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ABSTRACT 
 

Building on the historic work of Huffman (Demaine et al. 2011), there has been increasing 
recent interest in the digital design and architectural application of curved-crease folded (CCF) 
geometries. This is particularly timely, given the new possibilities of producing curved surfaces 
from flat sheet material afforded by developments in robotic technology. However there are 
difficulties in interactively modelling such geometries, which stem from the lack of both 
appropriate geometric descriptions and constructive tools available in commercial CAD 
software. The author’s initial survey of methods included both the iterative optimization-based 
methods and simple constructive methods. Most methods presented difficulties for 
incorporation within an intuitive, real-time, edit-and-observe exploratory method. This research 
overcomes attempts to overcome these difficulties through the use of Dynamic Relaxation (DR) 
(Day 1965) for the interactive modelling of CCF geometries. It applies discrete differential 
operators and their gradients(Meyer et al. 2003), within a DR framework, to perturb meshes to 
satisfy the geometric criteria of CCF geometries outlined in Kilian et al. (2008).  This research 
also outlines procedural strategies for generating appropriate topologies of an initial mesh, and a 
novel method for applying boundary conditions. The dissertation also includes a broad overview 
of existing methods to model developable surfaces, simulate elasto-plastic behaviour of thin 
(inextensible) shells and 2D parameterization of 3D meshes. 
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1 INTRODUCTION  
 

Building on the historic work of Huffman and Ron Resch in the 1970s (Demaine et al. 2011), 
there has been increasing interest in the digital design and architectural application of Curved-
Crease Folded (CCF) geometries. Designers have previously been inspired by and studied 
straight-crease folding, or more formally known as prismatic folding or origami.  In 
comparison, CCF offers certain advantages and imposes certain other constraints: CCF is better 
able to represent smooth surfaces unlike the prismatic version which requires a much higher 
discretization to do so.  The curving of the crease-line on other hand implies that the numbers of 
types of surfaces that can be formed are restricted. However, despite the advantages and 
opportunities for discovery of novel shapes, CCF has been under-explored. This has changed 
over the past few years, given the advancement of the mathematical and physical understanding 
of CCF and the new possibilities of producing curved surfaces from flat sheet material afforded 
by developments in robotic technology(Epps 2010; Balkcom & Mason 2008) (Figure 1).  

 

 

Figure 1 Patent for method for bending sheet material, bent sheet material and system for bending sheet material through 
attachment devices (Epps 2010) 

The study of prismatic origami – its mechanisms, behaviours and simulation - has been shown 
to be significantly useful in the production of transformable structures (Resch 1973; Tachi 
2010). The curved-crease variant also has similar benefits (Resch 1974; Vergauwen et al. 2014). 
Additionally, CCF surfaces improve upon the structural benefits of the prismatically folded 
surfaces, as noted by the research being carried forth in EPLF(Robeller et al. 2014). The 
understanding of structural behaviour and performance of CCF, although only beginning to be 
studied systematically (Rohim et al. 2013; Vergauwen et al. 2014) can significantly aid the use 
of CCF by designers and thus promote novel applications of this intriguing set of geometries. 
 
The focus of this research however is the difficulty in modelling such geometries digitally and 
interactively. This difficulty stems from the lack of both appropriate geometric descriptions and 
constructive tools available in commercial CAD software. As noted in the survey paper by 
Demaine et al. (2011), there are two main algorithmic themes in producing CCF geometries: 
Constructive geometry, and the application of Discrete Differential Geometry (DDG) to model 
CCF shapes. The latter approach has been found to provide the most generalised solutions. Most 
current methods however present difficulties when incorporated within an intuitive, real-time, 
edit-and-observe exploratory method of design. This research then, aims to overcome these 
difficulties.  
 
The research presented here was motivated by a case study of the design and fabrication of a 
self-supporting, multi-CCF-panel installation for the Venice Biennale 2012 by Zaha Hadid 
Architects (Shajay Bhooshan et al. 2014).It operates against the backdrop of the exciting 
potentials that the field of curved-crease folding offers in the development of curved surfaces 
that can be manufactured from sheet material.  
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1.1 Brief history: Artists, designers, mathematicians 
 
A comprehensive history of prismatic and curve-crease folding can be found in the recently 
completed doctoral dissertation of Koschitz (2014). These histories and seminal figures in the 
relevant areas of art, design and mathematics are briefly recounted here to highlight the design 
and application focus of the current research.  
 
Historic accounts of the origins of paper-folding have been difficult to trace. However it is 
accepted to have become generally known in Europe by the 18th century. Likewise prismatic 
folding or Origami was also generally known by the 18th century in Asia and its modern day 
practise, including the accepted notational system of mountains and valleys (Yoshizawa–
Randlett system), is widely credited to Akira Yoshizawa (Randlett 1961).The thesis of Koschitz 
(2014) also lists several known documents and craft manuals pertaining to its study and 
application in design -napkin folding, toys, maps etc.  
 
The historic development of CCF inherits the episodic structure and multi-disciplinary influence 
from its prismatic variant. Modern history of CCF - its systematic study and design application - 
is known to have started with the work of Joseph Albers at Bauhaus in 1927 (Esther Dora Adler 
2004), subsequently formally cemented and artistically expanded by the work mathematician 
David Huffman and Artist Ron Resch in the 1970s (Demaine et al. 2011)(Figure 2).  

 

 

Figure 2 Left: David Huffman with his famous cusp folding (Demaine et al. 1999). Middle: Top- Computer generated rendering. 
Bottom -physical model (Resch 1974). Right: Ron resch with his famous ‘Yellow kissing cones’ model (Yellow Cones Kissing 
with Ron Resch n.d.) 

Another group of prolific researchers from MIT – Professor Erik Demaine, Martin Demaine, 
and Richard Duks Koschitz - have contributed immensely to comprehensively tracing the 
history of CCF (Demaine et al. 2011; Koschitz 2014; Demaine et al. 1999), the systemic 
treatment of the mathematics of folding, the dissemination of related knowledge (Demaine & 
O’Rourke 2007) and also in the production of artistic expression using CCF (Figure 3). 
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Figure 3 Left: A photograph of  a model by Irene Schawinsky, a early proponent of CCF as a student at Bauhaus 
Shawinsky(McPharlin 1944)  Middle and Right: (Demaine n.d.) Artistic expressions of the historic and popular folding pattern of 
concentric circles by Erik and Martin Demaine. 

Recent artistic proponents of curved-crease folding include the designer Richard Sweeney, 
Yuko Nishimura and the late Roy Iwaki (Figure 4). Sweeney’s CCF large-scale paper sculptures 
have been famously exhibited at the Selfridges departmental store in London (2008), Lincoln 
Cathedral in the UK (2012) etc. Nishimura is known for her exploration of geometric patterns 
and Iwaki for his use of CCF to create paper-masks of animals.  

 

Figure 4 Left : Sculpture by Richard Sweeney(Modular_sculpture#0 2006). Middle : geometric arrangements of delicate curved 
folds by Yuko Nishimura (Yosuke Otomo n.d.). Right: Tiger mask by the late Roy iwaki (Tandem n.d.) 

In the realm of design and commercial products, several collaborations of Gregory Epps and 
his company Robofold, computationally created sculptural columns by Harish Lalvani, and the 
lamp from the Le Klint Company stand out (Figure 5). The lamp from Le Klint, has been in 
production since 1971(Le Klint n.d.), whilst Lalvani’s columns were part of a pioneering 
collaboration between the architect and an architectural-metal fabricator – Milgo Bufkin in 
2003(Lobell 2006). Robofold has been instrumental in making industrial production of CCF 
geometries accessible to digitally minded designers since its inception in 2008. 
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Figure 5 Left : Concept car resulting from a collaboration between Royal College of Arts student Ko Kyugeun, Robofold and 
Bentley Automobiles®  (Kyungeun n.d.). Middle: Columns from the AlgoRhythms collection of Metallic architectural elements 
produced by Harish Lalvani in collaboration with  Milgo-Bufkin (Lobell 2006)Right : Commercially available lamp by Le Klint® 
(Le Klint n.d.) 

Two recent products of note, that use the flat-packing potential of CCF are the Flux-Chair® by 
the Dutch furniture company Flux®  and the Folding Boat by designers by Max Frommeld and 
Arno Mathies (Figure 6). The furniture company has since expanded its products to other 
furniture that also use CCF geometries.  

 

Figure 6 Left: Flux Chair™ from Flux furniture® (Flux chair 2009). Right: Folding Boat by Max Frommeld and Arno Mathies 
(Folding Boat n.d.). 

1.2 Goals and contributions: Architectural motivation and focus of current work 
 

There have been numerous applications of prismatic folding in architecture – both for the 
discovery of novel shape, and its transformative and structural properties, as briefly summarised 
in Chapter 2: Prior Work. This is perhaps best exemplified by the 1966 patent for a foldable 
house by Yates (1965) (Figure 7).  
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Figure 7  Patent for Foldable shelter structure with zig-zag roof profile (Yates 1965) 

CCF on the other hand, has not found as many architectural-scale applications yet. Notable 
recent exceptions to this are Zaha Hadid Architects and their Arum sculpture (Bhooshan et al. 
2014a),  and Rebecca Braun and Tyler Smith from University of Michigan (Braun 2015a; Braun 
2015b). Architect Harish Lalvani was an early pioneer in the use of CCF at architectural scale as 
previously mentioned (Lobell 2006). The installation of ZHACODE at the Venice biennale was 
the subject of a preceding case-study to this research and provides the motivation of developing 
methods for architectural application of CCF. Thus, the primary objectives of the research 
include: 
 

1. Incorporation CCF design within established contemporary digital design 
workflows 

2. Compatibility with an interactive and exploratory design process for CCF 
geometries.  

3. Retaining the possibility of discovering novel shapes that physical methods of CCF 
design afford. One such physical method of design promoted and employed by Ron 
Resch (Paper & Stick Film 1992), included crumpling pieces of paper and 
subsequently systematically investigating the resulting (curved) creases. This then 
leads to developing and describing precise flat curve-crease layouts, that when 
folded result in three-dimensional shapes.  
 

In view of the above objectives, two increasingly common techniques in computational 
(architectural) design are surmised below.  

1.2.1 Developable & Minimal mean curvature surfaces 
 
Dynamic relaxation as originally developed by Day (1965) and extended by Barnes (1999), is a 
computational method used to find equilibrium shapes of geometries subjected to (axial) forces. 
It has been extensively used find the shapes of cable-nets, and fabric membranes subjected to 
tensile forces(Wakefield 1999). The method treats nodes of a given net as lumped masses and 
its edges as springs, and proceeds to iteratively move the nodes that are subjected to gravity and 
spring forces until equilibrium is reached. There are several examples of modifications to the 
method, especially in the formulation of the forces (Harding & Shepherd 2011; Bak et al. 2012), 
that have been proposed to solve other problems of statics, simulating cloth-like material etc. 
Famously, Dr Williams from University of Bath used a modification of the method to design the 
roof of the British Museum, London (Shepherd & Williams 2010). The method shares 
similarities with the particle-spring method of simulating various deformable shells (Baraff et 
al. 1997; Bhooshan et al. 2014b), commonly used in computer graphics applications. 
 
