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Electrically Induced Raman Emission from Planar Spin Oscillator
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We predict that two-dimensional electrons confined by a magnetic field gradient resonantly transfer
energy to the electromagnetic field by a process of inverse electron spin resonance that is realized when
the frequency of an open orbit equals the Larmor frequency. The calculated emission spectra show
multiple peaks modulated by strong optical nonlinearities whose frequencies may be tuned by the
magnetic field gradient and the electron concentration.
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FIG. 1. (a) Magnetic waveguide cross section. (b) A spin
polarized current is injected into the 2DES through ferromag-
netic contacts magnetized along z. The 2DES section located
below the ferromagnetic wire is subjected to both a magnetic
field gradient from the stray vector component Bx (amplitude �
level of gray) that channels electrons in snake states and a
constant Bz that sets the spin Larmor frequency.
Optical pumping with anisotropic light has long been
studied in atoms [1], impurities [2], and semiconductors
[3–5] to induce magnetic polarization or inversely to ob-
tain circularly polarized light from the recombination of a
spin polarized current [6]. Light emission from pure mag-
netodipole coupling has comparatively been difficult to
demonstrate in the solid state despite arising naturally
elsewhere [7,8]. One way for an electron spin to gain
energy is by traversing a region of spatially inhomogene-
ous magnetic field. Because of advances in microfabrica-
tion, such magnetic modulations can now be applied to
low-dimensional electron systems [9–12]. Hybrid confine-
ment by electrostatic potentials and magnetic field gradi-
ents introduce an artificial means of coupling the spin and
orbital motion to induce spin resonant effects impossible to
obtain through conventional spin-orbit coupling [13,14].

In this Letter, I demonstrate the generation of electro-
magnetic (EM) radiation through the process of inverse
spin resonance. This is realized when a spin 1=2 charged
particle is confined to a plane and subjected to both an in-
plane homogeneous magnetic field and a perpendicular
magnetic field gradient. Particles drifting in open orbits,
near a line of zero transverse magnetic field, have an
oscillatory motion that subjects the spin magnetic moment
to a periodic magnetic field. In the steady state, the mag-
netic dipole oscillator converts electrical energy into light.
The EM emission spectrum is found to peak near the cutoff
frequency of the open orbits. The amplitude and helicity of
light are, respectively, controlled by the current intensity
and the spin polarization of the injected current. The
emission lines correspond to NMR absorption frequencies
which is of interest to quantum computation [15,16].

Without loss of generality, we consider the system
shown in Fig. 1. A hard ferromagnetic wire is placed at
the surface of a semiconductor quantum well structure
containing a two-dimensional electron system (2DES)
that for illustration purposes we shall assume to be InAs.
The wire magnetization, set parallel to the z axis, induces a
stray magnetic field that has vector components Bx and Bz
at the level of the 2DES. At a depth comparable to the wire
thickness [9–11], Bz is approximately constant across the
wire and Bx is of the form Bx � bz. Electrons near the
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center of the wire keep oscillating between the Bx > 0 and
Bx < 0 regions as they drift in open ‘‘snake’’ orbits guided
by the Bx � 0 line [9,12,17]—see Fig. 1(b). In such orbits,
the electron spin views an ac magnetic field oscillating at
the snake frequency and whose amplitude grows with the
lateral extent of the snake oscillations. The electron spin
concurrently precesses around Bz at the Larmor frequency
!0 � �	Bz where 	 is the spin gyromagnetic ratio. The
cross dc and ac magnetic fields set the background for
electron spin resonance that is realized when the Larmor
frequency equals the snake orbit frequency ! � !0. Here,
however, the work done by the ac magnetic field on the
spin is transferred to the EM field, a situation reverse of
conventional magnetic resonance where the ac magnetic
field is supplied by the modes of an EM cavity. Under equal
injection of spin up and spin down currents, photon emis-
sion is linearly polarized along Bx. The role of the ferro-
magnetic contacts, shown in Fig. 1(b), is to inject a net
7-1  2005 The American Physical Society



FIG. 2. Snake state frequency as a function of initial angle �.
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magnetic moment into the waveguide so that the output
wave acquires partial circular polarization. The injection of
a spin up (down) current generates 
� (
�) photons,
respectively, to comply with the conservation of angular
momentum. As electrons progress inside the waveguide,
nonlinearity tends to equalize spin up and spin down
populations. Nonlinearity manifests here to a hitherto un-
precedented degree due to the simultaneous occurrence of
(i) a rich spectrum of harmonics in Bx�t� induced by the
anharmonicity of snake oscillations, (ii) saturation effects
and multiple photon emission due to Bx being of the same
order of magnitude as Bz. The following derivation con-
tains two parts. The frequency spectrum of snake states, the
ac magnetic field Bx�t�, and the spin injection rate into a
snake orbit are first obtained. We then describe the spin
dynamics in the waveguide and compute its EM emission
spectrum.

