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We calculate the fluorescence of electron spins confined to a plane and driven into resonance by a magnetic
field gradient and a constant magnetic field applied at right angles to each other. We solve the equation of
motion of two-dimensional electrons in the magnetic field gradient to derive the dispersion curve of spin
oscillators, the amplitude of electron oscillations, the effective magnetic field sensed by the electron spin, and
the rate at which electrons are injected from an electrode into spin oscillators. We then switch on the interaction
between the spin magnetic dipole and the electromagnetic field to find the fluorescence power radiated by the
individual spin oscillators. The rate of radiative decay is first derived, followed by the probability of sequential
photon emission whereby a series of spontaneous decays occurs at random times separated by intervals during
which the spin performs Rabi oscillations. The quantum correlations between random radiative decays mani-
fest as bursts of emission at regular intervals along the wire. We integrate all multiphoton processes to obtain
an exact analytical expression for the radiated electromagnetic power. The present theory obtains all parameters
of the problem including magnetodipole coupling, the particle dwell time in the magnetic field gradient, and
the spin polarization of the incoming current. The output power contains a fine structure arising from the
anharmonicity of electron oscillations and from nonlinear optical effects which both give satellite emission
peaks at odd multiples of the fundamental frequency.
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I. INTRODUCTION

The fluorescence of a quantum transition excited by a
resonant electromagnetic beam1 has been an important
means for investigating the atomic structure ever since the
experiment of Lamb.2 Photons generated by spontaneous de-
cay provide information on the population of energy levels,
interactions between atoms via super-radiant emission, and
the density of states of the vacuum. In particular, the fluores-
cence of electron spin resonance has been the subject of in-
tense study3 whose results stimulated the development of the
dressed atom approach in quantum field theory.4 Different
regimes of fluorescence have been demonstrated by using
electromagnetic cavities to change the rate of spontaneous
decay relative to the oscillator strength of quantum tran-
sitions.5 Thanks to advances in semiconductor growth tech-
niques, resonant light-matter interactions have been observed
between optical cavity modes and the quantum transitions of
a quantum well.6 By contrast, spin resonance fluorescence
has proved difficult to observe in the conduction band of
semiconductors7 because of the necessity for doping which
broadens the emission line.

In the present paper, we describe a simple physical system
where spin resonance is excited by the application of a direct
voltage. As no prior irradiation is necessary, the system ef-
fectively converts direct electric power into continuous wave
fluorescent emission. We develop a theory aimed at calculat-
ing the electromagnetic power radiated. We first describe the
dynamics of electrons in inhomogeneous electric and mag-
netic fields within a semiclassical picture. We show that
charge oscillations become interdependent of the spin mo-
tion. This results in a system characterized by a single degree
of freedom which sets the frequency of electron oscillations

or equivalently, the frequency of spin resonance. We refer to
this system as a spin oscillator. We then calculate the fluo-
rescence of spin resonance by computing the interaction of a
two level quantum system with the field and by assuming
coupled resonant oscillators which oscillate in phase. We
compute the probability of photons being emitted in se-
quence which, under specific conditions, dramatically en-
hances the microwave output power. The theory is valid for
all regimes of spontaneous emission and obtains all physical
parameters of the system. Approximations of the theory for
different regimes of emission are given and discussed.

The paper is organized as follows. Section II describes the
dynamics of spin oscillators in a gradient of magnetic field.
This yields both the oscillator dispersion curve and the rate
at which electrons are injected from the electrode into indi-
vidual oscillators. Section III reports the renormalization of
the energy and lifetime of spin states caused by the interac-
tion of the spin system with the field. We derive the rate of
spontaneous decay and plot its time dependence for a spin
oscillating in the magnetic field gradient. Section IV calcu-
lates the probability for the sequential emission of multiple
photons and photon antibunching. We then sum all possible
processes and derive an exact expression for the microwave
power output by the magnetic field gradient region. Section
V comments on the theoretical results and the assumptions
on which they are based. Section VI is a summary of our
findings.

II. ELECTRON DYNAMICS IN A MAGNETIC
FIELD GRADIENT

We consider electrons confined to a two-dimensional
plane and modulated by a spatially variable magnetic field.
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The fabrication of small magnetic elements at the surface of
a quantum well8–11 provides a simple route for achieving
such modulations. Figure 1 shows the section of two-dimen-
sional carriers covered by a rectangular magnetic stripe mag-
netized perpendicular to the channel. Its stray magnetic field
threads the two-dimensional electrons system with a vector
component B0 in the plane and a second magnetic field vec-
tor component B1 perpendicular to the plane. We shall as-
sume that these magnetic fields only affect the rectangular
area of the two-dimensional electron gas �2DEG� underneath
the magnet and are zero everywhere else. Within this area,
which we refer to as the magnetic waveguide, B0 is constant
and B1 varies linearly in the transverse direction �z axis�. We
write B1=bz, where b is the magnetic field gradient. The
center of the channel at z=0 is the boundary where the two
regions of opposite magnetic fields meet. Across this line, the
magnetic potential has a double potential well which con-
fines electrons in magnetic edge states. These allow a drain-
source current to flow without dissipation. Reflections at the
edges of the magnetic well cause a transverse oscillatory
motion which combines with the longitudinal drift into
snakelike orbits.12 In Fig. 1, the strength of the magnetic
confinement is limited by the strength of the ferromagnet.
We will calculate the amplitude of largest oscillations and
show that it is comparable to the distance separating the
magnetic poles. This means that magnetic edge states with
smaller amplitude will be unaffected by the finite width of
the 2DEG. This also makes the magnetic field gradient ap-
proximation appropriate as real structures only have a con-
stant magnetic field gradient between their poles.13–16 Mag-
netoelectric edge states will also form at the edges of the
channel; however, these experience magnetic fields keeping
the same sign which give none of the spin resonant effects of
interest here.