Particularly relevant to the context of the current research is that it has been employed to find 
the shapes of so called minimal-mean-curvature-nets (M-surfaces) under given boundary 
conditions (Wakefield 1999). Also relevant is that the method has previously been modified to 
solve problems of energy minimisation and thus employed in a geometric setting as opposed to 
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its original setting of non-linear problems of static equilibrium. For example, subjecting the 
nodes of the graph to virtual or non-physically based forces, such as gradients of planarity of 
associated mesh-faces (Gauss 2014), can perturb the nodes of an originally non-polyhedral 
mesh to produce a polyhedral mesh. Similarly subjecting the nodes to forces along gradients of 
Gaussian curvature can produce developable surfaces or minimal-Gaussian-curvature surfaces 
(D-surfaces) (Figure 8).  
 

 
Figure 8  Iteratively perturbing vertices of a non-developable mesh(Left) towards developability (cylinder Right) along gradients 
defined in Desbrun et al. ( 2002) 

This aspect of using DR as a framework to variably produce M surfaces or D surfaces has 
particular architectural benefits: M surfaces can be produced by stretching or tailoring sheet 
material such as fabric, where-as D-surfaces can be produced by forming sheet material such as 
metal (Figure 9).   
 
 

 
Figure 9 A edit-friendly modelling paradigms, whereby a user-specified coarse mesh is sub-divided and perturbed to states of 
minimal mean or Gaussian curvature. 

1.2.2 Sub-Division surfaces 
 
One of the widely used geometric descriptions and technologies in the computer graphics and 
animation industry is the so-called subdivision surfaces (Catmull 1974).This essentially 
involves the procedural generation of smooth geometries via the subdivision of low-resolution 
input geometry (Figure 10) (Catmull 1974).The benefits of subdivision surface based modelling 
in architectural form-finding have been previously established(Shepherd & Richens 2010; 
Bhooshan & El Sayed 2011). Further, the benefits of application of DR techniques combined 
with subdivision surfaces to explore, design and fabricate minimal mean curvature surfaces has 
also been established(Bhooshan & El Sayed 2012). Thus, one of the specific goals of this 
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research is to extend the use of the established mesh modelling techniques and tools, in 
combination with the DR method, to find geometries that can be curved-crease folded.  
 

 

Figure 10 A subdivision algorithm for computer display of curved surfaces(Catmull 1974). All images taken from Catmull (1974) 

1.3 Summary 
 

In summary, the research operates against the backdrop of the exciting potentials that the field 
of curved-crease folding offers to architectural design: its rich history of design strategies and 
precedents, mathematical under-pinning and the possibility of manufacture of curved surfaces 
from sheet material. The main challenges are developing an intuitive design strategy, production 
of information adhering to manufacturing constraints and incorporation within established 
digital design work-flows. The research intends to overcome these. 

The essential contribution of the research is a proposed computational method to find curve-
crease foldable geometries, including novel strategies to deal with boundary conditions. The 
proposed method could negotiate the dual objectives of ease of use in exploratory design, and 
the physical production of the geometries by folding sheet material. The research was applied in 
the design and production of an architectural scale prototype where CCF geometries were used 
as lost-formwork for concrete casting and additionally to produce two artistic installations in 
aluminium. The documentation and exposition of the details of these built work, form additional 
contributions of the research. Lastly, the research also outlines a few procedural operations that 
could be employed to produce various input topologies that can then be perturbed towards being 
CCF geometries. This represents the design contribution of the research, in a vein similar to the 
repository of crease-patterns for Origami (Lang 2004) by mathematician Robert Lang. 
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2 PRIOR WORK  
 

CCF has interested researchers and practitioners in a myriad of disciplines. Principal among 
them, in the context of this research, are (discrete) differential geometry and Origami.  
 
Differential geometry  
 
Fundamental aspects of differential geometry as applicable to developable surfaces - surfaces 
embedded in 3D space that can transformed to their planar equivalents without stretching or 
tearing - and Curve Crease Folding can be studied in Do Carmo (1976); Toponogov & Rovenski 
n.d.; Fuchs & Tabachnikov (1999); Huffman(1976); Duncan & Duncan (1982).  
 
Origami 
 
The art and practise of origami, and its increasing use in engineering applications is another vast 
field of research and knowledge that can contribute to understanding CCF. An early interest, 
from the 1980s, in the applicability of the origami to engineering problems can be found in the 
recently translated Haga et al. (2008). This particular contribution was a result of a fusion of 
interests in the design of cranes and origami. Such an interest has only proliferated since, as can 
be understood by the spate of papers in engineering journals: The benefits of Origami 
configurations for shell structures was studied in the doctoral dissertation of (Schenk 2011); the 
use of Origami water-bomb structure in compliant design is described in Hanna et al. (2015), 
their use in deployable structures in  Saito et al. (2013) and Tachi (2010). 
 
Similarly CCF is also beginning to be used in deployable structures particular because of their 
properties of isometric (distortion free) mapping from 3D embedding to planar configurations 
(Resch 1974; Tachi & Epps 2011; Vergauwen et al. 2014).  They are also being considered for 
use as kinetic structures because of their property of (almost) rigid transformation from one state 
to another (J Lienhard et al. 2011; Julian Lienhard et al. 2011).  
 

2.1 Prior computational geometry 
 
Curve-crease folding (CCF) could be viewed as a special extension of developable surfaces. In 
particular CCF can be viewed as intersection of two or more developable surfaces, subject to 
additional geometric constraints (as further explained in Section 3.1 on discrete representation). 
Further, CCF shares similarities with origami in the sense of being produced from scoring and 
bending sheet materials. Thus the survey of prior work attempts to surmise the long history of 
research and contributions in the field of Computational Developable Surfaces, and Origami. 
The survey also describes prior work specifically within CCF where applicable, and will 
highlight geometric properties that underpin the surveyed methods. It will also highlight aspects 
relevant to the primary objective of this research (Section 1.2): compatibility with interactive, 
edit-friendly, exploratory, and well-established CAD work-flows. 

2.1.1 Useful theorems and terminology for CCF design 
 
To situate the survey in the context above, some fundamental theorems from differential 
geometry, is recounted here from Vergauwen et al. (2014). These might be known to the CCF 
design community as intuitive geometric relations. Additionally, a few definitions of 
developable surfaces and its rulings are also mentioned. 
 

1. At every point on the curved crease, the tangent planes of the two surfaces make equal 
angles with the osculating plane of the curved crease in that point (Huffman 1976) and  
the process of curved line folding produces 2 surfaces having equal and opposite 
surface normal curvatures along the fold line (Duncan & Duncan 1982). 
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2. Throughout the deformation the geodesic curvature remains equal to the ordinary 
curvature of the crease in the plane development (Fuchs & Tabachnikov 1999)(Figure 
11). As a result, the following equation is obtained:   
 

݇ ൌ 	݇଴ cos ⁄ߚ  
 

With ݇଴  the curvature of the plane curve,  ߚ the angle between the osculating plane and 
the surface and k  the curvature of the space curve  (Fuchs & Tabachnikov 1999). 
 

 

 
 

Figure 11 Relationship between original local curvature of the planar curved crease line, and its curvature after folding across the 
crease by angle α. Figure adapted from Tachi & Epps (2011). 

 

2.1.2 Rulings and developable surfaces 
 
Generally speaking, a ruled surface is a surface generated by a straight line moving along a 
curve. The straight lines themselves are called rulings. A ruling is torsal if the tangent plane of 
the surface is the same for all points on the ruling line. A ruled surface is developable if all its 
rulings are torsal (Dolgachev 2012). Such patches can combine to form more complex 
developable surfaces. 
 
Another often used property of developable surfaces stems from the Gauss-bonnet theorem 
(Eric W. Weisstein n.d.), which links the integral of the Gaussian curvature over the entire 
surface (Riemann Manifold) to the Euler characteristic of the surface. It then gives the property 
that surfaces isomorphic to a plane i.e. developable surfaces will have vanishing Gaussian 
curvature. The discrete equivalent which links the integral to the total angular defect of all the 
vertices of a polyhedron comes from the Descartes theorem of total angular defect (Eric W 
Weisstein n.d.). 
 

2.2 Mathematical models and geometric measures 
 

A class of approaches to computationally represent and model developable surfaces, aim to 
appropriate their geometric properties such as vanishing Gaussian curvature, properties of its 

β
β

k0

k = k0 / cos ββ 
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Gauss or normal maps, tangent spaces etc. These methods usually aim to satisfy manufacturing 
constraints and/or interactive design of geometries. As a consequence, they abstract material 
properties of thin-shells as mathematical models incorporating geometric constraints such as 
planarity, minimal Gaussian curvature, and smoothness of curvature. Such methods are of 
particular interest to this research, due to their amenability both to intuitive understanding and 
interactive editing. 

2.2.1 Optimisation and search methods 
 

 
Figure 12 Left: 2D example of an envelope with a parabola shown as envelope of straight lines in a plane. Middle: A spatial curve 
as a geodesic of developable surface guaranteed to exist. Right Using the control points of the spatial curve to edit the surface. All 
images taken from Bo & Wang (2007) 

In the search for edit-friendly methods, Bo & Wang (2007) provide one of the earliest examples 
of interactive editing of bending of paper-like surfaces. They exploit the fact that developable 
surfaces are the envelopes of rectifying planes of spatial curves – planes that span the bi-normal 
and tangent of a spatial curve at each point of the curve. They also show that this property 
essentially means that any given curve is a geodesic on a unique developable surface, called the 
rectifying developable, that is guaranteed to exist. They then proceed to develop a method to 
procedurally generate the surface. The rulings of such a surface are the intersections of the 
rectifying planes. They further utilise this property to use the control points of the spatial curve 
or geodesic to interactively manipulate the curve and consequently the surface (Figure 12). They 
use a Bezier representation for the curve and assume that at least third order derivatives are 
defined everywhere. They then minimize a quadratic function to interpolate the (normals of) 
ruling lines from given normals at the end-points of the curve. 
 

 
Figure 13 Left and right sequences : Results from (Wang & Tang 2004) showing Original mesh, and the results after applying 
their global and local perturbation methods. Bottom row of images show Gaussian curvature of corresponding mesh. All images 
taken from Wang & Tang (2004) 
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This dissertation is explicitly interested in perturbing a user-defined mesh towards a nearest 
CCF solution. Wang & Tang (2004), provide an understanding of the mechanisms of such a 
perturbation process. They propose a method to perturb the vertices of a given triangular mesh 
to make them developable.  Their global optimisation method operates on the geometric 
property of developable surfaces of being locally homoeomorphic to a disk i.e. to have zero 
Gaussian curvature everywhere. Their optimisation routine utilises a regularising function to 
penalise deviation from the input meshes.  Their optimisation method is iterative, and based on 
the gradients of a composite error function with analytical gradients for the penalty function 
w.r.t to vertex positions and numerically computed gradients for the Gaussian curvature. Their 
global approach, by their own account, provides high accuracy results at the expense of 
interactivity. Interestingly they propose another local approach that provides interactivity at the 
expense of accuracy (Figure 13). It can also be noted that their attempt was one of the earliest to 
convert the geometric feature of developable surfaces of zero Gaussian curvature into an 
optimisation requirement that the sum of angles around each vertex is equal to 2π.  
 