An appropriate description of electron dynamics in mag-
netic gradients is accessible at the semiclassical level
[18,19]. The equation of motion m� _v � �ev�B applied
to an electron with velocity v, charge �e, and effective
mass m� can be written in the form

�b _Y � cos���=2� Z2; (1)

��b _Z�2 � 	cos2��=2� � Z2
	Z2 � sin2��=2�
; (2)

where Y � y=lb and Z � z=lb are the dimensionless coor-
dinates and � is the angle at which a snake orbit crosses the
Bx � 0 line. This orbit oscillates between Z � � cos��=2�
as obtained by setting _Z � 0 in Eq. (2). The length scale
lb � 2

��������������������

hkF=�eb�

p
thus characterizes the amplitude of the

largest oscillations that occur at � � 0. Here kF �
�����������
2�ns

p

and ns is the 2DES electron density. Magnetic gradients
also introduce the time scale �b � m�=

��������������

hkFeb

p
that can be

understood by considering an orbit which touches the Z �
1 line. Such an orbit never completes a full turn because it
approaches the Z � 0 line asymptotically such that Z /
exp��t=�b�. An InAs quantum well with ns �
1� 1015 m�2 and subjected to a magnetic gradient b �
2� 106 T=m would have lb � 323 nm and �b � 0:41 ps.

After integrating Eq. (2), we find the time dependence of
Z to be t � �bF��; �� where F is the elliptic integral [20]

F��; �� �
Z �

0

d���������������������������������������������
1� cos2��=2�sin2���

p (3)

and � � arcsin
������������������������������������������������������������������
Z2=fcos2��=2�	Z2 � sin2��=2�
g

p
. At a

quarter of the period, Z � cos��=2� so that the snake orbit
period is given by T � 4�bF��=2; ��. Since Eq. (2) de-
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scribes an anharmonic oscillator, we seek Z�t� as a Fourier
expansion of the fundamental frequency ! � 2�=T. The
antisymmetry of the magnetic field Bx�z� � �Bx��z� and
its translational invariance along y simplify the integration
of the Fourier coefficients and after integration by parts,
one obtains

Z�t��
X1
k�0

b2k�1 sin	�2k�1�!t
;

b2k�1�
4

�2k�1��

Z cos��=2�

0
dZcos

�
�2k�1��

2

F��;��
F��=2;��

�
:

(4)

Hence the ac magnetic field experienced by the electron
spin in snake orbit � is Bx�t� � blbZ�t�.

Figure 2 shows the frequency of snake oscillations as a
function of �. As � ! 0, snake orbits tend to approach the
Z � 0 line asymptotically and therefore have infinite pe-
riod. As � ! �, the oscillator frequency presents a cutoff
at !c � 0:16�2��=�b. When �� �, snake oscillations are
quasisinusoidal and become more complex as � ap-
proaches 0.

The ferromagnetic electrodes attached to the magnetic
waveguide in Fig. 1(b) inject spins at a rate n0 � !I=e
where ! � �I" � I#�=I is the spin polarization [21]. As
these enter the magnetic gradient at Y � 0, they distribute
among accessible snake states according to a function n���
that we now calculate. A snake orbit is accessible if the
height of the incoming spin (Z0) is within a certain range
�Z � Zmax � Zmin. Zmax � cos��=2� and corresponds to
injection at the snake orbit maximum—set _Z � 0 in
Eq. (2). Zmin �

������������������
cos���=2

p
corresponds to injection into

an orbit with vanishing longitudinal velocity—set _Y � 0
in Eq. (1). �Z is plotted as the blank region in Fig. 3(a).
The sum of all current contributions in this range gives
n���. Each snake orbit carries a current proportional to
hvyi� � ��1

