Resistance resonance and Hall anomaly

Some dynamics effects are obscured in magnetic superlattices
by ensemble averaging. One now seeks these effects by
studying a single ferromagnetic stripe at the centre of a 2 μm
wide channel—see figure 9(a). By magnetizing the stripe
perpendicular to the 2DEG, one obtains a positive magnetic
field domain underneath the stripe, bordered by two domains
of negative magnetic field on the sides of the channel. The
magnetic field profile and the amplitude of the negative
magnetic step Bm are shown in the inset to figure 9(b) for Ni,
Fe and Dy stripes. The domain boundary supports two types of
magnetic edge states depending on the strength of the applied
magnetic field B relative to Bm. When B < Bm, snake orbits
drift along the edge. This lowers the edge resistivity (ρxx )
below the Drude resistivity, ρ0. Increasing B has the effect of
depinning snake orbits and subsequently increasing ρxx . This
explains the positive magnetoresistance seen at B < Bp in
figure 9(b). At B = Bm, the domains of negative magnetic
field vanish and the resistivity peaks at ρ0. When B > Bm, the
sum of the modulation field and the applied field is positive
everywhere. The magnetic boundary now supports cycloid
orbits that drift along the edge of the stripe. The guided motion
of cycloid orbits causes ρxx to drop sharply above the peak.
This explains the resistance dip seen at B > Bp in figure 9(b).

The resistance resonance effect is observed in figure 9(b)
for magnetic modulations of different strengths. The peak
shifts to higher field when Bm increases. However, for all
samples one finds that Bp is about 50% of Bm. Figure 9(c)
shows the Hall curve of the iron device normalized by the
Hall curve of the unmodulated sample. Here also a resistance
resonance is observed through the peak at 38 mT.

The resistance resonance and the Hall anomaly are
explained within the drift–diffusion picture. Although the
voltage probe separation (4 μm) is comparable to the mean
free path (l ∼ 4.5 μm), the magnetoresistance is identical with
a constant factor to that measured over distances of 4, 8, 16
and 32 μm [35]. One obtains the resistivity tensor of the single
stripe device as [35]

ρxx = ρ0
1

1 + 2 < v2
d > /v2

F

, (8)

ρxy = B

ens

ρxx

ρ0
, (9)

ρyy = ρ0 + (ρ0 − ρxx )(ωcτ )
2. (10)

Here ρ0 = h/[e2kFl] is the Drude resistivity, kF = √
2πns is

the Fermi wavevector and vF = h̄kF/m∗ is the Fermi velocity.
The magnetoresistance calculated with equation (8) is plotted
in figure 10.

The anomaly in the Hall resistance is now easily
explained. Equation (9) states that the ratio Rxy/R0

xy plotted
in figure 9(c) is equal to the longitudinal resistance normalized
by the Drude resistance, ρxx/ρ0. The Hall resistance must
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Figure 8. (a) Temperature dependence of the snake orbit magnetoresistance of a cobalt superlattice. (b) The channelling magnetoresistance
(full line) has two components: a component ∝Dyy that dominates below 100 K (dashed line) and a component ∝D−1

xx that dominates above
100 K (dotted line). Reproduced with permission from [34]. Copyright 1998, American Institute of Physics.

therefore detect the resistance resonance. The physical reason
for this resides in the inhomogeneity of the current distribution
caused by magnetic channelling. Snake orbits trap a significant
fraction of the Fermi surface at the centre of the channel. These
electrons lose the ability to move in two dimensions and are
unable to contribute to the Hall voltage. Magnetic channelling
thus decreases the Hall voltage relative to the Hall voltage of
the unmodulated 2DEG when B �= Bp. When B = Bp,
the channelled electrons are released e.g. by the depinning
of snake orbits and contribute to the Hall voltage. This gives
the peak observed in figure 9(c). One concludes that when the
magnetic confinement is strong enough to induce filamentary
currents, the Hall resistance measures the trapping and release
of electrons from magnetic edge states.

The resistance resonance effect and the Hall anomaly
have been investigated in a tilted magnetic field [36]. This
experiment is needed to ascertain the above interpretation,
in particular to determine whether the resistance peak might
not be simply due to the saturation of the magnetization.
Figure 11(a) plots the ratio Rxy/R0

xy as a function of Bz at tilt
angles varying between 0◦ and 82◦. The peak position stays at
a constant value of Bz (0.12 T). When plotted as a function of
the total magnetic field B , the peak shifts from B = 0.12 T
(θ = 0◦) to B = 2.4 T (θ = 82◦). Similarly, the peak in
ρxx occurs at a constant Bz rather than a constant value of
B . In fact, Bp increases by two orders of magnitude over the
range of experimental tilt angles. Recall that the magnetization
depends on the total magnetic field, M = M(B). If the
resistance peak were an artefact of the magnetization curve
such as the saturation of the magnetization, the peak would
occur at constant B (not Bz). The scaling of the peak with Bz

confirms the resonance condition B cos θ = Bm and validates
the magnetic edge state picture encapsulated in equation (8).
Two further remarks are necessary at this point. The variation
of Bm with θ was neglected as it is small—see figure 1(b).
Secondly, the magnetization rises sufficiently fast for snake
orbits to form from vanishing magnetic fields onwards.

Magnetic channelling is further demonstrated by the
temperature dependence of the magnetoresistance in fig-
ure 9(a). Dysprosium is a rare earth ferromagnet with a
Curie temperature of 85 K. Above 85 K, dysprosium has a
helical phase whereby spins organize in helices around the c-
axis. In this state, the magnetization averages to zero. The
effect of switching off the magnetization (modulation) can
therefore be studied by raising the temperature through the
ferromagnetic/helical phase boundary. Figure 11(c) shows that
�ρxx/ρ0 drops from 10% at 80 K to zero at 90 and 100 K.
These data show that the giant magnetoresistance arises from
the magnetic potential. The importance of having magnetic
potential that changes sign is demonstrated as follows. Quite
remarkably, ferromagnetic spin alignment can be recovered by
subjecting the helical phase to a magnetic field. Once the
magnetic field reaches a threshold BH, the magnetization jumps
from zero to saturation. The modulation thus jumps to Bm at
BH. Lawton et al [37] have shown that the total modulation
BH + B1,z(x) is always positive above 85 K. In other words,
snake orbits cannot form when the magnetization jumps to
saturation at B = BH. The observation of a residual peak at
BH in the 90 and 100 K curves, instead of a re-entrant positive
magnetoresistance, demonstrates that magnetic channelling in
a sign alternating magnetic modulation is the explanation for
the positive magnetoresistance seen below 85 K.

Reijniers and Peeters [38] have modelled single stripe
devices using the Landauer–Buttiker formula. They propose an
alternative explanation to the positive magnetoresistance. As
the stripe is magnetized, the number of quantum conductance
channels drops, which increases the longitudinal resistance.
Such a mechanism gives a peak at the saturation of the
magnetization.

3.4. Magnetic dots

Magnetic potentials allow pure specular reflection of ballistic
electrons. They are free from the edge roughness which causes

9
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Figure 9. (a) MFM image of a single dysprosium stripe on a 2 μm wide Hall bar. (b) The longitudinal resistance of devices with nickel
stripes, iron stripes, cobalt stripes and no magnetic stripe is obtained. Ba is perpendicular to the 2DEG. Inset: magnetic field profile of the Ni,
Co, Dy magnetic barriers calculated with equation (36). (c) Hall curve of the iron modulated device normalized by the Hall resistance of the
unmodulated 2DEG. Inset: Hall curves of modulated and unmodulated devices. Reproduced with permission from [37] and [35]. Copyright
2001 and 2000 by the American Physical Society.

diffusive scattering in electrostatic potentials. Magnetic dots
are therefore well suited to studying the regular and chaotic
dynamics which arises from multiple reflections on scatterers.
Magnetoresistance measurements on 2D arrays of scatterers
exhibit peaks that are associated with the stable orbits [39–41].
The other types of orbits are described as classically chaotic
since widely different trajectories result from small differences
in initial conditions. Periodic orbits are robust against the
electric field applied during resistance measurements. Chaotic
orbits are more easily blown away and give the low resistance
states.