 

 
Figure 14 Left: Searching the convex hull of a given spatial curve, for a developable surface spanning the curve. Right Example 
of modelling application in garment design All images taken from Rose (2007) 

 
The work of Rose (2007) provides an intuitive understanding of the existence and 
neighbourhood of the previously mentioned nearest  (developable) solution. It appropriates the 
link between the convex hull of arbitrary spatial curves – a wrapping envelope of its constituent 
points, and the developable surfaces that they enclose (Figure 14). The proposed method 
exploits the observation that most edges of developable triangulations should be locally convex, 
and consequently, convex hulls of (closed) spatial curves are a good place to search within. The 
method uses a fairly elaborate branch-and-bound machinery to search through the space of 
possible, interpolating developable surfaces, embedded within the convex hull. The search is 
able to accommodate additional constraints of desirable shape properties such as fairness of 
resulting surface, quality of the triangulation etc. It may be noted that the stated computation 
times, are not compatible with interactive modelling. However, given that this seminal work is 
from a decade ago, we might expect the algorithm to be reasonably interactive now. 
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2.2.2 Analytical methods 

 
Figure 15: An algorithm that, given a boundary curve, analytically computes the location of buckling points in the sheet metal 
spanning the curve. Left to Right: cases showing one, two and four buckling points and their corresponding boundary curve. All 
images taken from  Frey (2004) 

Frey (2004) is of interest in terms of the application of computational methods in a 
manufacturing setting. His method also uses the zero Gaussian curvature property of 
developable surfaces, in particular to the applicability of the angle sum of 2π to the special case 
of interior points being points of singularity (w.r.t Gaussian curvature). These points, referred to 
as d-vertices, are encountered in the design of sheet metal parts in the automotive industry and 
additionally they are also locations where the metal physically exhibits buckling (Figure 15). 
The method uses an analytical solution for finding the position of such points for a given 
(usually planar) triangulation of an input curve. The solution is derived from moving the points 
in the z direction to a location where the angle-defect is corrected. Evidently, the analytical 
solution gets more complex as the number of input points increase. Interestingly, potential 
incorporation of a surface area constraint – an important manufacturing consideration - is 
suggested. It is however not explicitly included in the solution. 

 

 
Figure 16 A mathematical model capable of predicting the occurrence of creases on folds as a consequence of the shaped of the 
boundary curve. Top Left: quad based discretization. Top Right and Bottom Left: Occurrence conical vertices during deformation. 
Right: Occurrence of creases and folds. All images taken from Kergosien et al. (1994) 

The mathematical model of Kergosien et al. (1994) provides insights into computational 
representation of developable surfaces and also the mechanisms of simulating the bending and 
creasing of paper-like sheets. They derive their model and its constraints from the inextensible 
and zero-Gaussian curvature properties of paper. Their simulation, based on this model, enables 
the study of isometric 3D deformation of a planar, rectangular piece of paper and importantly 
predicts the occurrence of creases and folds caused by certain shapes of boundaries (Figure 16). 
Interestingly, their computer simulation utilises simple node-based dynamics with user-
interaction abstracted as ‘forces’ that are counter-acted by internal bending forces of the sheet, 
as computed by their mathematical model.  
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2.3 Constructive geometries 
 

This class of techniques to model developable surfaces, in contrast to the previous approaches, 
aim to integrate within the well-known CAD paradigm of allowing users to directly draw and 
manipulate smooth surfaces using a small set of so-called control points. It is quite common for 
this paradigm of surface editing to employ parametric surface representations –Bezier and 
NURBS - to allow for such interactive and yet precise control over geometries. However, all 
attempts surveyed in this category of techniques, have used Bezier parametric representations, 
as briefly described below: 

 

 
Figure 17 Differences between the control polygon and the number of control points of a regular Bezier surface and those of 
Developable Bezier surface. 

In Bezier surfaces, every point of the surface is defined by two parameters – u and v and the 
Cartesian coordinates of such a point in 3D is a function of the positions of the grid of control-
points (control-net) i.e. every point is a weighted interpolation of the positions of the control 
points. If the number of control-points in any of the two grid-directions is restricted to 2, the 
resultant surface will be ruled (Figure 17). 
 
Lang & Röschel (1992) developed the necessary conditions and constraints on the locations of 
the control-net of a ruled Bezier surface, for it to become developable. They derive these 
constraints from the geometric requirements of developable ruled surfaces – namely that all 
points on each ruling line, must lie on a unique tangent plane. The non-linearity of these 
constraints, have in part contributed to the fact that the interactive manipulation of such 
developable Bezier surfaces have been elusive since the early 1990s (Tang et al. 2015). Since 
the current research is focussed on discrete geometric representations, the reader is referred to a 
recent paper by Tang et al. (2015).They provide a complete treatment of the topic and a novel 
method that overcomes several difficulties, including interactively modelling CCF geometries 
using Bezier representations (Figure 18). 

 

 
Figure 18 Interactive modelling of developable surfaces using continuous NURBS representation. All images  Tang et al. (2015) 
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2.3.1 Geometric techniques for CCF 
 
These techniques are derived from the properties of developable surfaces collated from afore-
mentioned pioneering efforts in differential geometry (Section 2.1) and/or the long history of 
origami. Such methods are of interest to the current research because they provide useful means 
of verification and aid geometric intuition for the design of CCF surfaces. Two of the often used 
and cited techniques are summarised here. 

 
Figure 19 Methods to geometrically construct CCF geometries. Left and Right: Method of refraction and Method of reflection, as 
rediscovered by Koschitz (2014) from David Huffman’s original notes. Images taken from Koschitz (2014)  

Doctoral thesis of Koschitz (2014) studied the historic work of David Huffman and 
subsequently produced a taxonomy of design techniques that could be applied to produce planar 
layouts of fold-curves and rulings. Such tools are therein referred to as design gadgets. These 
techniques are based on the observations and proofs of David Huffman with regard to the 
relationship between rulings on one side of a curve line to those on the other. Koschitz 
categorizes these methods using an optical terminology of gadgets of reflection and gadgets of 
refraction (Figure 19). Such a terminology is used because David Huffman himself used optical 
analogies to study and predict the layout of rulings and the resultant 3D surface upon folding. 
These analogies provide an intuitive understanding and method whilst remaining consistent with 
many of the more formal proofs developed by Huffman and others (Section 2.1). As such this 
effort from Koschitz is one of the most exhaustive and valuable documents for designers and 
researchers alike.  

 
 

 
Figure 20 Methods to geometrically construct CCF geometries Left: Method of invert reflection based on reflective principle of 
CCF geometry (Useful theorems and terminology for CCF design). Images taken from Mitani & Igarashi (2011) 

Mitani & Igarashi (2011), build on the reflective principle of rulings on either side of the curve-
creased-fold (Useful theorems and terminology for CCF design), and propose an interactive 
system to develop multi-crease geometries (Figure 20). It can be noted that their method is 
restricted to the use of planar curves as fold-curves and this stems from observations from 
differential geometry that a planar curve is a stable physical configuration (Fuchs & 
Tabachnikov 1999)  
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Figure 21 Procedural generation of curve-creased geometries from their straight-line or prismatic counter-parts. Images taken 
from Gattas & You (2014) 

In context of methods that aid the derivation smooth and parametric CCF surfaces from a user-
specified coarse input, it is worth mentioning the very recent contribution from Gattas & You 
(2014). They propose simple procedural generation of curve-creased geometries from their 
straight-line or prismatic counter-parts (Figure 21). Their method also builds on the method of 
reflection in that instead of the invert-reflection of the rulings, they first fit an (analytical) ellipse 
through the rulings and subsequently reflect the elliptic surface. Thus their method, although 
currently restricted to certain Miura-typologies, has the benefit of simple parameterization of 
CCF geometries in addition to the intuitive-ease of use of the geometric techniques. The 
parameterizations lend themselves to carry forth more analysis of CCF geometries, such as 
structural simulations and also simulating CCF geometries by building on the simpler-to-
simulate prismatic variants. 
 

2.4 Approximating approaches  
 

Prior to the development of exact methods of representing developable surfaces, several 
methods have been proposed to approximate input triangular meshes with developable surfaces. 
Such methods have been usually applied in paper-craft, clothing design and origami. Some of 
the prominent attempts are described below, to provide an overview of the algorithmic themes 
used in such a design and physically based setting. 

 

2.4.1 Discrete approximations 
 

 
Figure 22 Discrete approximation of given triangular meshes via partitioning of meshes and subsequent simplification. Images 
taken from (Mitani & Suzuki 2004) 

Mitani & Suzuki (2004) approximate input triangular meshes with multiple strips of 
developable triangulations. Their algorithm is fairly involved, starting with the identification of 
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geometric features such as sharp creases and ridges, the subsequent partitioning of the mesh into 
zones with boundary curves, constrained re-meshing of the zones and the use of edge-collapse 
and other mesh-editing techniques to recover ruled meshes for each of the zones (Figure 22). It 
can be noted that their method is not reliant on the actual (Gaussian) curvature of the input 
mesh. They cite the difficulty in partitioning meshes based on curvature as the reason to avoid 
such an approach. 

 

 

Figure 23. An iterative and perturbation algorithm to approximate developable surfaces, developed for use in the design of 
garments where material tolerances allow for soft-constraints of developability. Images from Decaudin et al. (2006). 

Decaudin et al. (2006) propose an alternative method that exploits a particular property of 
developable surfaces - that of their Gauss map of unit normals being one-dimensional. Their 
method is inspired by the moving-least-squares method to locally approximate scattered data 
with a polynomial curve, which nonetheless guarantees global continuity. They thus locally 
approximate an analytical developable surface and subsequently (best-fit) transform each of the 
triangles of their initial collection of triangles unto these patches. They then proceed to glue all 
the triangles together subject to continuity constraints to produce a mesh (Figure 23). The 
algorithm is iterative and the process is repeated until certain measures of the unfolded layout of 
the mesh fall within acceptable tolerance. It can be noted that their application was focussed 
towards the design of garments, where such tolerances are indeed allowed due to the slight 
stretching capacities of fabric. 

 

2.4.2 Continuous approximations 
 

As with the direct modelling approaches using parametric surface presentations described 
previously, approximating input surfaces with developable equivalents amounts to defining 
constraints on the basis polynomials of (Bezier) surfaces and the subsequent constrained 
optimisation-solutions for the positions of the control-net. For further information, the reader is 
referred to Pottmann & Wallner (1999) who describe a linear approximation algorithm for 
developable NURBS surfaces, Wang et al. (2004) who apply their previously described discrete 
algorithm to the continuous case, and Chen et al. (1999) who fit a NURBS surface to scattered 
data derived either from scans or a mesh. 