R
1
0 dtvy exp��t=�� where � is the momentum

scattering time. Using Eqs. (1) and (4) one finds
hvyi�

vF
� cos��� �

X1
k�0

X1
k0�0

b2k�1b2k0�1

�
cos	2�k� k0�!t0
 � 	2�k� k0�!�
 sin	2�k� k0�!t0


1� 	2�k� k0�!�
2

�
cos	2�k� k0 � 1�!t0
 � 	2�k� k0 � 1�!�
 sin	2�k� k0 � 1�!t0


1� 	2�k� k0 � 1�!�
2

�
; (5)

where t0 � �bF	��Z0�; �
 is the time taken by the electron trajectory to reach height Z0. The full line in Fig. 3(b) shows the
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average snake velocity in the diffusive regime correspond-
ing to � � 1 ps. Interestingly, this velocity reverses at a
critical angle, �1psc � 60�. This occurs because of the for-
mation of the two types of orbits shown in the inset to
Fig. 3(b). In the special case of the ideal 2DES (� ! 1),
Eq. (5) reduces to hvyi=vF � cos��� �

P
1
k�0 b

2
2k�1 and

one recovers the critical angle �1c � 49� obtained by
Evers et al. [19]— see dotted line plots. Since snake states
in the ranges �� � 	0� �c
 and �� � 	�c � �
 carry
opposite currents, n��� writes as

n��� � n0hhvyi�i�Z=hhhvyi�i�Zi��
: (6)

Equation (6) is plotted in Fig. 3(c). The injection rate is
higher into fast traveling orbits and one verifies that n���
averages to n0 over the �� and �� intervals.

The time evolution of the magnetic moment m�t� carried
by a statistical ensemble of spins inside the waveguide
must satisfy

_m � n���$�ez � 	m� B�t� �m=�s: (7)

The first term to the right describes the rate of change of m
due to the injection of magnetic moments $� � g$B=2
where g is the Landé factor and $B the Bohr magneton.
The middle term reduces to the classical rate of change of
m induced by the magnetic torque acting on m [22].
Finally the magnetic moment may decay as a result of
electrons exiting the waveguide, scattering out of a snake
orbit or as a result of spin relaxation. The momentum
scattering time being shorter than both the electron dwell
time in the waveguide and the spin lifetime in semicon-
ductors [3,5], we take �s � �. After making the standard
change of variable m� � mx � imy, Eq. (7) becomes
FIG. 3. (a) The interval between the two hatched areas corre-
sponds to the range of � values accessible to a snake orbit
crossing a point of height Z. (b) Average snake velocity and
(c) spin injection rate into snake orbit � when � ! 1 (dotted
line) and � � 1 ps (full line). The inset trajectories in (b) drift in
opposite directions when � < �c and � > �c.
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_mz � n$� � i!1�m� �m��Z�t�=2�mz=�s
_m� � �i	!0m� �!1mzZ�t�
 �m�=�s;

(8)

where !0 � �	Bz, !1 � �	blb and Z�t� is given by
Eq. (4). Equation (8) is a nonlinear system that we solve
using Bloembergen’s ansatz [22,23]. Namely, one seeks
solutions in the form of a polynomial expansion in powers
of the ac magnetic field: mz �

P
1
q�0 !

q
1
�q�mz and m� �P

1
q�0 !

q
1
�q�m�. The time dependence of coefficients �q�mz

and �q�m� is in turn expanded as a Fourier series: �q�mz �P
�1
p��1

�q�
p mz exp�ip!t� and �q�m� �

P
�1
p��1

�q�
p m� �

exp�ip!t�. Substitution into Eq. (8) gives

�q�
p mz �

X1
k�0

b2k�1

4	ip!� �s


�
�q�1�
p��2k�1�m� �

�q�1�
p��2k�1�m�

�
�q�1�
p��2k�1�m� �

�q�1�
p��2k�1�m�

�

�q�
p m� �

X1
k�0

�b2k�1

2	ip!� i!0 � �s


�

�
�q�1�
p��2k�1�mz �

�q�1�
p��2k�1�mz

�
(9)

for q > 0 where �s � 1=�s. At order 0 (q � 0), �0�
0 mz �

n$��s, and �0�
p mz � 0 for p � 0 while �0�

p m� � 0 for all p.
The magnetic moment at order 1 is obtained by substituting
the terms of order 0 into Eq. (9). Subsequent corrections to
higher order are calculated recursively using Eq. (9). The
instantaneous work done by the field on the magnetic
moment follows as � _m �B. This is averaged over the
snake orbit period to find the average absorbed power
[p���]. In the steady state this power is radiated because
spin lattice relaxation is completely negligible over the
precession period. We calculate p��� to the third order
and find terms of the form p � �1�p� �3�p0 �

�3�p3! �
�3�p!. The leading term is:

�1�p �
n 
h!
8

X1
k�0

�2k� 1�b22k�1

�
!2

1

	!0 � �2k� 1�!
2 � �2
s

�
!2

1

	!0 � �2k� 1�!
2 � �2
s

�
(10)

Equation (10) shows that the emission spectrum consists
of two series of peaks at ! � �!0=�2k� 1�. The positive
series corresponds to 
� photons emitted by spin up
injection (n > 0) whereas the negative series accounts for

� photon emission from down spins (n < 0). The main
peak at k � 0 occurs when the Larmor frequency is reso-
nant with the fundamental frequency of the snake oscilla-
tor. The emission lines k � 1; 2 . . . are the resonances with
the harmonics of the ac magnetic field. Their amplitude is
usually comparable to the main resonance because the
lower frequencies in Fig. 2 are produced by snake orbits
near �� 0 that display the greatest anharmonicity.
Figure 4 plots Eq. (10) (dotted lines) for three values of
the Larmor frequency around !c. As the Larmor frequency
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FIG. 4. Number of photons emitted by snake orbit � per spin
injected in the waveguide for three Larmor frequencies !0. (� �
1 ps, b � 2� 106 T=m, m� � 0:023m0, g � �15).

FIG. 5. Number of photons emitted per spin injected in the
waveguide when I > 0 (full line) and I < 0 (dash-dotted line).
The power radiated by the oscillating snake current is shown as
the straight dotted line (! � 10%; I � 1 $A).
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increases from 0:31!c to 2:82!c, the k � 0 resonance
shifts to higher values of �. It then disappears when it is
no longer possible to find a snake frequency matching the
Larmor frequency. In the top panel, the only resonances
left are those involving the higher harmonics of the ac field
that satisfy !0=�2k� 1�<!c.

The full lines in Fig. 4 plot p��� including third order
corrections. The �3�p0 term has the overall effect of reduc-
ing the amplitude of emission lines. This is because tran-
sitions between spin up and spin down states tend to reduce
the imbalance between the two spin populations. The
�3�p3! and �3�p! terms account for 3 photon emission
processes via virtual quantum states. For example, the
!0=3 peak in the top panel of Fig. 4 is enhanced by the
cascade emission of three photons with energy 
h!0=3.

Figure 4 shows the power emitted by individual snake
states. More relevant to experiments is the integrated
power, P�!0� � hp���i��

, emitted by the bundle of snake
states. This is plotted in Fig. 5 as a function of the Larmor
frequency. For I > 0, P�!0� peaks at 0:5!c when snake
orbits near � � 23� resonate at their fundamental fre-
quency— see Fig. 2. The shoulder at 1:5!c corresponds
to the resonance of their first harmonic. For I < 0, P�!0�
peaks at 0:9!c when snake orbits near � � 105� resonate.
This finding has significant practical interest for EM
sources since !c only depends on b, ns, and m�. The range
of values taken by these parameters indicates that emission
lines are tunable in the 0–500 GHz bandwidth. These lines
are robust against temperature since � � 1 ps is the mo-
bility scattering time at 230 K in InAs. This anisotropic
light source is well suited to the manipulation of nuclear
spins in quantum computation. We anticipate that magnetic
waveguides could be biassed with current pulses of cali-
brated amplitude and duration to tip nuclear spins under-
neath the 2DES.

For the sake of completeness, we compare the power
radiated by the resonating electron spins with the power
radiated by the ac snake current which is akin to a small
antenna of length 2lb [24]. The latter is shown as the
14720
straight dotted line in Fig. 5 and is seen to be over 4 orders
of magnitude smaller.

In summary, we have demonstrated Raman emission and
high harmonic generation from an electrically driven spin
resonator. Spatially varying electric and magnetic fields
may be combined to provide artificial spin-orbit coupling.
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