Uzur et al [42] have reported novel B-periodic oscillations
in the magnetoresistance of a magnetic dot, see figure 12. Here
the dynamics of ballistic electrons at the disk boundary are
computed and the B-periodic oscillations are explained. The

existence of a set of orbits which are stable and periodic is
demonstrated. These orbits group into electronic shells made
of two orbits each which bounce n times on the dot perimeter.
Each shell survives up to a critical magnetic field Bn, where
both orbits merge before disappearing. The depinning field B1,
B2, . . . Bn, . . . of consecutive shells is found to occur at regular
intervals, which explains the periodicity of magnetoresistance
oscillations.

Consider the circular magnetic domain of radius R shown
in figure 13(a). The magnetic field is B1 inside the disk and
B2 outside. This approximates the exact magnetic field profile
shown in figure 12(a), which one obtains from equation (38).
The magnetic field gradient traps magnetic edge states around
the dot perimeter [43–45]. By requiring that edge states return
to their point of departure after one revolution, one obtains the

10
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Figure 10. Theoretical magnetoresistance calculated using the
drift–diffusion model, equation (8), for iron (full line) and nickel
stripes (dashed line). Ba is perpendicular to the 2DEG. Inset:
magnetic field profile across the 2 μm channel (full lines) and the
rectangular approximation used in the model (dash–dotted lines).
Reproduced with permission from [35]. Copyright 2000 by the
American Physical Society.

stable periodic orbits. Starting from the equation of motion,

v̇x = −ωc(r)vy, (11)

v̇y = +ωc(r)vx (12)

one assumes that at t = 0 the orbit crosses the disk perimeter at
O (x = 0, y = 0) with an angle ϕ—see figure 13(a). At a later
time tA, the orbit crosses the perimeter again at point A (xA,
yA). By setting the condition that (xA − R)2 + y2

A = R2, the
integration of the equations of motion gives the excursion time

tA outside the disk. The intercept coordinates are then deduced
as

xA = vF

ω2

2a2 sin ϕ[cosϕ − a2]
[1 − a2 cosϕ]2 + [a2 sinϕ]2

(13)

yA = vF

ω2

2a2 sin2 ϕ

[1 − a2 cosϕ]2 + [a2 sinϕ]2
(14)

where a2 = Rω2/vF and ω2 = eB2/m∗. The arc of circle (O,
A) defines an arc of angle θ2 given by cos θ2 = (R − yA)/R.
Similarly, the arc of trajectory (A, B) inside the magnetic
disk corresponds to angle θ1. One obtains θ1 by substituting
subscripts 2 → 1 in equations (13) and (14). In the case where
B1 and B2 are both positive, a periodic orbit will form about
the dot perimeter if the following condition is fulfilled:

n(θ2 − θ1) = 2π n = 1, 2, 3, . . . . (15)

Equation (15) is solved graphically in figure 13(b), where
θ2 − θ1 is plotted as a function of ϕ for three values of the
external magnetic field. For each value of n, equation (15)
admits two solutions at the intercepts between the θ2 −θ1 curve
and the 2π/n plateau. This indicates that there are two periodic
orbits that bounce n times on the magnetic boundary and form
the n shell. The periodic orbits within the n = 4 shell are
shown in figure 14(a). Increasing B from 0.15 to 0.2 T in
figure 13(b) has the effect of expelling the n = 3 and 4 shells
from the loop. At B = 0.25 T, the n = 7 shell is about to
be expelled from the dot etc. Therefore, the magnetic field
corresponding to the depinning of shells n = 1, 2, 3, . . . is
easily calculated as long as the parameters of the system are
known. Here we use ns = 9 × 1015 m−2, B1 = B + 0.55 T,
B2 = B − 0.05 T and R = 1 μm.

The depinning magnetic field is plotted as a function
of n in figure 13(b) (full lines) at three values of the
electron concentration corresponding to gate voltages of

Figure 11. (a) Hall resistance of a Dy device plotted as a function of the perpendicular component of the magnetic field B cos θ at different
tilt angles, θ . The Hall curves are normalized by the Hall resistivity of the unmodulated Hall bar, R◦

xy . Inset: Hall anomaly of magnetic
waveguides (grey area) plotted as a function of B for different tilt angles. (b) Longitudinal resistance of the Dy device; (c) temperature
dependence of the magnetoresistance of the dysprosium device. The magnetoresistance collapses at the Curie temperature of Dy (85 K).
Reproduced with permission from [36]. Copyright 2003 by the American Physical Society.
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Figure 12. (a) Magnetic field generated by a 2 μm diameter
dysprosium dot. The dot is magnetized perpendicular to the 2DEG
by a magnetic field of amplitude 0.4 T. Magnetic edge states bounce
around the circular magnetic field. (b) The magnetoresistance across
the 2 μm dot shows oscillations which are quasi-periodic in Ba.
Inset: Hall bar with 2, 3 and 5 μm diameter dots. Reproduced with
permission from [42]. Copyright 2004 by the American Physical
Society.

0.12, 0.16 and 0.24 V (ns increasing from 9.1 to 10.5 ×
1015 m−2). The positions of the oscillation minima in the
magnetoresistance (symbols) are in excellent agreement with
the theory. The theory also explains the increase in the
period of oscillations with decreasing electron concentration.
One therefore concludes that the semiclassical shell picture
explains the B-periodic oscillations. Similar oscillations occur
in 2 μm diameter antidots, providing confirmation that the
source of oscillations is at the boundary. Quite remarkably,
the amplitude of oscillations does not decrease much when
the number of bounces increases. In other words, momentum
information seems to be conserved after up to 25 bounces. One
interprets this as evidence that reflection on magnetic interfaces
is specular. This explains why these effects were not previously
observed in electrostatic dots.

4. Quantum phenomena

The band structures of electrons confined by 1D magnetic
potentials [5, 18, 45–50] and 2D magnetic potentials [51] has
been extensively described. Since quantum phenomena have
so far been reported in 1D modulations only, we will focus
on magnetic fields varying in one direction. Schrödinger’s

Figure 13. (a) Construction of the semiclassical orbits bouncing on
the edge of a circular magnetic field; (b) graphical solution of
equation (15).

equation becomes separable and can be solved as a one-
dimensional problem [18]. Consider the magnetic modulation
B1,z(x). The vector potential in the Landau gauge is 
A ≡
(0, Ay, 0), where Ay(x) = ∫ x

0 dχB1,z(χ). The eigenvalue
equation is

( 
p − q 
A)2
2m∗ ψ(x, y) = Eψ(x, y). (16)

The system being invariant by translation along y, we seek
solutions of the form ψ(x, y) = eiky yϕ(x). Equation (16)
reduces to

− h̄2

2m∗
∂2ϕ(x)

∂x2
+ V (x, ky)ϕ(x) = E − h̄2k2

y

2m∗ ϕ(x), (17)

where V (x, ky) = h̄2

2m∗ [ky + e
h̄ Ay(x)]2 and the En(ky) =

E − h̄2k2
y/2m∗ are the energy dispersion curves of magnetic

edge states.

4.1. Magnetic quantum wires

A magnetic quantum wire forms at the boundary between
positive and negative magnetic fields. Various profiles of mag-
netic field have been investigated for the boundary [5, 46, 52].
For simplicity, one considers the rectangular magnetic step
B1,z(x) = Bm[H (x) − H (−x)] (H (x) is the Heaviside
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Figure 14. (a) Electronic shell (n = 4) consisting of two periodic
orbits around the dot; (b) index of the resistance minima plotted as a
function of the perpendicular magnetic field for several positive gate
voltages (symbols). The full lines are the solutions of equation (15)
obtained for the values of ns corresponding to Vg = 0.12, 0.14 and
0.24 V. Reproduced with permission from [42]. Copyright 2004 by
the American Physical Society.

function) which allows discussing the essential physics without
numerical complications. The vector potential is Ay(x) =
Bm|x | and Schrödinger’s equation becomes

− h̄2

2m∗
∂2ϕ(x)

∂x2
+ 1

2
m∗ω2

0

(
|x | − h̄ky

eBm

)2

ϕ(x) = En(ky)ϕ(x).