 

2.5 Modelling and simulation of thin shells 
 

Physically, curve-crease folding is an example of elastic and plastic deformation since the act of 
folding sheet material along pre-defined curved-crease-lines causes the material to also bend. It 
is therefore, natural to include computational modelling of deformation of thin sheets, in the 
survey of prior work. 
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Approaches to elastic-plastic deformation of surfaces are related to the idea of elastic energy of 
thin shells – an energy that measures deformation of initially curved surfaces. The discretized 
formulation of this energy that is adopted is based on the requirement of the application. Such 
requirements, in the context of the current research, could be broadly categorised into materially 
realistic simulation of deformation of geometry and physically plausible, modelling of 
geometry. The various formulations used in computer applications of either kind, stems from 
the seminal work of Terzopoulost et al. (1987). They describe the derivation of such an elastic 
deformation energy from the fundamental forms of surfaces. More importantly they describe its 
incorporation into a particle or node based model to simulate deformation of thin surfaces. In 
essence, such a model consists of two terms to capture stretching and bending of the surface 
respectively: 
 

݈݈݄݁ݏܧ ൌ ݁݊ܽݎܾ݉݁݉ܧ ൅	ܾ݃݊݅݀݊݁ܧ (Grinspun 2003; Botsch & Sorkine 2008). 

 
Discretization of the elastic energy in time-dependent, simulation applications tend to be non-
linear and include terms that capture various physical aspects of a material deformation. 
Approaches in modelling applications, especially interactive modelling, on the other hand, tend 
to focus on minimising the elastic energy and solving for the rest-state of the deformation 
process (Botsch & Sorkine 2008). Additionally, such applications tend to prefer simplified and 
linearized versions of the energy, in order to achieve the fast computation times required in 
modelling applications. This distinction is useful, since the research of this dissertation is a 
hybrid between the two in that it uses a time-dependent simulation framework whilst also 
incorporating discrete, geometry based measures. Thus, a synopsis of prior works is presented 
under algorithmic themes in addition to this distinction. The section includes pertinent aspects 
of developable surfaces and origami, and ends with seminal application in curve-crease folding.  

 

2.5.1 Isometric deformation  

 
Figure 24 Examples from the iterative method of as-rigid-as-possible deformation (ARAP). Incorporation of user-inputs of fixed 
regions (Red) and editing handles (yellow) can be noted. Images from (Sorkine & Alexa 2007) 

Sorkine & Alexa (2007) present a method of as-rigid-as-possible (ARAP) deformation on input 
meshes that exemplifies the usage of the elastic energy as described above. Their modelling-
focussed method aims to minimise the elastic energy between the rest state of the input mesh 
and the deformed state that the user can direct (Figure 24). An iteration of their algorithm 
consists of two steps: A first localised step aims to minimise the bending term by finding the 
best rigid (translation and rotation) transformation of each cell in the input mesh to the 
corresponding cell in the deformed state. The second, global step aims to minimise the 
stretching energy by performing a Laplacian smoothing of the vertex positions of the deformed 
mesh. This method, as stated, above produces physically plausible deformations which are not 
necessarily physically exact. However, it could be used to intuitively explore the bending 
deformation of planar rest states of sheets. 
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Figure 25 Examples from modelling method called soft-fold that allows exploration of soft and hard crease lines on flat sheets, 
and its implication on the folded state. Images from Zhu et al. (2013)   

A recent contribution by (Zhu et al. 2013) called the soft-fold method, proposes an interactive 
editing system to compute multiple user-directed folds (Figure 25). Whilst the overall algorithm 
is vastly different, it has some aspects common with the previous method. Their method 
assumes isometric folding, i.e. they assume that the stretching term of the Elastic energy 
(Section 2.5) is absent. Subsequently the problem mutates to finding the best-fit rigid 
transformation from a flat rest state to a deformed state inferred from user-input. 

 

 
Figure 26 A method based on isometric bending used to simulate thin, sheet and inextensible materials. Left: Results for paper, 
cloth and rubber. Right: comparison of isometric method to popular, non-linear model. Images from Bergou et al. (2006) 

Bergou et al. (2006), have previously proposed a similar isometric bending model for the 
purposes of simulating sheet materials such as cloth and paper (Figure 26). They also propose a 
quadratic bending energy formulation involving the Laplacian matrix that is similar to the one 
summarized in the survey by Botsch & Sorkine (2008).  
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Figure 27 Method to simulate origami development and kinetic transformations. The iterative method is solves derives and solves 
rotational constraints and rigid transformations. Images from Tachi (2009). 

Tachi (2009) proposed one of the earliest complete methods to simulate origami development 
and deployment. His method shares some similarity with the methods described here, even 
though he does not explicitly mention or use an energy based formulation. His simulation 
method attempts to derive rotational constraints (rigid transformations) from user-defined or 
assumed mountain-valley edges and fold-angles. The system of equations is iteratively updated 
until the corresponding rigid transformations and constraints are solved (Figure 27). 

 

 
Figure 28. An interactive modelling method based that subdivides a user-defined coarse mesh before generating a smooth 
developable surface. Images from Solomon et al. (2012) 

Solomon et al. (2012) propose an interactive modelling method to describe smooth developable 
surfaces. Their method receives a coarse mesh input from the user and proceeds to sub-divide it 
before minimising the discrete bending energy (Figure 28). They derive their own, rather 
elaborate bending energy to suit their discretization. 
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Figure 29 A materially realistic method to simulate folding and crumpling of sheet material that dynamically aligns mesh 
discretization along fold-lines to improve accuracy. Images from Narain et al. (2013) 

Narain et al. (2013), use a fully materially-realistic, and inextensible (isometric) model of elastic 
energy to simulate the folding and crumpling of sheet material.  They also use adaptive re-
meshing of the sheet to align with the directions of creases and folds (Figure 29). It can be noted 
that their method is computationally expensive, but produces very realistic behaviours. (Schreck 
et al. 2015) interleave a similar physically-based simulation with a procedurally generated 
discrete developable surface to achieve interactive frame rates whilst simulating crumpling of 
paper.  

 

 
Figure 30 A physically-accurate bending model used to simulate the particular phenomena of a (closed) crease itself buckling. 
Images from Dias et al. (2012) 

In this context, it is worth mentioning the recent (2012) contributions of Dias et al. (2012) who 
model a very specific example of CCF –where all the crease curves are closed as in the case of a 
annular strip. In addition they model, through this example, the peculiar phenomena of the 
crease itself buckling (Figure 30). They also derive the necessary bending and creasing energy 
formulations to simulate this. 
 
Lastly, a mathematical treatment that combines several of the aspects of simulation from above, 
with the continuous representation of rectifiable developable from Bo & Wang (2007), and 
energy minimization from the modelling approaches is the work of Starostin & van der Heijden 
(2007). They develop and treat a one-dimensional variational problem to find the shape of a 
elastic Mobius strip and show extensions of the their approach to predict crumpling of paper and 
suggest applicability to similar phenomena of draping the inextensible material of fabric. 
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Figure 31 A mathematical treatment to find the shape of a Developable Mobius strip. Images from (Starostin & van der Heijden 
2007) 

 

2.5.2 Curve-crease-folding 
 

The prior works summarised in this section, are the current state-of-the art in terms of the 
discrete modelling and simulation of curve-crease-folded geometries. They synthesize the 
various algorithmic themes and geometric properties previously described, into methods for use 
on CCF geometries. They have thus, made the most direct contributions to the research 
presented in this dissertation. 

 
Figure 32. A modelling method for CCF geometries based on pre-dominantly quad-based discretization and minimization of 
associated bending energy. Smooth rulings as limits of discrete rulings, and the smooth developable surfaces assembled by 
combining patches of torsal developable surfaces can be noted. Images from Kilian et al. (2008).  

Kilian et al. (2008) proposed a method to model CCF geometries using a discretization 
composed of quadrangular facets. They, as others previously (Liu et al. 2006; Weiss & Furtner 
1988), propose the use of planar-quad strip (PQ strips) as discrete representation of a torsal 
ruled surface, which are known to be developable. They formulate a quadratic bending energy 
(Figure 32 Top Left) to suit their quad-based discretisation and propose optimisation methods to 
model isometric bending of paper. They also show that the limits of the rulings in the discrete 
representation (PQ mesh) are the rulings of the developable surfaces (Figure 32 Top Left).They 
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extend the discrete strip representation to composite meshes made up of PQ strips and planar 
triangular facets to represent curve-crease-folded geometries. They derive the necessary 
planarity and developability conditions for such a mesh to become curve-crease-foldable. They 
then propose an algorithm, albeit elaborate, to accurately recreate scanned models of physical 
CCF geometries. This optimisation algorithm starts with a collection of triangles (Figure 32 
Bottom Left) and proceeds to iteratively perturb the vertices towards achieving curve-crease-
foldable meshes.  

 

 
Figure 33 A intuitive and digital-physical hybrid strategy to design CCF geometries. Images from Tachi & Epps (2011). 

Tachi’s contributions to the simulation of prismatic origami have been mentioned previously. 
Tachi & Epps (2011) have subsequently shown that CCF geometries can be intuitively designed 
by applying simulation methods from prismatic origami to the PQ discretization proposed by 
Kilian et al. (2008). They also propose an intuitive hybrid physical – digital design technique to 
design CCF geometries (Figure 33): they generate the planar layout of PQ meshes by observing 
the physical model, and subsequently digitally extend the constraints and parameters to explore 
the space of three dimensional possibilities. 
 

2.6 Planar development 
 

Flattening 
 
Several of the algorithms surveyed are iterative. It follows that successive iterations are 

stopped when the error is within numerical tolerance. This then implies that the resulting mesh 
is only developable within tolerance. In other words, the resultant mesh is quasi-developable. As 
with the previously indicated applications of quasi-developable surfaces (Section 2.4), they are 
subject to the tolerances afforded by the method and material of physical reproduction of the 
digital surface. The computing of the planar development of a mesh or flattening of the mesh 



Page | 35  
 

has in itself, a vast amount of literature and prior work. Only a brief synopsis, as applicable to 
current research is described here. 

 
Flattening of a mesh amounts to computing two-dimensional coordinates for every vertex in 

3D. Any function that maps the three-dimensional Cartesian coordinates of a mesh-vertex to a 
two-dimensional (planar) domain can thus be considered. It is also desirable, for such mapping-
functions to produce unique mappings or to be bijective. Such mappings are often used in 
computer-graphics in the reverse sense i.e. to apply (2D) images or textures unto (3D) meshes 
(Vallet & Lévy 2009). Similarly, mapping easy-to-draw 2D quadrangular meshes, unto the 3D-
triangulated mesh is an often used technique in (quad) re-meshing applications (Hormann & 
Greiner 2000). Further, such mappings are used in a more true-sense, in the production of maps 
or cartography(van Wijk 2008; Hurdal & Stephenson 2004). Lastly, the bijective property is 
often useful in reducing three-coordinates to two and  thus finds use in mesh-data compression 
and transmission (Gu et al. 2002).  