Magnetic edge state trajectories are bent by the Lorentz
force and by the Zeeman force which pulls the electron mag-
netic dipole moment. The latter results in the weakest effects
of the two forces but it nevertheless controls motion at the
center of the channel where the oscillations are the fastest.
The Zeeman force oscillates at the frequency of Larmor pre-
cession because it is proportional to the �x component of the
magnetic dipole moment and this quantity oscillates at the
Larmor frequency. Given that the precession motion is about
B0, the Larmor frequency is given by �0=−�B0, where � is
the spin gyromagnetic ratio. When the frequency of trans-
verse oscillations and the Larmor frequency matches, the
Lorentz force is magnified by the Zeeman force. Since the
Lorentz force depends on the magnetic field whereas the
Zeeman force depends on the magnetic field gradient, one
finds a band at the center of the channel where oscillations
are mainly driven by the Zeeman force. The point at which
both forces balance is

lZeeman = �g*m*

g0m0
�� 1

kF
� , �1�

where kF=�2�ns is the Fermi wave vector in the 2DEG, ns is
the electron density per unit area, g* and m* are the Landé
factor and the electron effective mass in the 2DEG, and g0
and m0 are the Landé factor and mass of the free electron in
vacuum. In most semiconductors, lZeeman is of the order of
0.4–4 nm. Since the maximum amplitude of oscillations is
on the scale of a few hundred nanometers, the pull on the
spin will generally be negligible. As a result, it is sufficient to
compute the dynamics of a Fermi electron by only consider-
ing the action of the Lorentz force.17 A semiclassical picture
gives an appropriate level of description to the problem.18,19

Starting from Newton’s equation of motion, we obtain by
integration the vector components of the velocity at the
Fermi level:

�bẎ = cos���/2 − Z2, �2�

��bŻ�2 = �cos2��/2� − Z2��Z2 + sin2��/2�� , �3�

where we introduce the dimensionless coordinates Y �y / lb
and Z�z / lb which are expressed in units of lb

�2�	kF / �eb�. Similarly, the characteristic time scale of the
system is �b�m* /�	kFeb. It is easy to show that lb is the
maximum swing an oscillator can have and that �c=1/�b is
the maximum angular frequency an oscillator can have. The
quantity � which parametrizes the different oscillators arises
from the constant of integration which states that at Z=0 the
electron velocity is 	0,vF cos��� ,vF sin���
. Hence, � is the
angle at which an orbit crosses the line B1=0. Typically for
an InAs quantum well where b=2
106 T m−1, ns=1
1011

cm−2, we find lb=323 nm and �c=2.47
1012 rad s−1.

A. Transverse electron oscillations

Equation �3� describes an oscillator swinging between
two extrema at ±cos�� /2� where the velocity cancels. We
seek to parametrize the position of this oscillator as a func-
tion of time t by integrating Eq. �3�. We obtain

FIG. 1. �Color online� Electrically induced electron spin reso-
nance in a semiconductor quantum well subjected to crossed mag-
netic fields. The fringe magnetic field emanating from the stripe has
a vector component B1 normal to the two-dimensional electron gas
and a vector component B0 in the plane. The B0 component is
essentially constant over the 2DEG, while the B1 component
changes sign at the center of the channel. A drain-source current is
applied which causes electrons to oscillate in the gradient of mag-
netic field B1 and to radiate microwaves. A bias applied to the
magnetic gate modifies the oscillator frequency hence the emission
frequency.
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t = �bF��,�� , �4�

where F is an elliptic integral of the first kind:20

F��,�� = �
0

� d�

�1 − cos2��/2�sin2���
, �5�

and �=arcsin �Z2 / �cos2�� /2��Z2+sin2�� /2��. The constant
of integration assumes that at t=0 the particle starts from
�Y ,Z�= �0,0�. A quarter of the period later, the oscillator
reaches the apex of the orbit at Zmax=cos�� /2�. By inserting
this value into Eq. �4�, we obtain the oscillator period as T
=4�bF�� /2 ,��. The fundamental frequency of the oscillator
follows as �=2� /T. We then write the position of the oscil-
lator as a Fourier expansion of the fundamental frequency
and obtain21

Z�t� = a0 + �
i=1




�an cos�n�t� + bn sin�n�t��

= �
k=0




b2k+1 sin��2k + 1��t� , �6�

where

b2k+1 =
4

�2k + 1���0

Zmax

dZ cos
�2k + 1�
�

2

F��,��
F��/2,��� .