(18)
The energy subbands En(ky) are calculated and plotted in
figure 15(a) as a function of ky . For each momentum ky , there
are two oscillator centres located at ±x0 where x0 = kyr 2

m and
rm = √

h̄/eBm (magnetic length). The cyclotron radius in
Landau level n is Rn = √

2n + 1rm. The oscillators centred
far from the magnetic step, x0 � Rn , do not interact. In this
case, Landau levels are doubly degenerate. The degeneracy
corresponds to states rotating clockwise and anticlockwise in
the regions of opposite magnetic field. When x0 approaches the
magnetic length, the oscillator wavefunctions start overlapping
across the magnetic tunnel barrier. The coupling lifts the
clockwise/anticlockwise degeneracy and gives the bonding
and antibonding subbands shown in figure 15(a). These
subbands are characterized by a positive group velocity for
the bonding states and a negative one for the antibonding
states. The opposite drift velocities are easily understood
within the semiclassical picture of figure 15(b). At x0 = Rn

(ky = +Rn/r 2
m), the oscillators start to interact classically.

Figure 15. (a) Energy–momentum dispersion curves (full lines) in
the step of magnetic field of the inset. In the classical domain
bounded by the dashed line parabola, quantum states may be
obtained from the WKB approximation (dotted lines). Outside the
classical domain, oscillator centres couple by tunnelling through the
central barrier of a magnetic double quantum well. (b) The electron
trajectories in the magnetic step. The bonding edge state (red
trajectory) and antibonding edge state (blue trajectory) result from
the tunnelling hybridization of the clockwise rotating and
anticlockwise rotating oscillators (dashed lines). The edge states
propagate in opposite direction.

This means that the tunnelling barrier slips below the energy of
Landau level n and the system enters the semiclassical region
of the energy dispersion curves within the dotted line parabola
of figure 15(a). The group velocity of the bonding states
reverses sign. The bonding and antibonding states then acquire
the unidirectional drift characteristic of snake orbits, as seen
at ky < 0. In the classical regime, bonding and antibonding
states retain the symmetric/antisymmetric character of their
wavefunctions. Reijniers et al [50] have proposed to use the
sign reversal of the group velocity at the minimum of the
bonding subband to induce quantum interferences of snake
states.

Fingerprints of the miniband structure have been
demonstrated in the hybrid device of figure 16(a). This device
has a magnetic stripe at the centre of the channel which
is magnetized in the plane to obtain a magnetic step with
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Figure 16. (a) Magnetic waveguide. (b) Dependence of the longitudinal resistance on the gate bias as the 2DEG is being depleted.
(c) Magnetic potential inside the magnetic waveguide. This depends on the longitudinal wavevector and the transverse position. (d) Magnetic
band structure calculated in the magnetic potential of panel (c). Parts reproduced with permission from [52]. Copyright 2009 by the Institute
of Physics Publishing.

zero average. We apply a negative gate voltage, Vg, to the
channel and measure the longitudinal resistance as the 2DEG
is depleted. A series of resistance steps is obtained as the
Fermi energy sweeps through the discrete density of states of
the magnetic quantum wire—see figure 16(a). The steps are
observed when the magnetization is saturated at 2 and 0.5 T
but disappear during magnetization reversal at −0.5 and −2 T.
The asymmetric dependence on the external magnetic field
points to an effect of the magnetic modulation. To interpret
the spacing between steps, we compute the electronic structure
below the Fermi energy. Hall measurements at Vg = 0 give
ns = 1.6 × 1011 cm−2, hence a Fermi energy of EF =
5.7 ± 1 meV. We first calculate the exact magnetic field profile
at the site of the 2DEG using equation (37). Secondly, one
deduces the magnetic potential V (x, ky), which we plot in
figure 16(c) as a function of x and ky . A parabolic quantum
well forms at the centre of the channel where the magnetic
stripe is located. This quantum well binds snake states at
negative values of ky . Thirdly, we solve Schrödinger’s equation
numerically to obtain the magnetic quantum subbands shown
in figure 16(d). The calculation has no free parameter since all
dimensions are known and the magnetization is saturated in a
magnetic field of +2 T. One difference between the realistic

band structure of figure 16(d) and the model band structure
of figure 15(a) is the finite height of magnetic potential well
in the former. The real magnetic field modulation decays to
zero at the edges of the channel with the effect of forming
doubly degenerate minibands at ky > 0 in place of doubly
degenerate Landau levels. Above the quantum well, virtual
minibands form a quasi-continuum. Given a Fermi energy of
EF = 5.7 meV, magnetic subbands are filled up to subband
9—see panel (d). The Fermi level will thus cross the minima
of subbands 7, 5, 3 and 1 as the 2DEG is depleted. The
van Hove singularities encountered at the minima of bonding
subbands are known to give dips in the conductance [46]. To
estimate the change in gate bias required to move the Fermi
energy from one subband to the next we use the capacitance
between the gate and the 2DEG, which is C � 1.0 mF m−2.
The gate voltage required to shift the Fermi energy by 1.5 meV
is 64 mV. The experimental spacings between resistance steps
vary between 90 and 150 mV. The agreement between theory
and experiment is thus reasonable given the assumption made.
One therefore interprets the five resistance steps of figure 16(a)
as the sequential depletion of subbands 9, 7, 5, 3 and 1. The
resistance steps are fingerprints of the quantum subbands in the
magnetic quantum wire.
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Figure 17. (a) Commensurability oscillations in the magnetoresistance of a cobalt superlattice with 500 nm period at 80 mK (full lines) and
4.2 K (dashed lines). (b) Theoretical plots. (c) Density of states of magnetic minibands n = 31, 32, 33. The edges of individual minibands are
smeared Van Hove singularities. For the chosen ratio of cyclotron energy to miniband width, the total density of states (full lines) has maxima
centred on Landau levels (vertical dotted lines). (d) Increasing the magnetic field reduces the overlap between subbands and causes the
alignment of Van Hove singularities between Landau levels. The total density of states peaks between the centres of Landau levels thus
shifting the phase of magneto-oscillations by π . Reproduced with permission from [54]. Copyright 2002 by the American Physical Society.

4.2. Minibands of magnetic superlattices

One now considers a periodic magnetic field with zero average
and describe the general properties of its electronic structure.
The effect of different magnetic field waveforms has been
discussed in [46, 49]. Here one will expand on our previous
example and assume a lattice of rectangular magnetic field
steps ±Bm. The lattice introduces a degree of coupling
between snake states which are localized near lines of zero
magnetic field. There are two lines of zero magnetic field in
each period. One line channels electrons along y > 0 and
the other along y < 0. This symmetry needs to be conserved
in momentum space, making the energy dispersion curves
symmetrical about ky = 0. The bonding subbands acquire two
energy minima at ky = ±Rn/r 2

m—a pure quantum mechanical
effect. Now consider motion along x where the potential is
periodic. Electrons can move either by tunnelling or classically
depending on ky . The classical regime is when the oscillator
centres are close enough for the magnetic potential barrier
between them to be less than the energy of the electron in
Landau level n. This sets an upper limit on ky , which is |ky| <
Rn/r 2

m. The snake oscillators hybridize as Bloch waves. Bragg
reflection at the Brillouin zone boundaries (kx = ±π/a) opens
up energy minigaps. Away from zone boundaries, these virtual
minibands have dispersion close to that of free electrons. When
|ky| > Rn/r 2

m, snake states are localized in the magnetic
equivalent to the Kronig–Penney potential. The weak coupling
gives flat energy bands separated by wide gaps.

The internal structure of magnetic minibands has been
revealed at millikelvin temperatures [53]. It should be
first pointed out that commensurability oscillations are a
direct consequence of oscillations of the width of magnetic
minibands in the external magnetic field. Assuming a
sinusoidal modulation B1,z(x) = B̃1 cos(Qx) of amplitude
B1,z 	 B , Landau levels broaden into virtual minibands
centred on the Landau level energies. The energy dispersion

of these minibands is given by [30]

En(ky) � (n + 1/2)h̄ωc + h̄ω1

(
akF

2π

)(
2

πQ Rc

) 1
2

× sin(Q Rc − π/4) cos(Qx0). (19)

The width of the miniband oscillates as a function of 1/B and
so does the group velocity vy = h̄−1dE/dky . Under flat band
conditions (sin(Q Rc − π/4) = 0) the group velocity vanishes
and the longitudinal resistance dips. The flat band condition is
in fact identical to equation (5). Therefore, commensurability
oscillations are directly implied by the miniband structure.