 
Parameterization 
 
By virtue of assigning two real values (parameters) to each vertex on the 3D mesh, such 

methods are often referred to as parameterization in computer-graphics literature. There is 
extensive literature related to this process of computing a parametric mapping between a 
discrete mesh and its isomorphic and planar counterpart. The reader is referred to Desbrun et al. 
( 2002) for various methods used and their limitations. Additionally, Sheffer et al. ( 2006) 
provide a more recent survey on mesh parameterization. Most parameterization algorithms 
could be classified in accordance to the nature of input meshes that they are designed to operate 
on – single-patch or multi-patch with seams between patches (Panozzo & Jacobson 2014).This 
research restricted itself single patch cases. 

 
Isometry 
 
In general, a completely accurate parameterization can exist only in the case of exact 

developable surfaces, in which case the flattening can be achieved by merely re-orientating 
triangles from 3D unto the plane. In the all other cases, methods aim to minimize the deviations 
between the 3D mesh and its planar counterpart. The common steps in such a process are to pin 
a few vertices (usually the border) unto the plane and subsequently to formulate and minimize a 
measure of distortion. Some methods (conformal mapping), aim to minimize angular deviations 
(Lévy et al. 2002), others to preserve areas (authalic mapping)(Floater 1997).The pinning being 
essential to prevent the trivial case, where the vertices collapse to a point. To physically 
reproduce CCF geometries then, the mapping would need to be isometric i.e. both conformal 
and authalic. In keeping with the DR scheme, conformal or authalic parameterizations could be 
achieved by applying forces to vertices along the direction of respective gradients. These 
gradients at each vertex can be computed from the position vectors of the 1-ring neighbourhood 
of vertices, as formulated in Desbrun et al. (2002).It may be worth noting that the methods that 
Desbrun et al. (2002), Pinkall & Polthier (1993) propose suffer from arbitrary boundary 
parameterization. Alternatively, the iterative methods of as-rigid-as-possible (ARAP) 
parameterization (Liu et al. 2008)and most isometric parameterizations(MIPS) method proposed 
by (Hormann & Greiner 1999) produce more ‘natural’ boundaries albeit at the expense of 
computational time. Both methods are recent, robust and relatively elaborate to implement.  

 

2.7 Summary of Computational methods 
 

2.7.1 Interactive methods 
 

Most of the precedent projects and available literature on design methods highlight the difficulty 
of developing an intuitive, exploratory digital-design method to generate feasible 3D 
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geometries. The survey of methods included both the simple and common method – the method 
of reflection (Mitani & Igarashi 2011) and the involved Planar-Quad-meshes and optimization-
based method (Kilian et al. 2008). Most methods, including the two above, present difficulties 
of incorporation within an intuitive, edit-and-observe method of design; The first one proving 
difficult to explore a variety of generalized solutions free of prior assumptions  and the second 
one being elaborate involving scanning of physical paper models, proprietary optimization 
algorithms.  
 

2.7.2 Choice of representation 
 

The survey also showed particularly interesting recent developments of interactive tools that 
operate on user-specified coarse linear piecewise complexes (Solomon et al. 2012) and spatial 
curves(Bo & Wang 2007) to produce smooth developable surfaces. In both cases the user-
specified input geometry also provides the handles to manipulate the generated geometry. 
Perturbation based methods(Wang & Tang 2004; Decaudin et al. 2006) were reviewed and their 
algorithmic mechanisms surmised. Several  energy minimization methods used to find 
developable or curve-crease foldable rest-states were summarised (Kilian et al. 2008; Solomon 
et al. 2012; Bo & Wang 2007; Sorkine & Alexa 2007); These algorithmic themes taken 
together, are in alignment with established benefits of subdivision surface based modelling 
paradigm(Section 1.2.2) in architectural form-finding (Shepherd & Richens 2010; Bhooshan & 
El Sayed 2011) and the application of dynamic relaxation (Barnes 1999) techniques on 
subdivision surfaces to design and fabricate minimal mean curvature surfaces(Section 1.2.1) - so 
called minimal surfaces (Bhooshan & El Sayed 2012). 

 
The survey also highlighted a consolidating trend in computational geometry and design of thin-
shells based on elastic deformation energy (Section 2.5). Simulation-minded applications use 
physically realistic deformation models, whilst modelling applications utilise a physically 
plausible and approximate model. In the specific case of this research, both are relevant due to 
the objectives of interactive and exploratory design as also incorporating realistic manufacturing 
constraints such that the designed geometries can be re-produced physically. 
 
Additionally, the popular and seminal constructive-geometry methods were also described. 
These can provide an easy means of verification. Importantly they provide insight and intuition 
for generating and manipulating appropriate topologies of rulings during design. 
 

2.8 Relevance to current research 
 

The synopsis above (Section 2.7), which was expanded in the preceding survey (Section 2.1), 
explains the following choices that were made for the research presented in this document. 
 
The natural choice for a computational representation is a discrete one, as reinforced in Section 
(2.7.2). The research also sets out an explicit intention to perturb, input 3D geometries to find 
feasible CCF geometry similar to Wang & Tang (2004). This is in contrast to finding the folded 
state of a 2D input mesh. It may be noted that the optimization-based method proposed by 
Kilian et al. (2008)( Section 2.5.2) does in fact solve this problem, albeit it is considerably more 
difficult to implement. The method developed here is intended to be easier to implement and 
extend. However, unlike their method, would require the user to provide an initial mesh with 
appropriate topology. The research will use a pre-dominantly quad based discretization similar 
to their method and utilize the geometric implications suggested by their formulation of bending 
energy. The intention subsequently, is to follow energy minimisation strategies that are 
amenable to the modelling paradigm (Section 2.5). This is further described in the next Chapter 
(Sections 3.1 and 3.2). Specifically, computational techniques based on Dynamic relaxation 
(DR) (Section 1.2.1) will be used to iteratively perturb the surface towards minimal Gaussian 
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curvature and local planarity, which form the necessary conditions for CCF geometries (Section 
3.2).  
 
The research will develop simple procedural methods involving known mesh-operations that 
can be used to produce an initial mesh (Chapter 6). This will constitute the exploratory 
mechanism for CCF geometries i.e. a known CAD and edit-and-observe paradigm based on 
subdivision surfaces (Section 1.2.2) is augmented to aid exploration of CCF geometries.  
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3 COMPUTATIONAL METHOD 
 

3.1 Discrete representation  
 

As can be discerned from the previous survey of methods for the computational description of 
origami, developable surfaces and curve-crease-folding, there are two commonly used 
representations for the corresponding geometries : continuous  and discrete ( triangular or 
quadrangular meshes). As explained in the preceding section (Section 2.7.2 & 2.8), a choice was 
made to follow a discrete approach in the current research. 

 
Focusing on developable surfaces, the survey could be summarily viewed along the lines of 
distinction made by Solomon et al. (2012) : approaches that synthesize developable surfaces to 
suit given constraints, approximate given (scattered) data with developable surfaces or smoothly 
and isometrically deform known developable surfaces towards other states. Synthetic 
approaches either exploit geometric properties of developable surfaces (Constructive methods: 
Section 2.3) or solve for the rest state of a deformation process (Modelling methods: Section 
2.5). In the latter, subsequent to a choice of representation, a suitable (discrete) formulation of 
elastic energy is derived, and optimization techniques are employed to minimize such an energy 
to arrive at the desired rest and developable state of the surface. Such rest-states can further be 
classified as Quasi and almost developable or exact and fully developable. Quasi-developable 
surfaces are usually employed in applications that are sufficiently tolerant on their requirements 
of developability.  These include the design of clothing and soft-toys due to the slight stretching 
capacities of the fabric (Julius et al. 2005), application of texture maps on meshes due to the 
requirements of avoiding only visually perceptible stretching of textures (Lévy et al. 2002), in 
the design of ship-hulls due to possibility of heat-forming marginally non-developable 
surfaces(Pérez & Suárez 2007) etc.  
 
Exact discretization on the other hand are usually required if the digital models are to be 
faithfully physically reproduced such as in CAD applications, cartography etc. This is also an 
objective of the current research. Thus there are several discrete representations - exact and 
inexact - for developable surfaces and by extension, for curve-crease folded geometries. For a 
comprehensive list and summary, the reader is referred to Solomon et al. (2012).The use of 
planar-quad strips as discrete representations for developable surfaces has been previously noted 
in the survey(Liu et al. 2006; Kilian et al. 2008).  The extension of PQ meshes to suit CCF 
geometries by Kilian et al. (2008) has also been noted. A choice was made to utilize this 
particular discrete representation in the current research due its exact-ness, compatibility with 
subdivision surfaces (Section 1.2.2) and well-established mesh-editing paradigms (Section 2.5), 
easy recovery of planar development or flattening of a 3D surface etc. The necessary conditions 
of such meshes to become curve-crease foldable is detailed in Kilian et al. (2008) and is briefly 
surmised below. 

 

3.2 Necessary conditions of curve-crease-foldability 
 
A simple, single curved-crease fold can be seen as two developable surfaces on either-side of 

the fold, intersecting to form the crease. Thus, if such a folded surface is discretely represented 
as a manifold mesh with two quad strips with equal number of rulings and merged coincident 
vertices, then the (interior) vertices that lie along the crease have to developable. Additionally, 
the two quad strips themselves have to be developable. Taken together, they form the necessary 
conditions for such a mesh to be curve-crease-foldable. This implies that the faces of the mesh 
have to planar (PQ mesh) and the crease vertices have to be developable or the Gaussian 
curvature measured at such vertices has to be zero. This reasoning can be applied to more 
complex assembly of quads-strips, including hybrid meshes with triangles and quads (Figure 
34). 
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Figure 34 Planar quad strips as discrete representation of developable surfaces 

3.2.1 Discrete measures and constraints 
 
Gaussian curvature 
 

One of the well-established discrete measures of Gaussian curvature is proportional to the 
difference between 2π and the angle-sum around a vertex. It is also proportional to the area of 
the incident faces (Aleksandrov & Zalgaller 1967; Meyer et al. 2003). Angle-sum is computed 
by adding the angles between cyclical pairs of edges meeting at the vertex. Thus the Gaussian 
curvature will be zero if the angle-sum is 2π, since the case where the face-areas collapse to zero 
indicates a degenerate mesh. Such a measure of the angular defect makes intuitive sense if we 
consider the case when the vertex and its edges are flattened unto a flat sheet. The angles, in 
such a case would sum up to 2π by virtue of being on a plane. Stemming from such an intuition, 
vertices where the angle-sum is in excess of 2π or the angular-defect is negative, are called 
Hyperbolic vertices. Such vertices and their edges cannot be isometrically flattened to a plane 
without having to tear the disk (Figure 35). Similarly, vertices where the angular defect is 
positive are called Spherical vertices and they would leave a gap when flattened or the edges 
would have to stretch to overcome the gap. Lastly, perfectly developable vertices are called 
Euclidean vertices. 

 

 
Figure 35 Classification of  vertices based on their Guassian curvature : Left to Right : Hyperbolic,Spherical and Euclidean 
vertices 
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Planarity 
 
Kilian et al. (2008) also formulate a discrete bending energy to suit their PQ discretization. 