�7�

The oscillators described by Eq. �3� present very interesting
properties. Figure 2 shows the three categories of orbits
present in the waveguide which we classify according to
their drift velocity. Panels �a� and �b� represent orbits with

small � values, positive drift velocity, small oscillator fre-
quency, and large amplitude oscillations. Panels �c� and �d�
show “8-shaped” orbits which are stationary. Panels �e� and
�f� display orbits with large � values, which have a negative
drift velocity, fast oscillator frequency and small amplitude.
It is clear from this figure that these oscillators cover a range
of frequencies when � is varied between 0 and �. A remark-
able property is that this frequency range is finite. The upper
frequency �c corresponds to orbits �=� which gives
F�� /2 ,��=� /2 and �c=�b

−1. The lower boundary is �=0 at
�=0. Mathematically speaking, the elliptic integral in Eq. �5�
is not defined for �=0 or �. The physical reason is that along
the B1=0 line, electrons move as free particles independent
of the value of the magnetic field gradient.

A second observation relates to the anharmonicity of the
oscillators described by Eq. �3�. Figure 2 shows that their
harmonic content depends on � and is particularly rich close
to �=0. The reason is evident from Fig. 2�a� where the ap-
proach to the center of the waveguide is asymptotically long.
By setting �=0+ in Eq. �3�, we find this approach to be
exponential,

Z�t� =
2 exp�±t/�b�

1 + 4 exp�±2t/�b�
. �8�

(a)

(b)

(c)

FIG. 3. The range of heights ��Z� from which an electron may
enter the waveguide into orbit �. �a� Shows that orbits cutting the
center at a large angle are injected between Z=0 and the apex of the
orbit at Zmax=cos�� /2�. �b� Shows orbits with intermediate angle �
which may start with initial velocity transverse to the waveguide.
�c� Shows orbits with small � that drift in the opposite direction.

FIG. 2. Semiclassical trajectories of two-dimensional electrons
in a magnetic field gradient for three different values of the angle �
at which the trajectory cuts the center of the channel ��a�, �c�, and
�e��. Panels �b�, �d�, and �e� plot the Fourier spectra of the trans-
verse oscillatory motion at the corresponding values of �.
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The asymptotic trend is identical at long times independent
of whether the argument of the exponential is positive or
negative. Interestingly, the time scale of the approach is the
characteristic time of the system: �b. At large values of t,
Z�t��exp�−�t� /�b�. This causes the oscillator period to di-
verge and explains why the frequency drops to zero at �=0.
If instead one considers fast oscillators at the other end of the
spectrum ��= ±��, the amplitude of oscillations becomes
vanishingly small. Setting Zmax�1 in Eq. �3�, the magnetic
potential becomes parabolic and takes the familiar form of a
harmonic oscillator:

Ż2 + �b
−2Z2 = 0. �9�

One verifies that the fastest oscillators have frequency
�c=�b

−1. Figure 2�f� shows that the harmonics of the funda-
mental frequency do not become noticeable until � is smaller
than � /2. We find that it is a sensible approximation to con-
sider oscillators in the interval �� /2 ,��, as harmonic oscil-
lators. Anharmonic oscillators for ��� /2 will experience a
complex periodic magnetic field resulting in satellite reso-
nances to the fundamental spin resonant line. In the reference
frame of the oscillating electron, its spin will experience a
time dependent magnetic field B1�t�=blbZ�t�.

B. Supply function

We now calculate the fraction n���d� of the drain-source
current injected into open orbits between � and �+d�. We

make the assumption that the current is carried by magnetic
edge states at the center of the waveguide ignoring the mag-
netoelectric states at its edges. We include in mode � all
orbits, not only those starting from Z=0 at the edge of the
waveguide but also those entering the waveguide at finite
height, Z0. The orbits within mode �, therefore, connect to
the electrodes over a range of heights, comprised between
Zmin and Zmax, within which the open orbit is accessible to an
electron coming from the electrode. Zmin depends on whether
the drift velocity is positive or negative and within the latter
case whether � is larger or smaller than � /2. The three cases
are depicted in Fig. 3. We calculate n��� by summing the
velocities of incoming electrons in the interval Zmin to Zmax
and by normalizing by the total number of injected electrons:

n��� = 2�
I

2e

�
Zmin

Zmax

dZ0	vy��,Z0,t�


�
0

�

d��
Zmin

Zmax

dZ0	vy��,Z0,t�

. �10�

The velocities are calculated for one-dimensional states
which have a probability exp�−t /�� to remain unscattered at
time t:

	vy
 =
1

�
�

0




dt exp�− t/��vy��,z0,t� . �11�

By inserting Eqs. �6� and �7� into Eq. �2�, we obtain

	vy

vF

= cos � − 2	Z2


= cos � − �
k=0




�
k�=0




b2k+1b2k�+1
 cos�2�k − k���t0� + 2�k − k���� sin�2�k − k���t0�
1 + �2�k − k�����2