When the magnetoresistance is measured at 80 mK [53],
fast Shubnikov–de Haas oscillations are observed about
the commensurability minima—see figure 17(a). These
oscillations are characterized by beats and a phase change
that relates to the internal structure of minibands. In an
external magnetic field of 0.1 T, the Landau gaps have a
width of 2.0 K. In comparison, the miniband width oscillates
between 0 and 5 K. At 80 mK, the thermal width of the Fermi
surface is sufficiently small to resolve individual magnetic
minibands. Edmonds et al [53] have shown that the fast
resistance oscillation arise from the overlap of minibands. In
figures 17(c) and (d), the minibands n = 31, 32, 33 which
are nearer the Fermi level are plotted at two values of the
applied magnetic field. The minibands have rounded edges,
which indicate van Hove singularities smeared by collisional
broadening. In panel (c), the external magnetic field causes
the alignment of Van Hove singularities belonging to Landau
subbands n and n + 2. Their superposition give peaks of the
density of states at the centre of Landau levels. Increasing
the magnetic field further gives the picture of panel (d) where
the Van Hove singularities of Landau subbands n and n + 1
overlap. In this case the total density of states has maxima
in between Landau levels. The change in overlap between
subbands explains the phase reversal of Shubnikov–de Haas
oscillations between peaks and troughs of commensurability

15



J. Phys.: Condens. Matter 22 (2010) 253201 Topical Review

Figure 18. (a) Acoustic phonon scattering within snake orbits. (b) Non-local resistance measurements in a dysprosium magnetic waveguide.
The magnetic field is swept up (full lines) and down (dashed lines). Inset: I–V curves at Vg = 0 and −0.2 V in an in-plane field of +1 T.
Parameters: d = 400 nm, h = 140 nm, z0 = 24 nm, ns = 4 × 1011 cm−2, l = 2.2 μm. (c) Differential magnetoresistance of a cobalt magnetic
waveguide showing electrical rectification. Reproduced with permission from [55] and [56]. Copyright 2004 by the American Physical
Society and 2002 by Elsevier, respectively.

oscillations. The Shubnikov–de Haas oscillations are strongest
at the commensurability minima because the width of the
minibands is narrowest, hence best resolved. Shi et al [54]
have incorporated overlapping minibands into a calculation
of the resistance and found excellent agreement with the
experimental resistance curves as shown in panel (b).

4.3. Rectification by magnetic edge states

The peculiar asymmetry of the energy dispersion curve
En(ky) �= En(−ky) in 15 has stimulated experiments aimed
at demonstrating electrical rectification [55, 56]. These
experiments were performed by applying a direct current
to magnetic waveguide devices modulated by a single
longitudinal stripe. The experimental set-up is the same as in
figure 16. Both dysprosium [56] and cobalt [55] stripes were
used at the centre of 1.5–2.0 μm wide Hall channels. The
stripe was transverse magnetized by an in-plane magnetic field
to define one line of zero magnetic field.

Lawton et al [56] first magnetized the stripe in a field
of 1 T and then measured the I –V curves—see the inset
to figure 18(b). They observe rectification as the channel
is being depleted by a negative gate bias. The main panel
shows how the rectification behaviour depends on the external
magnetic field. Ryy is independent of the current direction at
positive B; however, a splitting appears once B changes sign.
The difference Ryy(+1 μA) − Ryy(−1 μA) is about 10 �.
Furthermore, this difference increases as the 2DEG is depleted.
A more refined experiment was performed by Hara et al [55]
in the same system modulated by a field ten times weaker. The
experiment was performed by superimposing a direct current
I = ±1 μA on the 50 nA modulation current. This technique
has the advantage of making the differential resistance at I = 0
accessible to the experiment. When I = 0, dV/dI does not
depends on the direction of B—see panel (d). Applying a finite
current I introduces an asymmetry in the resistance with the
direction of B: dV/dI (+B) �= dV/di(−B). dV/dI is high
for B > 0 and low for B < 0 when I = +1.0 μA whereas it is
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low for B > 0 and high for B < 0 when I = −1.0μA. dV/dI
therefore depends on the relative signs of I and dBz/dy, the
magnetic field gradient at the centre of the channel. This is
because B flips the stripe magnetization, which in turn changes
the sign of dBz/dy.

Two explanations have been proposed for the observed
rectification. Lawton et al have considered the anisotropic
scattering of electrons in snake states by acoustic phonons. The
asymmetric dispersion curve allows non-equilibrium electrons
to thermalize by emitting a phonon of positive momentum
q—see figure 18(a). The transition assisted by a phonon of
momentum −q is forbidden by the minigap. The anisotropic
transfer of momentum to the crystal results in a phonon drag
for electrons moving along the drift of snake orbits. This
phonon drag is characterized by electric field Fy given by [56]

Fy �
(
�m∗

π

)2 r 3
c

ρv5
l eh̄7 (2kB�T )5, (20)

where � is the deformation potential constant, ρ is the crystal
density, vl is the longitudinal speed of sound in the crystal and
�T is the temperature difference between the electron and the
lattice. Using I ∼ 10−6 A, R ∼ 10 � and ns ∼ 1011 cm−2,
we obtain the power dissipated per unit area P = I 2 R/A
and the increase in electron temperature relative to the lattice
temperature �T ∼ Pτ/(nskB). The active area of the channel
is A ∼ rcL y , which is ∼10−8 cm2 for Bm ∼ 1 T. The
acoustic phonon relaxation rate is τ ∼ 10−9 s. These data
give a temperature difference �T ∼ 1 K. Substitution of these
parameters into equation (20) gives Fy ∼ 10−2 V cm−1. The
experimental electromotive field corresponding to the 10 �
split in figure 18(b) is 2.5 × 10−2 V cm−1.

Hara et al interpret I –V rectification by assuming an
asymmetry in the momentum scattering rate of snake states
and magnetoelectric states. The former propagate at the
centre of the channel whereas the latter bounce on the edges,
moving in the opposite direction to snake states. The basis for
this assumption is that magnetoelectric edge states experience
diffuse scattering caused by edge roughness, which is alien to
snake orbits. According to this picture, the channel has low
resistance when electrons diffuse along the drift direction of
snake orbits and against magnetoelectric states. It has high
resistance when electrons move in the opposite direction.

4.4. Quantum tunnelling through magnetic barriers

The rectangular potential barrier considered in textbook
examples of quantum tunnelling is obtained here with two
Dirac spikes of magnetic field B1,z(x) = Bmrm[δ(x + d/2)−
δ(x − d/2)]. The double barrier potential is the potential
seen by electrons arriving with normal incidence. For all
other electrons, the potential barrier is V (x, ky) = h̄2

2m∗ [ky +
r−1

m (H (x + d/2)− H (x − d/2))]2 varies with ky and depends
on the transverse momentum. The transparency of the barrier
naturally also depends on ky . In the case of thin barriers
d < 2Rc, the transmission switches from 0 to 1 at a critical
value of ky . These barriers behave as momentum filters.
The transmission probability has been studied theoretically for
various types of magnetic barriers [57, 18, 58, 44, 47].

Magnetic potentials varying on the scale of the Fermi
wavelength, as required for making tunnelling barriers, are
difficult to obtain using current experimental methods. The
effect of reducing the barrier width down to the Fermi
wavelength will now be discussed. It is useful to start by
considering a homogeneous magnetic region wider than the
mean free path (d > l) which is sandwiched by two non-
magnetic regions [19]. Transport experiments that drive a
current from one non-magnetic region to the other show that
the magnetic region supports the entire difference of potential.
The non-magnetic parts of the 2DEG, by contrast, behave as
ideal contacts. Numerical simulations [59] show that a layer
of charge accumulates at the boundaries between the magnetic
and non-magnetic regions. The current enters at one corner of
the magnetic region and exits at the opposite corner. Inside the
magnetic region, the current is deflected from one edge to the
other, giving rise to the Hall voltage. The resistance measured
across the barrier is the two-terminal resistance since the non-
magnetic regions behave as ideal contacts. This explains why it
exhibits a quadratic dependence on B [19]. At higher magnetic
field (ωcτ > 1), the Hall component eventually dominates and
gives a linear dependence on B .

Now consider electron transmission through magnetic
barriers thinner than the electron mean free path (d <

l). Experimentally, the magnetic field profile which gives a
potential barrier closest to the square barrier is the N-shaped
magnetic field profile [60–62]. This is obtained by laying a thin
ferromagnetic stripe (100 nm) across the Hall channel as shown
in the inset to figure 19(a). The modulation profile of the stripe
magnetized in the plane is shown in figure 19(a). Figure 19(b)
shows the effect of increasing the strength of the stray magnetic
field Bm on the resistance of the barrier. The resistance initially
increases as the magnetization tilts away from the long axis. It
then saturates when the magnetization aligns perpendicular to
the stripe and Bm reaches a maximum. The resistance increase
accounts for the reflection of ballistic trajectories, which we
now explain.