This energy, is locally proportional to magnitude of the vector difference between the unit-
normal associated with each the two faces incident on an edge (Eqn 1). These normals 
associated with each face are the normals of the planes spanned by the two ruling-edges of the 
face (Figure 36). The total energy is the sum of such magnitudes across all edges of a mesh. It 
can be noted that this formulation is different from that for triangular meshes (Grinspun 2003) 
which is proportional to the dihedral angle across the edge. It can be seen that, locally this 
energy is minimal when the normal of the two faces are co-linear or in other words the two 
faces are co-planar. Thus the planarity requirement is also in alignment with developable 
surfaces having minimal bending energy or that they have the same bending energy as a planar 
sheet. 

 

௜ܧ ൌ ݇௜	ฮ࢔ଵ െ ଶ࢔ ฮ
ଶ
                                              (1) 

 
Where ܧ௜ is the bending energy across an edge	݅, ݇௜is a constant, and ࢔ଵ	ܽ݊݀	࢔ଶ are normals 

associated with the two faces incident on edge ݅ (Figure 36) 

 
Figure 36 Quad strips and associated bending energy (Eqn 1) 

 
Thus the two conditions that a pre-dominantly quad mesh needs to satisfy for it to become 

curve-crease-folded are that the Gaussian curvature or angular-defect of interior and crease 
vertices is zero and that the mesh faces are planar. 

 

3.3 Method Overview 
 
Given the representation and the constraints, the proposed design-friendly method essentially 

involves the use of various mesh operations to describe a coarse and predominantly quad-faced 
mesh (low-poly) with an appropriate topology (Figure 37) and subsequently finding the nearest 
mesh that satisfies the previously described conditions. In other words, given an input mesh of 
appropriate topology of rulings (Chapter 6), the method distils to a minimization problem, stated 
as below: 

 

n1 n2

e1 e2
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Where the mesh has n vertices and m faces each made up of o vertices, x is an n x 3 matrix 
of vertex positions, g(x) measures the sum of angle defects ௜݃ at each vertex and h(x) measures 
sum of the distances	݀݇  of each vertex of a face to the corresponding best-fit plane.   

 
Figure 37 Use of Conway operators (Hart n.d.) to describe a coarse and predominantly quad-faced mesh 

3.3.1 Iterative and local methods 
 
The minimization problem stated above could in theory be solved to its minima or the rest-

state of curve crease foldability. However common optimization techniques prefer to use 
quadratic functions, because their minimization involves solving a linear system of equations, 
which are computationally inexpensive to solve. Often then, higher order functions are 
approximated with quadratic terms to suit this paradigm. Hence, in popular texts on the topic, 
the notion of linearized formulation of functions can be found being applied to even quadratic 
functions. The amenability of Eqn (2), to such linear techniques and computational expense of 
the two functions stated above is described next. 

 
Planarity 
 

The non-planarity of quadrangular and triangular mesh faces can be geometrically visualized as 
the volume of the tetrahedron defined by its vertices(Poranne et al. 2013). Consequently the 
planarity of the face is ensured by the volume being zero. There are no additional constraints 
and the volume function is quadratic. Thus, this lends itself to straight-forward minimization 
techniques. N-sided faces on the other hand are more difficult to minimize due to higher order 
functions. Poranne et al. (2013) and additionally Deng et al. (2011), also show that the 
planarization problem for n-sided faces can be cast as a least-squares optimization subject to 
linear constraints (that they call distance-from-plane constraints). However they claim that such 
optimization problems require the use of sophisticated computational techniques, especially for 
high-resolution meshes. In the context of this research however, since predominantly-quad 
meshes are a representational requirement, the unconstrained and intuitive constraint of the 
volume of the tetrahedron is used. Thus, the planarization or minimizing the first term of (Eqn 
2) is indeed linear and straight-forward. 
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Gaussian curvature 
 
Similarly, Wang & Tang (2004), have shown that the requirement of zero Gaussian 

curvature can be cast as a quadratic minimization problem. The quadratic function that they aim 
to minimize is in fact the square of the difference in lengths of the edges of the initial mesh and 
those of the rest-state mesh to be found. The constraints that they impose on such a 
minimization is that all the vertices are developable i.e. that their angular defect is zero.  In other 
words, the constraints of their method are exactly the bending terms in the elastic energy 
(Section 2.5). The angular-defect constraints are actually linear in nature, since they only 
involve the computing of sums of angles. Thus the developability constraints are also straight-
forward, in terms of its minimization.  

 
Thus, independently both planarity and developability constraints have been shown to be 

minimization problems, upon which known optimization techniques could be applied. However, 
two important features should be noted: 

 
1. Both Poranne et al. (2013)and Wang & Tang (2004), employ iterative procedures to 

minimize the functions i.e. they start with an initial guess of the solution and 
incrementally improve the solution until it is within prescribed tolerance. If each 
iterative state of the mesh were to be visualized, the nodes of the mesh would appear to 
be perturbed incrementally towards their final state. This is contrast to direct methods 
that solve for the final rest in a finite number of steps. A well-known example of a 
direct method in mesh-processing, is the computing of minimal surfaces via 
minimization of mean curvature (Botsch et al. 2010) and the historically seminal work 
of Schek (1974) in finding minimal-nets.  

 
2. The computation of normals in the case of Poranne et al. (2013)et al and angular defects 

in the case of Wang & Tang (2004)is local. In each iteration, these quantities are 
updated by traversing the faces and the nodes of the mesh respectively. It is normally 
preferred in optimization procedures for such quantities to be defined as manipulations 
of a linear system of equations i.e. as matrix operations such that all quantities can be 
computed at once or globally. For instance volumes of the tetrahedrons defined by 
vertices of faces can be computed by such operations whilst face-normals and angular 
defects are not easy to define as such. 

 

Dynamic relaxation 

These two aspects stated above, along with those described in (Section 1.2.1) were important 
considerations for the choice to use a Dynamic Relaxation framework to minimize the function.  

3.4 Perturbation 
 

It follows from Eqn 2, that vertices could be iteratively perturbed along the gradient of the two 
functions - ݃ሺ࢞ሻ	ܽ݊݀	݄ሺ࢞ሻ	- to minimize the error function	݂ሺ࢞ሻ	,  

 
ሻ࢞ሺ݂׏ ൌ ሻ࢞݃ሺ	ሺ׏ ൅ 	݄ሺ࢞ሻ	ሻ ൌ ሻ࢞ሺ݃׏	 ൅	݄׏ሺ࢞ሻ	 

 
The perturbation of the vertices of the mesh follows a dynamic relaxation schema – treating the 
vertices of the mesh as lumped masses, applying virtual-forces along the respective gradients at 
the vertices, and subsequently updating the positions of the vertices by integrating the resulting 
Ordinary Differential Equation (ODE), using an appropriate numerical method. This process is 
continued until the resultant force at each vertex is zero. More details of the dynamic relaxation 
method and numerical aspects are described in the Software Implementation chapter (Section 
7.2). 
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Thus, the DR-based method can be summarized (Figure 38) as below:  
 
1. (Procedural) generation of input mesh.  
2. Applying virtual forces of planarity and developability, and solving for the equilibrium 

positions of the input mesh subjected to such forces. 
3. Computing a planar development (2D mesh). 
4. Optionally, rectify the residual ‘errors’ by minimizing the strain energy between the 3d 

and 2d meshes.  
 
 
 

 
Figure 38 Overview of proposed algorithm 

 

3.4.1 Gradient of planarity 
 

N-sided faces 
 

The planarity of the faces of a mesh is ensured by accumulating forces on the vertices of each 
face(Figure 39). The direction of the force is towards the best-fit plane and its magnitude is 
proportional to distance d of the vertex from the best-fit plane.  The normal of this plane is 
computed as the weighted sum of the cross products of cyclical vector pairs from the node to 
each of its neighbours. The centroid of the 1-ring is considered the origin of the plane. An Eigen 
decomposition of the covariance matrix of the nodal positions of the neighbours may also be 
employed for this purpose (Poranne et al. 2013).  However, the first approximation was found to 
be more compatible with the developability force (Section 3.4.2) in achieving convergence. 

 

 

Input mesh 
predominantly quad

Perturbed mesh 
zero gaussian curvature

Unrolled mesh
planar 

fv fp

boundary vertices

interior vertices

perturb flatten
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Figure 39 Quantities involved in the computation of gradients of planarity and Gaussian curvature 

 
 

The	normal	ࡺ௙ܽ݊݀	origin	࡯௙	of	the	best െ fit	plane	of	each	face	݅ݏ	݊݁ݒ݅݃	ݕܾ 

௙ࡺ ൌ 	෍࢔௜ ݂⁄

௙೐

௜ୀ଴

	 , ௙࡯ ൌ 	෍࢜௜ ݂⁄

௙

௜ୀ଴

 

 face	the	of	vertices	of	number	the	is	face, and ݂	the	in	triangle	each	of	normal	the	is	௜࢔
 

Then distance ݀ of each vertex from the best-fit plane is 

݀ ൌ ൫ࢂ	 െ	࡯௙	൯.  ௙ࡺ

 
And the corresponding force 

௙_௩ࡲ ൌ ݀ ∗  ௙ࡺ

 
Lastly, the accumulated planarity force at each vertex is 

௣ࡲ ൌ 	෍ࡲ௙ೡ

௩௙

௙ୀ଴

	 

	where	݂ݒ	is	the	number	of	faces	that	the	vertex	belongs	to. 
 

Quadrangular faces 

In the case of quadrangular faces, the gradient could also be formulated as the gradient of the volume 
of tetrahedron formed by the four vertices as previously mentioned (Poranne et al. 2013). Additionally, it 
can also be thought of as laying along the line of shortest approach between the two diagonal skew-lines 

of the face. This direction is the cross product of the two vectors along each diagonal (Figure 40). Both 
of these are easy to implement as they depend on the positions of the vertices of the face. Additionally, 
since pre-dominantly quad meshes are a pre-requisite for the method, both methods are particularly 
relevant. 
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Figure 40 Gradient of planarity of a quad-face 

3.4.2 Gradient of developability 
 
Developability can be ensured by the presence of uniform and zero Gaussian curvature 

throughout the mesh. Thus the solver accumulates a force along the direction of gradient of 
Gaussian curvature at each vertex, with a magnitude proportional to the angle deficit (from 2ߨ) 
at the vertex. Both an analytically computed (Desbrun et al. 2002) and a numerically computed 
gradient were tested, with the analytical gradient predictably converging 2-3 times faster.  

 
 
 

௚ࡲ ൌ સ∅	 ∗ 	ሺ2ߨ െ	∑∅)   (Refer to Figure 39) 

where	સ∅	is	the	gradient	of	gaussian	curvature 

The derivation of the analytical gradient is described in Desbrun et al. (2002). A geometric 
understanding of the gradient of an angle is described below. The setting is simplified. 

Gaussian curvature is a linear function of the sum of angles at a vertex (Figure 41). Thus the 
gradient of Gaussian curvature is gradient of the sum of the angles, which in turn is a sum of 
gradients of the individual angles. 