−
cos�2�k + k� + 1��t0� + 2�k + k� + 1��� sin�2�k + k� + 1��t0�

1 + �2�k + k� + 1����2 � . �12�

When ���1, Eq. �10� simplifies to

	vy

vF

= cos��� − �
k=0




b2k+1
2 . �13�

Figure 4�a� shows the range of heights within which an
orbit � is accessible to an electron of the source. The top of
this range is Zmax since no electron can be injected above the
apex of the orbit. Orbits between � /2 and � have a longitu-
dinal velocity which oscillates while keeping a constant
negative sign. This allows electrons to be injected from
height Z=0. Below � /2, the longitudinal velocity changes
sign at Zmin=cos��� /2: it is positive for Z�Zmin; however,
since electrons incoming into the waveguide have negative

velocity, the range of injection heights will be Zmin�Z0

�Zmax. The vertical line in Fig. 4 corresponds to the change
of sign of the electron average drift velocity. This quantity is
plotted in Fig. 4�b� for �=
 �dotted curve� and �=1 ps �solid
curve� using Eqs. �12� and �13�. When � approaches �, the
average drift velocity is close to the Fermi velocity. This
enables fast oscillators to carry a large current. Figure 4�c�
plots the supply function into individual open orbits. The
area under the curve in the �0,�c� �respectively, ��c ,��� in-
terval is unity.

We complete the analysis of the longitudinal motion by
calculating the “wavelength” of an open orbit, ����. This is
the distance covered in the y direction during one period of
the oscillator. Using Eqs. �4� and �13�, we obtain
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���� = �Y�t = T� − Y�t = 0��

= 2lbF��/2,���cos��� − �
k=0




b2k+1
2 � . �14�

It follows that the wavelength of the fastest oscillators is
����=�lb. It is useful to note that despite the vanishing am-
plitude of oscillations, the wavelength remains finite and
relatively large. The wavelength represents the minimum dis-
tance over which spin coherence must be conserved for the
spin to experience a periodic magnetic field. The magnetic
length must therefore be as small as possible for observing
spin Rabi oscillations.

Having described the dynamics of the electron oscillator,
we now calculate the dynamics of its spin and its interaction
with the electromagnetic field.

III. RADIATIVE EMISSION RATE

In the magnetic waveguide, the magnetic field B0 splits
the spin degenerate states into a ground and an excited state
��g
 , �e
�. In addition, the spin senses the ac magnetic field
B1�t� arising from oscillations in the magnetic field gradient.
Electron spin resonance takes place when both frequencies
match, namely, at �=�0. In addition, the spin interacts with
the magnetic component of the electromagnetic field, Bphot,
which accounts for radiative losses by spontaneous emission.
Since the oscillating magnetic field B1 does not increment or
decrement the number of photons in the system, we solve the
radiative problem by considering the two quantum states
��g ,0
 and �e ,0
� dressed by the ground state of the field
�Fig. 5�. The field is here assumed to be empty as photons
spontaneously emitted escape to infinity. Those two quantum
states interact with the electromagnetic continuum �g ,k� , p
,
where k� and p are the photon wave vector and polarization.
The Hamiltonian of the system is

H = H0 + VB�t� + Vphot�t� , �15�

H0 = − �SzB0, �16�

VB�t� = − �SxblbZ�t� , �17�

Vphot�t� = − �S� · B� phot�t� . �18�

We aim to find the time evolution of the quantum system
and first calculate the Green’s operator G�z±�= �z±−H�−1 in
the basis of states ��g ,0
 and �e ,0
�. We have used �
=−e / �2m0� as the spin gyromagnetic ratio and z±=E± i�,
where E is the energy. The Green’s matrix in the two level
subspace is


Ggg Gge

Geg Gee
� =

1

�

z − Ee − �ee �ge

�eg z − Eg − �gg
� , �19�

where

� = �z − Eg − �gg��z − Ee − �ee� − �eg�ge. �20�

It is sufficient to calculate the self-energies �gg, �ee, �ge
to first order in the magnetodipole interaction since the cou-
pling to the electromagnetic field is weak.

�ee = 	�e − i
	�e

2
, �21�

�e =
1

	
���

k,p

�	e,0�Vphot�g,k�,p
�2

E − Eg − 	� � , �22�

�e =
2�

	
�
k,p

�	e,0�Vphot�g,k�,p
�2��E − Eg − 	�� . �23�

For the ground state, one obtains �gg=	�g. Radiative de-
cay from the ground state is forbidden by conservation of
energy and consequently �g=0. The only nonzero term is the
real energy shift:

�g =
1

	
���

k,p

�	g,0�Vphot�g,k�,p
�2

E − Eg − 	� � . �24�

The off-diagonal self-energy �ge features different spin
states with the same photon number. These are coupled via
the oscillatory field B1�t�. We have

FIG. 4. �a� The clear area represents the range of heights at the
edge of the waveguide from which an electron in the source can be
injected into orbit �. �b� Electron drift velocity as a function of � for
�=1 ps �solid curve� and �=
 �dotted curve�. �c� Electron supply
function into orbit �.