Snake orbits form for 0 < φ < φmax as shown in
section 3.2. These orbits are trapped at the centre of the barrier
and therefore do not contribute to the resistance. The other
orbits (φmax < φ < π ) are transmitted by the magnetic barrier.
This is simply the momentum filtering effect of the magnetic
barrier. The maximum angle is given by

φmax = arccos

(
1 − e

h̄kF

∫ 0

−∞
B1,z(x) dx

)
, (21)

and the resistance of the magnetic barrier is [60]

�Rxx

R0
= 2φmax − sin(2φmax)

2π − 2φmax + sin(2φmax)
. (22)

Note that the magnetic barrier becomes totally opaque when
φmax approaches π .

Ballistic transmission through a thin barrier of positive
magnetic field was studied by Vančura et al [63]. A similar
positive magnetoresistance was observed, with the noticeable
difference that it is V shaped. This was interpreted in terms
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Figure 19. (a) A barrier of magnetic field is obtained by fabricating a ferromagnetic line across a 2D channel (inset). (b) Magnetoresistance of
the barrier as a function of an in-plane magnetic field ‖ x . (c), (d) The fringing field at the edge of the Dy element (c) produces a localized
pulse with non-zero average (d). (e) Magnetoresistance curves measured across the magnetic pulse (full lines). The symbols plot the
theoretical magnetoresistance calculated in the following conditions: channel bounded by electrostatic edges and no scattering (full circles),
infinitely wide channel and scattering (triangles), channel edges and impurity scattering (open circles). Inset: electrons can either (1) cross the
magnetic pulse assisted by impurity scattering, (2) be reflected, (3) cross along the electrostatic edges. Reproduced with permission from [60]
and [64]. Copyright 1999 by the American Institute of Physics and 2007 by the American Physical Society, respectively.

of the ratio of reflected to transmitted quantum conductance
channels:

�Rxx/R0 = 1

N

1 − 〈T 〉
〈T 〉 , (23)

where 〈T 〉 is the transmission averaged over half the Fermi
surface and N is the number of modes in the channel.
Equation (23) quantitatively explains the experimental magne-
toresistance and predicts a positive magnetoresistance ∝|B|.

The above experiments have nicely established that
magnetic barriers control ballistic transmission. Predicting the
absolute magnitude of the magnetoresistance however requires
considering sources of leakage through the barrier. One
particular problem is that, in experiments, the resistance of
the barrier ought to diverge at large values of Bm, instead of
saturating at a finite value. This problem has been investigated
by Cerchez et al [64], who demonstrated that magnetic barriers
leak through impurity scattering and magnetoelectric edge
states. Their device is shown in figure 19(c). By measuring
the longitudinal voltage across the edge of the dysprosium
film, transport through a positive magnetic barrier could be
investigated—see panel (d). The inset to panel (e) shows
three electrons attempting to cross an opaque magnetic barrier.
Trajectory (2) is purely ballistic and is backscattered by the
magnetic field. Trajectory (1) is transmitted after scattering on
one impurity. Trajectory (3) is a magnetoelectric edge state
which leaks through the barrier. The effect of including both
sources of leakage in calculations of the magnetoresistance is

shown in figure 19(e). Including both momentum scattering
and magnetoelectric edge states appears necessary to explain
transmission quantitatively.

Although magnetic barriers clearly control the transmis-
sion of quantized conductance channels, there is no firm
evidence that quantum tunnelling is a significant effect. One
clear demonstration of magnetic tunnelling would be to
observe resonant tunnelling through magnetic double barrier
structures as done by Ismail et al [65] in lateral double barrier
structures. Tunnelling transmission through magnetic potential
barriers has been calculated by Matulis et al [18]. The
difference from electrostatic barriers is that the transmission
coefficient depends both on the energy and ky as shown in
figure 20(a). Figure 20(b) shows the transformation of the
effective potential from double barrier at ky > 0 to a double
quantum well at ky < −d .

4.5. Klein tunnelling in graphene

Graphene is a material of great promise for fundamental
physics and applications. The absence of an energy bandgap
allows switching between electron and hole conduction by
gating the graphene flake. Since the conductivity never
cancels, however, it is necessary to find creative new
approaches to confine carriers and achieve transistor action.
One such approach is to confine electrons in snake orbits
by combining a homogeneous magnetic field with the action
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Figure 20. (a) Tunnelling transmission through a double magnetic barrier structure; (b) magnetic field profile, B(x), vector potential, A(x),
and magnetic potential V (x, q). A double barrier structure forms when momentum q > 0. The tunnelling spectrum exhibits well defined
resonances through the quasi-bound states of the central quantum well. At q < 0, the magnetic barriers are replaced with quantum wells. The
tunnelling probability increases to unity. Reproduced with permission from [18]. Copyright 1994 by the American Physical Society.

Figure 21. (a) Snake orbits in graphene. A split gate defines the interface between the electron and hole layers. The perpendicular magnetic
field deflects electrons and holes towards the interface, which they cross via Klein tunnelling. Graphene thus supports extended snake orbits.
(b) Magnetic gating of graphene.

of a split electrostatic gate. The graphene sheet shown
in figure 21(a) has conduction by electrons in one half of
the plane and conduction by holes in the other half. A
magnetic field applied perpendicular to it bends electron and
hole trajectories towards the interface while Klein tunnelling
through the interface allows snake orbits to propagate.

Spatially varying magnetic fields offer an alternative
means of tuning the electrical conduction of graphene. The
magnetic modulation will for instance be obtained with
micromagnets as in figure 21(b). A number of theoretical
works have calculated the band structure of magnetically
modulated graphene [66–68] as well as the transmission of
massless electrons through magnetic barriers [69, 70]. In
general, the transmission probability has the same dependence
on transverse momentum as in GaAs. But the linear dispersion
curve gives sharper tunnelling resonances than in systems with
parabolic dispersion curves.

5. Coherent spin control with inhomogeneous
magnetic fields

Here, we show how microscopic domains of positive and
negative magnetic fields can be used to control the dynamics

of the electron spin. We first discuss the filtering of spin
currents by a gradient of magnetic field. We then describe
how spin flips may be induced by shifting electrons from one
magnetic domain to another. This is done either by moving
electrons with electrostatic gates [71] or by using the sign
reversal of the Lorentz force in snake orbits to subject the
spin to an RF effective magnetic field. In the latter case,
electron spin resonance is induced by a direct current [72–74].
The fluorescence of electrically induced spin resonance is
discussed as it is potentially useful for making microwave
sources. Finally, we observe that the Rabi frequency of the RF
magnetic field is larger than the spin scattering rate in hybrid
ferromagnetic/semiconductor systems. This enables coherent
manipulation of the electron spin.

5.1. Spin filters

5.1.1. Mesoscopic Stern–Gerlach effect. The experiment by
Wróbel et al [75] demonstrates the Stern–Gerlach effect in a
mesoscopic hybrid device. Two magnets are fabricated on each
side of a GaAs/AlGaAs channel to apply a spatially varying
magnetic field to the central region—see figure 22(a). When
the two magnetizations are antiparallel, the in-plane magnetic
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field component varies linearly across the channel and changes
sign at the centre. The poles that face each other across the
channel are the same, hence the magnetic field emanates from
them in opposite directions. When the two magnetizations are
parallel, the in-plane magnetic field in the central region is
constant. To ensure that the antiparallel configuration occurs
over a significant range of magnetic field, Wróbel et al used
one hard (Co) and one soft (Py) magnet—see figure 22(b).
They take the additional precaution of levelling the centre of
the magnetic film with the height of the 2DEG to cancel the
perpendicular component of the stray magnetic field at the site
of the 2DEG. Finally, the Permalloy layer is made thicker than
the cobalt layer to compensate for the higher magnetization
of cobalt and obtain a modulation with zero average field
(antiparallel magnetizations).