K׏ ൌ ׏	 ቆ
ߨ2 െ ߠ∑
ܽ݁ݎܣ

ቇ ൌ ׏	 ቀ෍ߠቁ ൌ 	 ෍ ௝∅׏
௝	∈ேሺ௜ሻ
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g
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Figure 41 Geometric understanding of the gradient of Gaussian curvature 

 

Therefore looking specifically at one of the individual angles -  	݈ܽ݊݃݁	ܤܲܣ෣  , and assuming that 
the 1-ring edges are all unitised, it can be shown that the gradient of ∅௝ w.r.t position ࢖ is, 

൫∅௝൯׏ ൌ 	 ቀ
ሺࢇା࢈ሻ

૛
െ ቁ࢖	 ∗ ݇ , where ݇ is any constant 

This is a vector in the direction from the vertex to the mid-point of the edge AB. This makes 
intuitive sense, in that the angle between the two edges meeting at the point in question, will be 
the largest if the point is co-linear with the other two i.e. they all lay on a straight line. The 
quickest way to get towards the maximum possible is thus move along the shortest path to the 
mid-point between the two fixed points. 

By extension then, the gradient of the sum of angles around a vertex is a weighted average of all 
such vectors pointing to the mid-points of edges. This implies the gradient should be pointed 
towards a weighted average position of the 1-ring vertices. This is very similar to the Laplacian 
vector (Figure 42) which points towards a weighted average and is in alignment with the normal 
of the surface.  

b ( b1 ,b2 ,b3 )

a ( a1 ,a2 ,a3  )  or   xj

p(x,y,z)  or  xi

øj
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Figure 42 Gradient of Gaussian curvature -  ࢏ࢍ , and Mean curvature (Laplacian vector) -  ࢏࢒ 

Thus the gradient of Gaussian curvature can be expected to have a formulation similar to the 
Laplacian vector, which is known to minimise mean curvature. This explains the analytical 
gradient that Desbrun et al. (2002) formulate and used in this research: 

ሺ∅ሻ׏ ൌ 	 ෍
cot൫ߛ௜௝൯ ൅ cot൫ߜ௜௝൯

ฮ࢞௜	 െ ௝ฮ࢞	
ሺ࢞௜	 െ ௝ሻ࢞	

௝	∈ேሺ௜ሻ

 

3.5 Boundary conditions and additional degrees of freedom  
 

Typically, when DR is used to form-find minimal (mean curvature) surfaces, some or all of the 
boundary vertices of the mesh are held fixed. However in the case of finding curve-creased 
surfaces, the boundaries are required to find their equilibrium positions, since physically, any 
folding across a crease causes the boundaries to rearrange itself to compensate for the induced 
stretching of the material. As such, planarity forces are applied to the boundary vertices as well. 
However, since the boundary vertices do not have the full set of vertices to compute the 
Gaussian curvature correctly, developability forces are not applied to those vertices.  

 

3.5.1 Gradient of developability at a boundary vertex 
 
Additionally, the boundary vertices could be considered as extra degrees of freedom that can 

be utilized towards finding the equilibrium solution, i.e. they can be moved to affect the 
Gaussian curvature of the adjacent interior vertex.  Thus a gradient of Gaussian curvature of the 
adjacent interior vertex, measured at the boundary vertex, is computed (Figure 43). A force is 
then applied to the boundary vertex along this gradient direction. The difference that this 
additional force makes to the final solution can be seen in (Figure 44).  
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Figure 43 Gradient of Gaussian curvature of a (adjacent) interior vertex measured at a boundary vertex 

 
 

௕௚ࡲ ൌ સ∅௕௚ 	∗ 	 ሺ2ߨ െ	∑∅௚) 

Of the three or more angles contributing to the Gaussian curvature of the adjacent interior 
vertex, moving the boundary vertex can affect only two of the angles as shown in (Figure 43). 
Inspecting any of those two angles, it is easy to see that the angle at the interior vertex can be 
changed the most rapidly, if the boundary vertex is moved along a circle centred at the interior 
vertex, with radius equal to the length of the edge. In other words and as the formulation below 
shows, the gradient of each of the angles is ortho-normal to the edge connecting the boundary 
vertex to the interior vertex, and the normal of the triangle. Thus the gradient of sum of the two 
angles is the sum of the two such vectors. This is stated formally below: 
 

સ∅௕௚ ൌ 	સ∅ଵ	 ൅ 	સ∅ଶ	 ൌ 1ࢍ	 ൅ 2ࢍ ൌ ሺ11ࢋ	⨂	12ࢋሻ	⨂	12ࢋ ൅ ሺ21ࢋ	⨂	22ࢋሻ	⨂	21ࢋ		 

bg is the boundary vertex and its connected interior vertex is  g, and ࢋଵଵ	ܽ݊݀	ࢋଵଶ	  and 
 .ଶଶ are unitized vectors along the edges of each of the two trianglesࢋ	݀݊ܽ	ଶଵࢋ
 
In practice, the vertex could also be moved along its normal, which has a similar global effect.  
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Figure 44 The effects of using various combination of forces and their respective unrolled results. 

3.5.2 Extra row of faces 
 
Alternatively, an extra row of boundary faces can be added to the mesh, thus converting the 

original boundary vertices to interior ones. The extra vertices can then be held fixed. These 
extra faces can be used to direct the solution of the solver, since the additional row controls half 
the number of angles subtended at a vertex, thereby limiting the scope of movement of the 
vertex in order to ensure that the total sum is	2ߨ.  The effect of this user-defined addition can be 
seen in (Figure 45).  

 

Only Interior Gaussian Force

Only Boundary Gaussian Force

Combined Gaussian Force ( Interior + Boundary)
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Figure 45 Effect on the resultant perturbed mesh, of adding extra-row of faces in plane with original boundary faces (Top) and 
normal to them (Bottom) 

3.6 Planar Development  
 
The algorithm proposed in the previous section (Section 3.3), employs an iterative and local 

method to solve the minimization problem stated in Eqn (2). It follows that successive iterations 
are stopped when the error is within numerical tolerance. This then implies that the resulting 
mesh is only developable within tolerance. In other words, the resultant, perturbed mesh is a 
quasi-developable. As with the previously indicated applications of quasi-developable surfaces 
(Sections 2.4 & 3.1), they are subject to the tolerances afforded by the method and material of 
physical reproduction of the digital surface. In this research, such tolerances were measured by 
the extent of isometry between the 3d surface and its planar counterpart or development.  

 
Spring-networks and Convex mappings 
 
Section 2.6 provides an overview of the various aspects of developing a planar mapping of a 

3D mesh. An intuitive approach to the problem on the other hand, is to minimize the curvature 
of the mesh since flat objects do not have curvature. Harmonic mapping achieves this by 
applying the Laplacian operator unto the 3d mesh(Hélein & Wood 2008). This amounts to 
trying to minimize the energy of a spring-network or equalize the lengths of all the edges (Eck 
et al. 1995).  

 
Apart from the conformal and authalic mapping methods (Desbrun et al. 2002) described 

previously( Section 2.6), this research implemented a modification to the harmonic mapping to 
achieve nearly isometric planar developments: rather than equalize the edge-lengths of the 
planar mesh, the difference in edge-lengths between the 3D and 2D meshes were equalized. 
This is in line with one of prominent algorithmic themes to ensure developability of meshes: 
minimize the strain between the 3D mesh and its corresponding planar-development (Kilian et 
al. 2008; McCartney et al. 1999; Wang et al. 2002)Similar to Wang et al. (2002), this was 
achieved this by accumulating spring forces on vertices, proportional to difference in lengths of 
the corresponding edges in the 3D and 2D meshes. The differences between the three are shown 
in (Figure 46).For more on parameterizations with spring-like energy minimizations, the reader 
is referred to Zhong & Xu (2006).  
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Figure 46 Left to Right : Differences between Authalic, Conformal and isometric parametrization of an example 3-crease mesh 

 
It is useful to note an important theorem on parameterization, particularly in the context of 

use of spring-like methods. Implementation of such methods often runs into problems of 
overlap of edges, folding-over of triangles etc. In general, a bijective parameterization is 
guaranteed only if the spring constants that are used are non-negative and if the pinned 
boundaries are convex (Tutte 1963; Floater 2002). 

 

Implementation and commercially available methods 

Computing an isometric planar development of the resultant mesh is important in the process 
of physical reproduction of the computed CCF geometries. In other words, it is not integral to 
the proposed method. As such, the implementations described previously were attempts at a 
complete design tool and to verify the accuracy of proposed algorithm. In practice, more robust 
and commercially available implementations were used – the well-known CAD software of 
Rhinoceros™ and Pepakura™ that is often used by paper-craft artists. The tolerances that were 
used to establish the stopping criteria for the algorithm subsequently were a function of the 
error-thresholds afforded by these software (Figure 47) and the acceptable difference in surface 
area of the 3D and 2D meshes. This limitation is discussed in the conclusions and future work 
(Chapter 8) 

 

 

Figure 47 Examples of misalignment errors produced by Pepakura in the unfolding process used to establish stopping criterion for 
the perturbation process.  
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3.7 Results 

3.7.1 Stiffness of ODE 
 
The solving for the equilibrium position of the vertices that are subjected to virtual forces of 

planarity and developability as described previously, is a so called ‘stiff’ problem i.e. it requires 
that the step sizes are very small. If the mesh is subjected to only one of the forces, the solver 
converges rapidly, and within acceptable numerical error (Figure 48 and Figure 49). If both 
forces are applied, the convergence behaviour changes (Figure 50), requiring smaller step sizes 
and thus more iterations. A possible method to overcome the stiffness is minimizing one of the 
functions beyond a threshold before applying the forces corresponding to the other. In practice, 
it was found that solving first for developability and subsequently solving for planarity speeds 
up the search (Figure 51).  

 
 

  
Figure 48 Convergence graph of developability metric when only Gaussian force is applied: Left – two-crease example mesh, 
Right four-crease mesh 

 

Figure 49 Convergence graph of planarity metric when only planairty force is applied: Left – two-crease example mesh, Right 4-
crease mesh 
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Figure 50 - Convergence graph of developability & planarity metrics when Planarity and Gaussian forces are applied 
simultaneously: Left – two-crease example mesh, Right 4-crease mesh. Planarity graph scaled by 100. 

 
Figure 51 Convergence graph of developability & planarity metrics when Planarity and Gaussian forces are applied sequentially: 
Left – two-crease example mesh, Right 4-crease mesh. Planarity graph scaled by 100. 

3.7.2 Step size 
 

Additionally, the method used to integrate the ODE – 4th order Runge Kutta (RK4) - is an 
explicit scheme. Explicit integration schemes are known to have problems with numerical 
stability, especially when partial differential quantities or gradients are involved(Shampine & 
Thompson 2007). Practically speaking, this was overcome using relatively small step sizes (0.05 
– 0.1 units). Implicit schemes are known to be unconditionally stable i.e. irrespective of step 
size. This short-coming in the software implementation is noted in Conclusions and Future 
work (Section 8.3.4). 