FIG. 5. Energy diagram of spin resonance fluorescence. The two
spin states �g
 and �e
 are coupled via the ac magnetic field arising
from electron oscillations in the magnetic field gradient. At reso-
nance Rabi, oscillations occur at frequency �1 without the creation
or annihilation of a photon—�g ,0
 and �e ,0
 have the same photon
number. The excited state decays by spontaneously emitting pho-
tons with random polarization and direction at rate �.

ELECTRICALLY INDUCED SPIN… . I. THEORY PHYSICAL REVIEW B 76, 075311 �2007�

075311-5



�ge = 	g,0�VB�e,0
 = − �blbb2k+1	g,0�Sx�e,0
 = −
	�1

2
,

�25�

where �1=�blbb2k+1 is the Rabi frequency of mode 2k+1.
This interaction hybridizes the quantum states, shifting their
energy levels and modifying their lifetimes. To obtain the
eigenenergies, we solve the following effective Hamiltonian:

Hef f = � Êg �ge

�eg Êe − i	
�e

2
� , �26�

where we have set

Êg = Eg − �g, �27�

Êe = Ee − �e. �28�

The effect of switching on the interaction between the
spin and the electromagnetic field is to lower the spin energy
levels by an amount equal to the self-energy. This results in
the spin resonance emission line being shifted by �g−�e.

We calculate the rate of spontaneous decay from the ex-
cited state using the Fermi golden rule in Eq. �23�. For this,
we assume that the electromagnetic modes within the semi-
conductor have a three-dimensional density of states and the
velocity of light in the semiconductor is c /��r, where �r is
the relative dielectric constant. We insert in Eq. �18� the
magnetic field component of the electromagnetic field:4

B� phot =
i

c
� 	�

2�r�0L3 �an�eik�r� − a†n�e−ik�r�� , �29�

where a and a+ are the creation and annihilation operators of
a photon of energy 	�, �0 is the dielectric constant of
vacuum, L3 is the volume of the field, and n� is the unit vector
aligned with the direction of the magnetic polarization. After
integration over the final states in Eq. �23�, we obtain

�e =
2�

	
�

a
�
k�,p

�	a,k�p�Vphot�b,0
�2��Eb − Ea − 	��

=
1

3

�g�B�2k3

ce2 � , �30�

where �B is the Bohr magneton, k=��r� /c is the photon
wave vector, and �=e2 / �4��0	c��1/137 is the fine struc-
ture constant. The electromagnetic field couples to the Sz
component of spin only. The magnetodipole radiative rate is
quite weak since even at the top frequency of spin oscilla-
tors, 500 GHz, one has �=3.92
10−4 s−1. In a typical
2DEG, one has of the order of N=1010 spins oscillating at
the same frequency and possibly in phase by interacting
through the electromagnetic field that they emit. Under these
conditions, the radiative scattering rate increases to �SR
=N� through super-radiant emission.22–27 We will develop
this idea when calculating microwave emission spectra in the
following paper.28

The diagonalization of Eq. �26� gives the following en-
ergy eigenvalues:

E± = Ê0 �
	�

4
��� − i

	�

4
�1 � ��/�� . �31�

We have used Ê0= �Êg+ Êe� /2, �eg=�− �Êe− Êg� /	, and

� =
��eg�
�/2

, �32�

� =
�

− sgn��2� + �1 + �2
, �33�

�2 = �1
2 + �eg

2 −
�2

4
, �34�

� =
���eg�
��2�

. �35�

Figure 6�a� plots the real part of E± which shows the
hybridization of the dressed states near resonance. Figure
6�b� shows the imaginary part of the energy which represents
their rate of decay. When the oscillator is resonant with the
transition frequency, the eigenstates form an even mix of
spin up and spin down states. The explanation is that during
Rabi oscillations the spin spends the same amount of time in

(a)

(b)

FIG. 6. Energies �a� and lifetimes �b� of two metastable spin
states �g
 and �e
 plotted as a function of the detuning frequency
�see text�. The spin states interact through an ac magnetic field �1

and couple to the electromagnetic continuum at a rate �. The curves
are given for different values of the ratio r=�1 / �� /2�. The origin in

energy was arbitrarily set at Ê0.
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the ground state and the excited state. The energy gap, 	�1,
gives the rate at which these oscillations take place. In the
lower panel, the hybridized states radiate at the same rate of
� /4. This is because state �e ,0
 has an equal weight in both
hybrid states. Further from resonance, the radiative lifetimes
of hybridized states tend to the radiative lifetimes of states
�g ,0
 and �e ,0
. If one reduces the Rabi coupling below the
rate of spontaneous decay, hybridization disappears even at
resonance. This is because the coupling between states �g ,0

and �e ,0
 needs time to establish itself which does not hap-
pen if the state decays too rapidly. Returning to the magnetic
waveguide, those spin oscillators which have small ampli-
tudes will couple more strongly to the electromagnetic field.
This is because they experience a vanishingly small mag-
netic field B1�t� and therefore satisfy the condition �1