The gradient of magnetic field is by ≈ 106 T m−1 when
the magnetizations are antiparallel. Otherwise, the magnetic
field is homogeneous and equal to By = 0.3 T when the
magnetizations are parallel. Outside the shaded region of
the Hall curves in figure 22(c), By = 0.3 and 〈Bz〉 = 0,
which gives Rxy = 0. In the shaded region, the magnetic
field gradient exerts a Zeeman force on the ballistic current,
Fy = ±gμBby/2, where g in the Landé factor. The current
component deflected to the left (I1) and the one deflected
the right (I2) are shown in figure 22(d) as a function of
B . I1 and I2 are clearly enhanced in the field range where
the magnetizations are antiparallel. This suggests that spin
currents are split by the Zeeman force. The asymmetric
magnetic field dependence seen in I1 and I2 is due to a
residual Hall component. This is eliminated by plotting Is =
(I1 + I2)/2—see the inset to figure 22(d). The peak in Is

demonstrates the splitting of the incoming current into two spin
polarized components.

5.1.2. Spin filtering by magnetic rings. The dephasing of
the spin wavefunction by a spatially inhomogeneous magnetic
field controls the conductance of mesoscopic ring structures.
An electron moving in a textured magnetic field accumulates
a geometric phase along the ring perimeter. The transmission
is maximum when the phase acquired around the ring is an
integer multiple of 2π . One example of textured magnetic
field is the effective magnetic field produced by spin–orbit
interaction. This field is perpendicular to the electron
momentum, hence, in a ring geometry, the effective magnetic
field has circular symmetry. Spin interferences occur as the
electron spin precesses around clockwise and anitclockwise
rotating magnetic fields in both arms of the loop. A
perpendicular electric field tunes the precession frequency by
controlling the strength of spin–orbit interaction. Conductance
oscillations due to interferences of the spin wavefunction have
been reported by Nitta et al [76] when a gate bias is used to
tune the strength of the spin–orbit interaction.

A similar effect is obtained in mesoscopic hybrid devices
where ring shaped ferromagnets are used to produce a field
with circular symmetry. The transmission of electrons through
such rings has been investigated theoretically by Frustaglia
et al [77–79]. Figure 23(a) shows the transmission through a
loop subjected to a circular magnetic field and a magnetic flux

Figure 22. (a) Spin filtering using the Stern–Gerlach effect.
Permalloy and cobalt gates are magnetized by B‖. (b) The individual
magnetization curves of the Co and Py gates. (c) Magnetization
curve of the combined Co and Py gates showing compensation when
the magnetizations are aligned. (d) The currents, I1 and I2, deflected
by the magnetic gradient. Inset: the deflected current Is = (I1 + I2)
symmetrized to eliminate the residual Hall voltage. Is is maximum
when the Py and Co gates have antiparallel magnetization and apply
a magnetic field gradient. Reproduced with permission from [75].
Copyright 2004 by the American Physical Society.

φ through the loop. As the strength of the circular magnetic
field increases from panel (b) to (d), this field tunes the
transmission of spin up and spin down currents. Remarkably,
the total transmission (spin up + spin down) is also strongly
modulated by the strength of the circular magnetic field,
especially when the magnetic field through the ring is φ0/2
and φ0(φ0 = h/2).
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Figure 23. (a) Ring geometry with a circular magnetic field; (b)–(d)
transmission of spin currents as a function of the magnetic flux. As
the strength of the circular magnetic field increases—from top to
bottom—the transmission via spin flips increases. Reproduced with
permission from [77]. Copyright 2001 by the American Physical
Society.

5.2. Electrically induced ESR

We now consider the dynamics of the electron spin in snake
orbits. In the device of figure 24(a), the stray magnetic
field threads the 2DEG with an in-plane component B0

which is roughly constant and an out-of-plane component
B1(y) which changes sign at the centre of the channel.
The perpendicular component has an approximately linearly
dependence characterized by gradient b ≡ dB1/dy = 2T/μm.
Snake orbits form at the centre of the channel. In addition to the
perpendicular field, the electron spin experiences an in-plane
magnetic field B0 + B which includes the contribution of the
external magnetic field used to magnetize the ferromagnetic
stripe. This is a large magnetic field which defines the
frequency of spin precession ω0. The meandering of snake
orbits between domains of positive and negative magnetic field
subjects the spin to a time dependent effective magnetic field
B1(t), which oscillates at the frequency of the snake orbit, ω1.

The crossed dc and ac magnetic fields induce electron spin
resonance when ω1 = ω0.

The frequency of snake orbits is obtained by solving the
semiclassical equation of motion corresponding to electrons
on the Fermi surface [72, 73]. The frequency of transverse
oscillations is parametrized by θ , the angle at which the snake
orbit crosses the line of zero magnetic field (θ = π − φ of
section 2.2). One finds that the transverse equation of motion
is the equation of an anharmonic oscillator of fundamental
frequency ω1 = π/[2τb F(π/2, θ)], where

F(χ, θ) =
∫ χ

0

dα√
1 − cos2(θ/2) sin2(α)

, (24)

χ = arcsin
√

Z 2/[cos2(θ/2)(Z 2 + sin2(θ/2)] and τb =
m∗/

√
h̄kFeb. The dispersion curve of oscillator modes is

plotted in figure 24(b). The dispersion has a cut-off frequency
at ωc = 1/τb. In a GaAs quantum well with ns = 1.6 ×
1015 m−2 and b = 2 T μm−1, one has ωc/2π = 150 GHz. The
snake orbit trajectories and the Fourier harmonics of transverse
oscillations are plotted in figures 24(c)–(h) for three values of
θ . θ = 0+ is the angle of slow oscillators at the centre of
the dispersion curve. At θ = 400, the drift of snake orbit
changes sign. θ = π corresponds to snake orbits oscillating
at the cut-off frequency ωc. The amplitude of transverse snake
oscillations is Z = cos(θ/2).

Satellites of the main ESR line arise for two reasons.
Firstly, the anharmonicity of the snake oscillator gives
additional resonances when the Larmor frequency matches
the high harmonic frequencies of the oscillator. In this case,
absorption peaks occur when ω0 = ω1/(2k + 1) where k =
0, 1, 2, . . .. A second series of satellite peaks arises due to
the non-linearities of magneto-dipole interaction which allow
multiple photon absorption processes. The time dependent
magnetic field B1,z(t) is linearly polarized along z and may be
viewed as the sum of two circularly polarized waves rotating
clockwise and anticlockwise. The non-linearity of the Bloch
equations gives additional terms in the susceptibility which
are proportional to B̃2

1 , B̃4
1 . . .. These terms mix clockwise

and anticlockwise polarizations. Their amplitude is large and
comparable to the leading term in the series expansion of
the susceptibility. The reason for this is that the oscillating
field B̃1 in snake orbits (≈1 T) is huge, 105–106 times larger
than the magnetic field component of microwave generators
(≈1 mW cm−2). In this case, the rate of spin flips assisted by a
cascade of n = 3, 5, . . . circularly polarized photons becomes
significant compared to spin flips assisted by the absorption
of a single photon. The photons involved in the cascade have
energy h̄ω0/n. The angular momentum of the photons in
the cascade adds up to ±h̄, which is the angular momentum
gained or lost during spin flip. The optical non-linearities of
the magneto-dipole susceptibility have been calculated in [80].
Multiple photon processes give a second series of absorption
peaks at Larmor frequencies given by ω0 = (2k + 1)ω1.