�� /2.
In Fig. 1, the spin starts from the source electrode initially

prepared either in state �g ,0
 or �e ,0
. We now calculate its
evolution toward the excited state �e ,0
 as a function of time.
The probability of spontaneous emission between t and t
+dt is the probability of occupancy of the excited state times
the rate of spontaneous decay. We obtain the probability of
evolution toward the excited state by contour integration of
matrix elements in Eq. �19�

U�t� =
1

2�i
�

C

dze−izt/	G�z� . �36�

For the spin initially prepared in state �g ,0
, we obtain

Ueg�t� =
− 	�1/2�e−iE+t/	 − e−iE−t/	�

E+ − E−

=
i�1

��/2�

sin
��� − i�−1�
�t

4
�

��� − i�−1�
e−iÊ0t/	e−�t/4. �37�

A similar calculation for a spin injected from state �e ,0

gives

Uee�t� =
�E+ − Ẽg�e−iE+t/	 − �E− − Ẽg�e−iE−t/	

E+ − E−

= �cos
��� − i�−1�
�t

4
�

− �1 + i��
sin
��� − i�−1�

�t

4
�

��� − i�−1�
�e−iÊ0t/	e−�t/4.

�38�

The probability that a photon is emitted between time t
and t+dt is given by ��Ueg�t��2 if the spin starts from state
�g ,0
 and ��Uee�t��2 if it starts from �g ,0
. The probability
from �g ,0
 to �e ,0
 is easily calculated as

��Ueg�t��2 =
�

2

�1
2

�1
2 + �2

2 �cosh��2t� − cos��1t��e−�t/2, �39�

where �1= �� /2���� and �2= �� /2��� /�. One also verifies
that

�
0




dt��Ueg�t��2 = 1. �40�

In order to describe the properties of single photon emis-
sion which are contained in Eqs. �37� and �39�, we start by
separately discussing the regime of strong coupling to the
electromagnetic field ����1� and the weak coupling regime
����1�. In the strong coupling regime, �1 and �2 approxi-
mate to

�1 = �eg�1 + �� , �41�

�2 =
�

2
�1 − �� , �42�

where �=
�1

2/2

�eg
2 +�2/4

�1. At resonance, �1 vanishes with the
consequence that in Eq. �39�, the frequency of spin flip os-
cillations cancels. Inserting Eqs. �41� and �42� in Eq. �39�
gives at long times an emission probability which decreases
very slowly: ��Ueg�t��2���1

2 / �� /2��exp�−��t /2�. The spin
injected from the excited state will initially decay rapidly at
a rate � /2 and then at a slower rate �� /2. By contrast, the
spin initially prepared in the ground state cannot decay ra-
diatively. This is shown in Fig. 7�a� where the emission prob-
ability is small even at resonance. Figure 7�b� shows the
exponential decay from a spin prepared in the excited state.

In the weak coupling regime �1�� /2, �1 and �2 ap-
proximate to

�1 = � , �43�

�2 =
�

2

��eg�
�

. �44�

This regime corresponds to the development of Rabi os-
cillations seen in Fig. 8 as the electron progresses into the
waveguide. In Fig. 8�a�, the spin initially in state �g ,0
 has a
significant probability of flipping into state �e ,0
 at the end
of the first half period. Rabi oscillations therefore enable a
spin injected into the nonradiative ground state to emit a
photon at well defined time intervals. It is notable that oscil-
lations are less damped at resonance showing that spontane-
ous emission will take place at distances well beyond the
exponential decay length. In Fig. 8�b�, the spin is injected
from the excited state. Its probability in the excited state
decays while oscillating. The resonant beats die out at a
slower rate than the nonresonant beats.

We have therefore investigated the conditions by which a
spin prepared parallel or antiparallel to B0 proceeds into the
waveguide and radiates while performing coherent oscilla-
tions. We have discussed the strong and the weak coupling
regime. The strong coupling regime corresponds to fast os-
cillators at the edge of the dispersion curve �����, whereas
the weak coupling regime corresponds to the slower oscilla-
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tors at its center which experience a large amplitude ac mag-
netic field. We will now be using the above results to calcu-
late the power generated by a sequence of radiative decays
emanating from an oscillator as it performs Rabi oscillations.

IV. PHOTON ANTIBUNCHING AND RADIATIVE
CASCADE

We define pg
�1��t� as the probability that a spin injected

from the ground state has emitted one photon and one photon
only after a time t in the waveguide. This is expressed as

pg
�1��t� = �

0

t

dt1��Ueg�t1��2. �45�

During the same time interval, the oscillator may have emit-
ted a first photon at time t1 �t1� t� and a second one in the
remainder of the interval. The probability of this two photon
process is the product of the one photon probabilities
summed over all possible times for the emission of the first
photon. After the emission of the first photon, coherent Rabi
oscillations will always restart from g. For the spin initially
in the ground state, the two photon probability is

pg
�2��t� = �

0

t

dt1�
0

t1

dt2�2�Ueg�t1 − t2��2�Ueg�t2��2. �46�

In the same way, the probability of a three photon event is

pg
�3��t� = �

0

t

dt1�
0

t1

dt2�Ueg�t1 − t2��2


 �
0

t2

dt3�3�Ueg�t2 − t3��2�Ueg�t3��2. �47�

For an electron starting from �e ,0
, we have similarly

pe
�1��t� = �

0

t

dt1��Uee�t1��2. �48�

For multiple photon emission starting from �e ,0
, the
emission probability is given by Uee during the first time
interval and by Uge in the following ones. We therefore write

pe
�2��t� = �

0

t

dt1�
0

t1

dt2�2�Ueg�t1 − t2��2�Uee�t2��2 �49�

and

pe
�3��t� = �

0

t

dt1�
0

t1

dt2�Ueg�t1 − t2��2�
0

t2

dt3�3


�Ueg�t2 − t3��2�Uee�t3��2. �50�

(a)

(b)

FIG. 7. �Color online� Probability of emission of one photon as
a function of the time spent by the electron oscillating in the wave-
guide. In the strong coupling regime shown here �r=0.5�, radiative
decay occurs on the scale of � /2 for electrons entering the wave-
guide in the spin down state �r��1 / �� /2��. Radiative decay is
quasi-nonexistent from electrons prepared in the spin up state.

(a)

(b)

FIG. 8. �Color online� Probability of emission of one photon as
a function of time spent by the oscillator in the waveguide. In �a�
��b��, the electron enters the waveguide in the spin state of low
�high� energy. In the weak coupling regime shown here �r=5�, Rabi
oscillations occur and prolong radiative emission beyond 2/�.
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Figure 9 plots the probability that a single photon, or two
photons, or three photons have been emitted after a certain
time. These probabilities were obtained by integrating nu-
merically Eqs. �30�–�36� when the frequency of the oscillator
is resonant with the frequency of the transition in the weak
coupling regime, �1=5�� /2�. The top �bottom� graph plots
the three probabilities for a spin oscillating from state e �g�.
Naturally, pe

�1� rises rapidly as the electron decays from the
metastable initial state. The onset of the pe

�2� and pe
�3� prob-

abilities is seen to take place at later times as these events,
respectively, require the one and two photon processes to
have established themselves prior to the emission of the next
photon. In addition, the spin restarts from the ground state
after each radiative decay and requires a spin flip before it
can radiate again. This delays the emission of a photon by
half the Rabi period, an effect which is observed in the lower
panel. In the lower panel, all cascading events starting from
g are delayed relative to events starting from e. We note that
the probabilities oscillate with time. This is because the time
intervals between consecutive emissions are correlated even
if radiative events occur randomly. These periodic bursts of
radiation are predicted to occur at regular distances along the
waveguide giving photon antibunching29–31 delocalized in
space. In real structures, one will achieve r�1 giving very
fast oscillations with periodicity on the scale of the microme-
ter. For this reason, photon antibunching ought to be ob-
served by tuning the wavelength of open orbits in the wave-
guide ����=�lb. This may be done by applying a gate
voltage to change lb. It is noteworthy that the oscillations of
pg and pe are out of phase which doubles the frequency of
the fluorescence signal. Over small time scales, the probabil-
ity of emission depends on the initial spin state. This depen-
dence rapidly disappears as time increases until at longer
times, the probabilities pe

�i� and pg
�i� are no longer distinguish-

able. As a result, the fluorescence signal in a short magnetic
waveguide will depend on the spin polarization. By contrast,
the fluorescence signal of the longer waveguides is indepen-
dent of the initial spin polarization because of the loss of spin
coherence in the radiative cascade.

The fluorescence power emitted by the spin oscillator � at
time t is the photon energy multiplied by the electron injec-

tion rate n���. This is weighted with the number of photons i
released by the cascade, and the probability of the cascade
occurring at time t. The latter includes probabilities pg and pe
weighted by the spin polarization of the incoming current ng
and ne. Summing over all radiative sequences, we obtain

Pk��eg,t� = n����2k + 1�	��
i=1




i�ngpg
�i��t� + nepe

�i��t�� ,

�51�

which is the fluorescence emanating from harmonic k. Sub-
stituting Eqs. �45�–�50� in the series, we obtain

Pk��eg,t� = n����2k + 1�	�


�
0

t

d��t1�� f�t1� + 2�
0

t1

dt2K�t1,t2�f�t2�

+ 3�
0

t1

dt2K�t1,t2��
0

t2

dt3K�t2,t3�f�t3� + . . . � ,

�52�

where the initial conditions are included in the injection
function:

f�t� = ng�Ueg�t��2 + ne�Uee�t��2. �53�

We also define the kernel of the radiative cascade:

K�t,t1� = ��Ueg�t − t1��2, �54�

which describes the coherent evolution of the spin between
two radiative events taking place at t1 and t �t� t1�. We ob-
tain an exact solution for the infinite sum in Eq. �52�. We first
define the function F�t�,

F�t� = f�t� + �
0

t

dt1K�t,t1�f�t1�

+ �
0

t

dt1�
0

t1

dt2K�t,t1�K�t1,t2�f�t2� + . . . , �55�

which is a solution of Volterra’s equation,

F�t� = f�t� + �
0

t

dt1K�t,t1�F�t1� . �56�

Equation �52� then becomes

Pk��eg,t� = n����2k + 1�	�


�
0

t

d��t1��F�t1� + �
0

t1

dt2K�t1,t2�F�t2�

+ �
0

t1

dt2�
0

t2

dt3K�t1,t2�K�t2,t3�F�t3� + . . . � ,

�57�

where the supply function has been replaced by the new
function defined in Eq. �56�. The exact solution of Eq. �57� to
all orders is obtained by introducing a second function G�t�
which satisfies