5.3. Spin resonance fluorescence

An important consequence of the large RF magnetic field B1(t)
is that, at resonance, spins flip at very high frequency. The
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Figure 24. (a) Spin resonance fluorescence device; (b) frequency dispersion curve of snake orbit oscillators as a function of the angle at which
the snake orbit crosses a line of zero magnetic field; (c)–(h) semiclassical snake orbits and the Fourier spectrum of their transverse
oscillations. Reproduced with permission from [73]. Copyright 2001 by the American Physical Society.

flip rate is determined by the Rabi frequency �̃1 = gμB B̃1/h̄,
which is of the order of the GHz. The Rabi frequency is
comparable to the momentum relaxation rate in the 2DEG and
is much faster than the magneto-dipole radiation rate:

� = 1

3

(gμB)
2k3

ce2
α. (25)

Under these conditions, electrically induced spin resonance
can emit a strong microwave fluorescence through a radiative
cascade mechanism which we now describe. The process is
depicted in the three level diagram of figure 25(a). The spin
flip transition propelled by spin oscillators occurs between
states |a, 0〉 and |b, 0〉 at rate �1. The photon number is
constant because spin flips are driven by the d.c. bias. In
the excited state, the spin may decay into state |1,kp〉 by
spontaneously emitting a photon with random momentum k
and polarization p. The rate of spontaneous decay � being
small compared to �1, several cycles of Rabi oscillations take
place before one spontaneous emission event. After this has
occured, Rabi oscillations resume until a second photon is
spontaneously emitted and so on. The opening of parallel
pathways for spontaneous emission initiates a radiative cascade
which sustains microwave emission as snake orbits move
along the magnetic waveguide of figure 24. The cascade
phenomenon is closely related to photon antibunching in
optics. A current injected with no spin polarization gives
the fluorescence power calculated in [73, 74] and plotted in
figure 25(b). Each curve represents the cumulated microwave
power emitted until time t for different values of the ratio
r ≡ �̃1/�. When r < 1, spins prepared in the excited
state decay into the ground state. There is no way back into
the excited state since the Rabi frequency is too slow. As a

result, the emitted power drops to zero on the timescale of
spontaneous emission. When r > 1, the Rabi oscillations
sustain the radiative cascade and the cumulated microwave
power increases superlinearly with time.

Panel (c) maps the fluorescence power emitted by
individual snake orbits θ when the frequency of Larmor
precession ω0 increases from 0 to 3ωc. The emission spectrum
shows the weaker contribution of harmonics k = 1, 2, . . .
relative to the fundamental frequency k = 0. The fluorescence
power increases with the oscillator frequency because the
magneto-dipole coupling increases as ∝ω3 after equation (25).
The emitted power is therefore maximum for the fastest
snake orbits at frequency ωc. The spin resonance condition
specifies that ω0 = ωc. This explains why the peak is
seen at ω0/ωc ∼ 1. Since ωc ∝ n1/4

s , the peak emission
frequency may be tuned with an electrostatic gate. This effect
promises tunable microwave emitters with emission frequency
in the range 0–500 GHz and output power in the range of
100 nW μm−2 [73, 74].

5.4. Coherent population trapping

The trapping of snake states in magnetically modulated
2DEGs makes the coherent manipulation of the electron
spin accessible to the experiment. Electrons in snake orbits
experience a RF magnetic field of amplitude considerably
larger than that obtained from electromagnetic waves. This
makes the Rabi frequency of electrically induced spin
resonance of same order of magnitude as the momentum
scattering rate in the 2DEG. Any perturbation to the coherent
dynamics of the electron spin will therefore have directly
measurable effects on propagation of snake orbits. Blocking
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Figure 25. (a) Energy diagram of electron spin resonance
fluorescence. Rabi oscillations (�1) compete with spontaneous
recombination (�). (b) Amplification of microwave emission through
the radiative cascade. � > � (r > 1) initiates the radiative cascade.
(c) Microwave power emitted by individual snake orbits (θ) as a
function of the in-plane magnetic field (ω0). Reproduced with
permission from [73]. Copyright 2001 by the American Physical
Society.

spin flips has the effect of inhibiting the propagation of snake
orbits at low temperature. This is the effect that is achieved in
the coherent population trapping experiment described below.

A schematic diagram of the experimental set-up is
depicted in figure 26(a). A cobalt superlattice is magnetized in
the plane to obtain a magnetic modulation with zero average.
Snake states form within each period of the superlattice. A
grating rather than a single stripe is used to amplify changes
in resistance due to magnetic channelling. Electron spin
resonance occurs within snake orbits when the frequency
of transverse oscillations ω1 equals the Larmor frequency
ω0. One then irradiates the surface of the sample with

unpolarized microwaves at frequency ωr. This introduces a
spin flip channel that competes with the spin oscillator driven
transition. The energy diagram of both transitions is shown in
figure 26(b). The snake oscillator transition links |↓, N〉 and
|↑, N〉. It leaves the number of photons present in the cavity
unchanged. This transition is always resonant because the
spectrum of snake orbits between 0 and ωc is continuous—see
figure 24(b). One oscillator mode is always resonant since the
resonant condition ω1 = ω0 is always satisfied. This transition
strongly couples levels |↑, N〉 and |↓, N〉 with Rabi frequency
�1. By contrast, the microwave induced transition couples
states |↑, N + 1〉 and |↓, N〉. The detuning from resonance is
� = ω0 − ωr. The microwave transition gives a much weaker
coupling than the snake oscillator transition�r 	 �1.

When the microwave transition crosses resonance, the
initial states couple through the final state and hybridize
to form a dark state: |d〉 = �1√

�2
1+�2

r

|↑, N + 1〉 −
�r√
�2

1+�2
r

|↑, N〉 [81]. The spin system evolves towards the dark

state with no way out since the dark state has no amplitude of
probability on |↓, N〉. The probability of the dark state is given
by the expectation of the density matrix of the system ρ̂ in the
dark state:

Pdark = 〈d|ρ̂|d〉. (26)

To calculate the density matrix one considers the Hamiltonian
of the system Ĥ0 = h̄ω0|↓, N〉〈↓, N |. The interaction
Hamiltonian of the three level system coupled by the two
transitions is

Hint = − h̄

2

( 0 0 �r

0 2� �1

�r �1 −2�

)
. (27)

The density matrix evolves according to the following rate
equations [81] where γT and γL are the transverse and
longitudinal spin relaxation rates:

ρ̇11 = i

2
�r(ρ31 − ρ13)+ ρ33

γT

2
(28)

ρ̇22 = i

2
�1(ρ32 − ρ23)+ ρ33

γL

2
(29)

ρ̇33 = i

2
[�r(ρ13 − ρ31)+�1(ρ23 − ρ32)] − ρ33γL (30)

ρ̇12 = i

2
[�rρ32 −�1ρ13] + 1

2
ρ12(2i�− γT) (31)

ρ̇13 = i

2
[�r(ρ33 − ρ11)−�1ρ12] + 1

2
ρ13(2i�− γL) (32)

ρ̇23 = i

2
[�1(ρ33 − ρ22)−�rρ21] + 1

2
ρ23(0 − γL). (33)

One seeks the time independent solutions by successive
approximations to second order in �r/�1. Taking ρ11 ≈ 1,
ρ22 ≈ 0, ρ33 ≈ 0 as initial conditions and assuming that
γL

∼= γT for conduction electrons, one obtains

Pdark = 4�2
1�

2
r

�2
1 +�2

r

�2
1 + γLγT

(�2
1 + γLγT − 4�2)2 + 4�2(γL + γT)2

.

(34)
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Figure 26. (a) Magnetic superlattice irradiated with microwaves; (b) the microwave transition (ωr,�r) and the spin oscillator transition
(ω1,�1) couple states with the same spin at resonance.

Figure 27. (a) Magnetoresistance of the cobalt superlattice of figure 26(a) irradiated by microwaves. The magnetic field Ba magnetizes the
grating along the short axis of the stripes to apply the magnetic modulation (full lines) or along the long axis to switch it off (dashed lines).
The electron spin anti-resonance (ESAR) peak is observed when both the magnetic modulation and the microwaves are applied. (b) The
magnetization curve of the grating measured by Hall magnetometry; (c) frequency dependence of the ESAR peak; (d) ESAR and FMR peak
amplitudes mapped as a function of magnetic field and microwave frequency.

The microwave induced resistance is obtained by writing
the longitudinal conductivity as the sum of a conductivity
component due to snake orbits which are free to propagate
σs(1 − Pdark) and a conductivity component � due to other
states. The Drude conductivity is σ0 = σs + �. The change in
longitudinal resistance brought about by the formation of the
dark state is simply written as

(ρxx − ρ0)/ρ0 = ρ0σs Pdark. (35)

Coherent population trapping increases the resistance propor-
tionally to the probability of the dark state.

Figure 27(a) shows the magnetoresistance of the cobalt
superlattice measured under microwave irradiation. The plot
compares the effect of having the magnetic modulation ON
(full lines) and OFF (dashed lines). We focus on the microwave
induced features labelled FMR and ESAR (electron spin
anti-resonance). The former is the ferromagnetic resonance
of the cobalt grating detected by the 2DEG. The latter
corresponds to the blockade of spin flips in snake orbits when
the microwaves are tuned to the Zeeman energy—hence the
term anti-resonance. The V-shaped magnetoresistance at low
magnetic field is due to the magnetization of the cobalt grating.
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Figure 28. (a) Dependence of the magnetoresistance on microwave power; (b) second derivative of the magnetoresistance at the ESAR peak;
(c) position of the ESAR peak plotted as a function of microwave power; (d) ESAR peak fitted with the theory described in the text.