FIG. 9. �Color online� Probability for the cascade emission of 1,
2, or 3 photons after a given time in the weak coupling regime �r
=5�.
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G�t� = F�t� + �
0

t

dt1K�t,t1�G�t1� . �58�

Hence, the microwave power in Eq. �52� becomes

Pk��eg,t� = n����2k + 1�	��
0

t

d��t1�G�t1� . �59�

This is an exact result that allows to calculate the fluores-
cence power to all orders of the radiative cascade. G�t� may
be calculated numerically32 by solving the system of integral
equations, Eqs. �53�, �54�, �56�, and �58�. This function is
then integrated over the dwell time in the waveguide to give
the power output by harmonic k. Equation �59� contains the
implicit dependence on the length of the waveguide. Long
waveguides, such that �t�1, will give a more intense fluo-
rescence signal as they allow longer interaction of the oscil-
lator with the field.

To calculate the power radiated by individual oscillators
parametrized by �, one sums the contribution from its har-
monics

P�����,�0,t� = �
k=0




Pk��eg,t� . �60�

The fluorescence power emanating from the waveguide is
subsequently obtained by integrating over �,

	P��0,t�
 = �
0

�

d�P�����,�0,t� . �61�

V. DISCUSSION

We have derived an exact theory of electrically induced
spin resonance fluorescence which integrates all parameters
of the system. Because cascade emission consists of ran-
domly spaced spontaneous decays, the radiation emitted is
mostly incoherent. This is if one includes antibunching and
super-radiant, effects. It is well known that the coupling of
coherent oscillators enhances the radiated power by a factor
of N2. One readily verifies this dependence here by substi-
tuting the super-radiant rate �SR=N� in Eq. �59� or Eq. �64�
and by writing explicitly that the electron injection rate
n���=NI /e is the number of resonating electrons inside the
waveguide upon the electron dwell in the waveguide. This
gives P�N2.

Another way to enhance coherence is to place spin oscil-
lators in an electromagnetic cavity.4,22 This would require
modifying the theory in the following ways. On the one
hand, the rate of spontaneous decay has to be recalculated by
summing over the discrete density of final photon states. The
emitted intensity will be enhanced at frequencies of the cav-
ity modes. On the other hand, photons reflected by the cavity
walls increase the number of photons in the cavity to a finite
number. Spontaneous decay will subsequently occur across a
ladder of dressed states from �e ,N
 to �g ,N+1
, �e ,N−1
 to
�g ,N
, etc. enhancing the intensity of emission. A photon
bath with the correct wavelength will also enhance coherence

through stimulated emission. It is, however, quite unlikely
that Maser action would be observed because the radiative
cascade does not support population inversion. A photon bath
is finally expected to split the spin resonance line into triplet
lines due to the radiative cascade between dressed spin
states.3,4

The effect of momentum scattering in the waveguide is
expected to have no effect on the fluorescence as long as
scattering occurs between spin oscillators. If an electron scat-
ters out of the waveguide toward nonmagnetic regions, the
lifetime of the relevant spin oscillators decreases according
to Eq. �11�. This problem becomes similar to spin resonance
in a metastable state such as the conduction band of
semiconductors7 or the p orbital of the hydrogen atom.2 If we
call, �=�−1, the momentum scattering rate, the new radiative
probability calculated according to Eq. �45� becomes

pg
�1� = �

0




dt��Ueg�t��2 exp�− �t� . �62�

In the regime of Rabi oscillations �1��, this probability
becomes

pg
�1� =

�

2�

�1
2

�2 + �1
2 + �eg

2 . �63�

The power radiated is

P = n	�
�

2�
�
k=0




�2k + 1�b2k+1
2 �1

2

�2 + �1
2 + ��0 − �2k + 1���2 ,

�64�

which, apart from the � / �2�� prefactor, is the result that one
obtains by considering the spin as a classical magnetic
dipole.21 If, however, momentum scattering occurs within the
bundle of open orbits, the effect on the microwave spectrum
will be small. Such transitions create a hole at one point of
the Fermi surface and fill the final state with an excess elec-
tron. The resulting change imbalance creates an electric field
which redistributes charge to screen the hole. Based on this
argument, we conclude that as long as electrons do not scat-
ter out of the bundle of open orbits, the microwave spectrum
will not be affected by elastic scattering.

VI. CONCLUSION

In summary, we have derived an exact quantum electro-
dynamic theory of electrically induced spin resonance fluo-
rescence in magnetoelectric potentials which allows calculat-
ing the microwave power emitted by spin oscillators. The
theory obtains the parameters of experimental structures. It
improves over our earlier work21 by explicitly integrating the
spin polarization of the injected current, the length of the
waveguide, and magnetodipole coupling.
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