From its amplitude we estimate the strength of the magnetic
modulation as B̃1 = 0.141 T in agreement with the value
calculated from equation (1). The frequency dependence
of the ESAR peak is shown in panel (c). Panel (d) maps
the microwave induced change in resistance as a function of
magnetic field and frequency. The FMR and ESAR shift to
higher magnetic field at different rates as a function of ωr. This
accounts for the different Landé g-factors in cobalt and GaAs.
The Landé g-factor of ESAR is g = 0.43 in agreement with
the Landé g-factor of a GaAs quantum well when the magnetic
field is applied in the plane. The Landé g-factor of FMR is
g = 1.8. The temperature dependence shows that the ESAR
peak vanishes at 40 K. The thermal activation plot also gives an
activation energy corresponding to the Zeeman gap of GaAs.
From this we extract the Landé g-factor of the 2DEG as g =
0.40. When the magnetic modulation is switched off (dashed
lines) in panel (a), the ESAR peak vanishes. This suggests
that ESAR differs from ESR. The non-observation of ESR in
the dashed curve is not surprising because the 2D density of
states is constant. Hence spin flips do not induce a change in
the overall resistance. For ESR to be detected electrically, spin
up and spin down subbands must have different conductivities.
This situation is typically obtained at odd filling factors in
quantum Hall systems but not here. The lack of ESR peak
in the magnetoresistance is totally expected. The ESAR peak,
however, is a new phenomenon induced by the combination of
microwaves and the magnetic modulation.

The power dependence of the ESAR peak is shown in
figure 28(a). The FMR line is independent of microwave
power. By contrast the ESAR line, whose position is shown by
the minimum in the second derivative curves of figure 28(b),
appears to shift to higher magnetic field with increasing
microwave power. This effect is related to a large shift
of the ESAR line to lower magnetic field in figure 27(d).
Extrapolating the ESAR to ωr = 0 demonstrates an internal
magnetic field BN = 4.9 T. This shift, known as the

Overhauser effect, arises from the hyperpolarization of nuclear
spins by electron spins during spin resonance [82]. Electron
and nuclear spins are coupled through hyperfine interaction
and, in their ground state, are parallel to each other—the
electron charge and Landé factor being both negative. Electron
spin resonance tends to equalize spin populations, which
has the effect of predominantly flipping spins from up to
down. Flip-flop processes increase the nuclear polarization to
〈Iz〉 = (γe/γn)〈Iz〉thermal. The spin polarization is negative
(antiparallel to the external field) and generates a nuclear
magnetic field BN = bn〈Iz〉 where the coefficient bn calculated
for different magnetic isotopes [83] is negative. This explains
that BN augments Ba shifting the ESAR line to lower magnetic
field. BN effectively measures the polarization of the nuclear
spin system. In inset (b), BN decreases with increasing
microwave power demonstrating the decrease of the nuclear
polarization. We extract BN from the minimum in the
second derivative and plot BN as a function of microwave
power in inset (c). The nuclear magnetization saturates at
vanishing microwave power at BN = 5.6 T. The saturation
field theoretically predicted by Paget et al [83] is 5.3 T. The
saturation of BN at vanishing power can be explained by
assuming that snake oscillators (not microwaves) dynamically
polarize nuclei. This process is efficient because of extremely
fast spin flips compared to the spin relaxation rate. Hyperfine
interaction is comparable to that calculated by Paget et al
for shallow impurities because the oscillator wavefunction is
localized (on the line of zero magnetic field) and overlaps
nuclei locally. Increasing microwave power decreases the
Overhauser shift. This is the opposite of what one normally
observes in conventional spin resonance. But this is totally
consistent with the dark state blocking spin flips as the
microwave power increases.

Figure 28(d) shows the experimental peak fitted with
equations (34) and (35). We calculate �̃1/(2π) = 0.81 GHz
and obtain the following values from the fit: �r/(2π) ≈
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70 MHz and γL = γT = 1.76 × 1010 s−1. The coefficient
ρσs ≈ 10 is obtained from the positive magnetoresistance
of snake orbits in figure 4. These results support coherent
population trapping as the explanation for both the decrease
in nuclear polarization with increasing microwave power and
for the ESAR peak. The Rabi frequency of snake oscillators
is close to the collisional broadening: �1 = 0.29γL. The
huge Rabi frequencies of magnetic modulations thus enable
coherent manipulation of the electron spin.

6. Prospects

The use of fringing magnetic fields opens device applications
in magnetoelectronics and spintronics. For instance,
micromagnets that apply a local magnetic field to HEMT
structures will generate a local Hall voltage. Non-volatile
memories operating on this principle have been demonstrated
by Monzon et al [84] and Johnson et al [85]. Magnetic
field sensors that use hybrid Hall junctions in the diffusive
regime have also been studied both experimentally [86] and
theoretically [87, 88]. The response of the Hall sensor
was found to be independent of the functional shape of the
magnetic field. The Hall resistance was however found
to saturate due to the quasi-localization of electrons in the
magnetic region. The channelling magnetoresistance is equally
attractive for applications as it was shown to subsist at room
temperature [60]. In particular, the dependence of the snake
orbit magnetoresistance on the direction of the magnetic field
can be used for making directional sensors of magnetic field.

Canted magnetic fields are useful in spintronics for spin
filtering [61, 62, 75]. The inter-dependence of the orbital and
spin dynamics presents exciting possibilities for inducing spin
resonance with a direct current. This paves the way towards
coherently controlling the electron spins with timed current
pulses. This approach eliminates the need for cumbersome
microwave apparatus. The inter-dependence works the other
way round since a perturbation to the spin dynamics was shown
to induce changes in the resistance. The coupling of the
electron spin to its environment was studied with particular
emphasis on the advantages derived from extremely fast Rabi
oscillations. The coupling to the electromagnetic field yields
weak microwave fluorescence. Hyperfine coupling of electron
spins to atomic nuclei dynamically polarizes atomic nuclei on
the drift path of snake orbits. In this way, electrically induced
ESR may be used to initialize nuclear magnetic moments
that represent quantum bits. At a more fundamental level,
the fringing magnetic fields may help realize two-dimensional
magnets modulated by a gradient of magnetic field. This
system supports the formation of spin helices and quantized
spin currents hypothesized by Haldane and Arovas [89, 90],
which remain to be demonstrated.
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Appendix. Stray magnetic field of stripes and dots

A.1. Stripe of rectangular cross section

Consider one of the finger gates in the grating of figure 1(a).
This has width d , height h, magnetization (Mx ,My,Mz ) and
is infinitely long. The stray magnetic field induced by the Mz

component is

B(z)
x (x, z0) = μ0 Mz

2π
{ f (x, z, a, c)− f (x, z, a,−c)}

B(z)
y (x, z0) = 0 (36)

B(z)
z (x, z0) = μ0 Mz

2π
{g(x, z, a, c)− g(x, z, a,−c)}.

Similarly the stray field induced by the Mx component is

B(x)
x (x, z0) = μ0 Mx

2π
{g(z, x, c, a)− g(z, x, c,−a)}

B(x)
y (x, z0) = 0 (37)

B(x)
z (x, z0) = μ0 Mx

2π
{ f (z, x, c, a)− f (z, x, c,−a)}

where f (χ, ζ, α, γ ) = ln[
√
(χ+α)2+(ζ−γ )2
(χ−α)2+(ζ−γ )2 ] and g(χ, ζ, α, γ )

= arctan( χ+α
ζ−γ )−arctan( χ−α

ζ−γ ). a = d/2, c = h/2, z = −c−z0.

The total fringing field is Bξ = B(x)
ξ + B(z)

ξ (ξ = x, y, z).

A.2. Cylinder

Consider the ferromagnetic dot of figure 12. This is a cylinder
of height h, radius a with magnetization (0, 0,Mz). The stray
magnetic field in this case is given by

Bz(x, z0) = μ0 Mz

2

∫ ∞

0
d(aε)J1(εa)J0(εx)e−εz0 [e−εh − 1],

(38)
where J0 and J1 are the Bessel functions of the first kind.
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