3.7.3 Degrees of freedom 
 

Section 3.5 mentions the potential use of boundary vertices as extra degrees of freedom in 
the perturbation process. This implied the application of an additional force to the boundary 
vertices, along the gradient of Gaussian curvature. Figure 44 already showed the effective use of 
this force. This force however, is not always compatible with the other forces at play. Figure 52 
and Figure 53 show the effect of the independent application of this force on two test-cases. As 

0

5

10

15

20

25

30

35

40

45

50

1

4
3
4

8
6
7

1
3
0
0

1
7
3
3

2
1
6
6

2
5
9
9

3
0
3
2

planarity & curvature

maxC

maxP

0

1

2

3

4

5

6

7

8

9

1
1
6
2

3
2
3

4
8
4

6
4
5

8
0
6

9
6
7

1
1
2
8

1
2
8
9

planarity and curvature

maxC

maxP

0

2

4

6

8

10

12

14

16

18

1

7
9
1

1
5
8
1

2
3
7
1

3
1
6
1

3
9
5
1

4
7
4
1

5
5
3
1

planarity & cruvature

maxC

maxP

0

1

2

3

4

5

6

7

8

9

1
3
9
1

7
8
1

1
1
7
1

1
5
6
1

1
9
5
1

2
3
4
1

2
7
3
1

3
1
2
1

planarity and curvature

maxC

maxP



Page | 54  
 

can be discerned from the figures, this force can perturb the (boundary) vertices quite far from 
their original positions and therefore better to omit it. It was found that the method does indeed 
converge on a solution with such a force included, albeit a solution distant from the input mesh. 

 

Figure 52 Left : Resultant positions of boundary vertices that make the interior vertices developable. Right : Original positions of 
boundary vertices. (Example two-crease mesh) 

 

 
Figure 53 Left : Resultant positions of boundary vertices that make the interior vertices developable. Right : Original positions of 
boundary vertices. (Example three-crease mesh) 

3.7.4 Table of results 
 

Perturbed CCF results from input meshes with increasing number of creases are shown 
below: Figure 54 and Figure 55 show simple geometries with one and two crease-folds 
respectively. Figure 56 shows a primitive type with three-crease folds and other compound 
assemblies of the basic 3-crease type. The last two rows of Figure 56 shows that the proposed 
method does in fact fully solve geometries that were used to construct the physical prototypes 
described in Chapter (4) & Chapter (5). These chapters give more details regarding the extent to 
which, the method that is proposed here, was used in the case studies. 
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Figure 54 Left to Right: original single-crease mesh, perturbed result and unrolled layout 

 

Figure 55 Left to Right: original two-crease mesh, perturbed result and unrolled layout 

Input mesh 
surface area: 106.550019 sq.units

Perturbed mesh 
surface area: 106.550232 sq.units

Unrolled mesh 
Unrolled surface area difference: 
0.000213 sq.units

1.0
Re-Mapped Gaussian Curvature

0.20.30.40.60.70.80.9 0.5 0.1

Input mesh 
surface area: 56.6851003  sq.units

Perturbed mesh 
surface area: 56.6853824 sq.units

Unrolled mesh 
Unrolled surface area difference: 
0.0002821 sq.units

1.0
Re-Mapped Gaussian Curvature

0.20.30.40.60.70.80.9 0.5 0.1
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Figure 56 Left to Right: original multi-crease mesh, perturbed result and unrolled layout. Top to bottom: 3-crease mesh, 4-crease 
mesh, mesh with closed creases, mesh used in prototype 2 (Chapter 4) and prototype 1 (Chapter 5). 

 

  

1.0
Re-Mapped Gaussian Curvature

0.20.30.40.60.70.80.9 0.5 0.1
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194.826709 sq.mm 194.826826 sq.mm Deviation: 0.000117 sq.mm
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4 CASE STUDY 1 
 

The prototype described in this chapter, was an attempt to explore the applicability of curve-
crease-folded geometries for producing moulds for a specific class of skeletal structures. The 
prototyping exercise was also attempt to employ the computational method described in Chapter 
(3), in a realistic design and construction scenario (Figure 57). It should be noted that the 
research described in this dissertation was under development at the time this exercise, and the 
author was part of the collaborative design and build team that executed the prototype. Both the 
computational methods and the production of manufacturing information is described in a co-
authored paper (S Bhooshan, Bhooshan, et al. 2015). The contributions of this prototyping 
exercise to the research of the dissertation in general, and the special case of the proposed 
method of computing CCF geometries described in Section (3.5.1), is noted at the end of this 
chapter and acknowledged in the statement of co-authorship. Lastly, the construction prototype 
was funded by an educational workshop organized by the author, under the Visiting School 
Program of the Architectural Association, London. 

 

Figure 57 Construction of a funicular skeleton structure using CCF moulds. Image courtesy (S Bhooshan, Bhooshan, et al. 2015) 

4.1 Context 
 

Physical form-finding using hanging chains and associated architectural design methods is 
common among architects. There are several digital methods to find the equilibrium shape of 
shell structures, including TNA-Thrust Network Analysis (Block & Ochsendorf 2007), Mass-
spring methods ( Bhooshan et al. 2014), Dynamic relaxation (Barnes 1999) ,Force Density 
Method  (Schek 1974)  etc. For a comparative analysis of the methods the reader is referred to 
Veenendaal & Block (2012). In this case-study, Force Density Method was used due to its ease 
of implementation and amenability to parameter-free, interactive modelling paradigm of solving 
directly for the rest, equilibrium state ( Section 2.5).  
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The construction of form-found geometries with concrete requires the use of form-work, into 
which concrete is poured. Traditional form-work is often straight and difficult to form curved 
surfaces, an essential feature of shell structures (Figure 58). 

 
Figure 58: Typical form work for shells. Image courtesy (S Bhooshan, Bhooshan, et al. 2015) 

These difficulties extend to the construction of curved skeletal geometries. In this context the 
proposed use of curve-folded moulds is relevant, in that curved-melds can be economically and 
efficiently formed from sheet material. It is important to note that the curve-folding technique 
can be used only in cases where the underlying mesh has consistent positive mean-curvature. 
Hence, there is compatibility between compressive skeletal structures and curve-folded moulds 
(Figure 59). This is elaborated at the end of this chapter. Lastly, a precedent project to note is 
Pedersen et al. (2015) for their use of straight folded plastic as form-work for a skeletal shell 
computed using TNA.  

 
Figure 59: Showing a mesh in close-up with mean-curvature direction (red lines), mesh-edges (grey) and a y-shaped node (bold). 
Image courtesy (S Bhooshan, Bhooshan, et al. 2015) 

4.2 Design process 
 

The design pipeline consists of four main steps, each described in subsequent sections. 

1. Generate a discrete compressive mesh. 
2. Derive geometries for curve-foldable moulds from 1.  
3. Apply the previously described method (Chapter 3) to perturb such an input mesh to 

form CCF geometries. 
4. Generate manufacturing information. 

CCF mould

form-found mesh

face normals
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4.2.1 Discrete compressive mesh 
 

A user-specified, typically planar, mesh, is transformed into a topologically identical 
compression-only surface-mesh, using the Force-density method (Schek 1974)(Figure 60). 

 
Figure 60: Form finding of funicular mesh. Image courtesy (S Bhooshan, Bhooshan, et al. 2015) 

Of relevance to the current research is that for the built prototype, all the internal vertices of the 
user-specified, input mesh were tri-valent. This was to constrain the construction of the 
prototype to the use of only Y-shaped moulds (Figure 61), and thus reducing complexity in on-
site production. 

 

  

Figure 61: Design Iterations, the total number of Y-panels was a driving factor in the demonstrative prototype.Image courtesy (S 
Bhooshan, Bhooshan, et al. 2015) 

fixed nodes

(a) base polygon

(d) 24 nodes / CCF moulds(c) 40 nodes / CCF moulds

(b) - 82 nodes / CCF moulds
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4.2.2 Deriving geometries for curve-foldable moulds 
 

This process involves the conversion of the form-found compressive geometry to a pre-
dominantly quad topology suitable for perturbation towards becoming curve-crease-foldable i.e. 
suitable for applying the method described in Chapter (3). The process is mostly procedural in 
that it involves the sequential use of well-known mesh manipulation operations known as 
Conway operators (Conway et al. 2008). User input is restricted to choosing the parameters of 
each operation. However, it can additionally involve arbitrarily moving some vertices to correct 
degeneracy, acute angles etc.  The specific sequence of operators that were used in the exercise 
is shown in (Figure 62). Detailed description and other applications are shown in (Chapter 6). 

Figure 62: Left to right: Bevel operator on mesh-edges, extrude and scale operator on mesh-faces, Catmull-Clark smoothing, 
deletion of some of the edges to produce a predominantly quad CCF topology. Image courtesy (S Bhooshan, Bhooshan, et al. 
2015) 

 

4.2.3 Perturbation to CCF geometry 
 

Subsequent to the generation of a suitable topology for the input mesh, the methods 
described in Chapter (3) can be directly applied as shown in (Section 3.6). The application of 
the method produces a planar-quad mesh that is additionally developable i.e. CCF geometry. In 
this exercise however, certain changes were made in consideration of time and production 
constraints. 

 
Planarity Force 

The choice of mesh operations to produce the input geometries, guarantees that the input 
geometry consists of only triangles and quads. Thus, the simpler, diagonal-distance formulation 
of the gradient of planarity (Section 3.4.1) was employed as shown in ( Figure 63). 



Page | 61  
 

 

 Figure 63: Formulation of the planarity force. Image courtesy (S Bhooshan, Bhooshan, et al. 2015) 

 

Developability Force – Boundary vertices 

The application of developability force as described previously (Section 3.4.1), presented a 
peculiar constraint in that, moving the interior crease vertex would often cause the compressive 
graph to ‘stick-through’ the mould geometry. In other words, the crease-vertices of the mould-
geometry were required to remain relatively close to the input geometry. This constraint meant 
that additional degrees of freedom afforded by boundary vertices (Section 3.5.1) were indeed 
useful in this case. Additionally, the ‘regular’ developability force was not applied to the crease 
vertices. It can be noted that, in this exercise the boundary vertices were only moved along their 
normal by an amount proportional to the angular defect at the adjacent interior vertex (Figure 
64) as opposed to the moving them along the gradient as described in (Section 3.5.1). This was 
because vertex normals are more readily available in mesh data structures, whilst the gradient 
would imply additional computation. Iterative schemes are usually tolerant of such deviations 
since the local error is distributed across the network, and the solution still converges to within 
specified tolerances. 



Page | 62  
 

 

 
Figure 64: Formulation of the developability force. Image courtesy (S Bhooshan, Bhooshan, et al. 2015) 

 

 
Figure 65: Vertex classification. Image courtesy (S Bhooshan, Bhooshan, et al. 2015) 

Developability Force – End-vertices 

The input mesh also contained special cases of boundary vertices (Figure 65), referred to as end 
vertices. An end vertex is a boundary vertex which is located on an edge loop spanning across 
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multiple fold creases. These were omitted from developability forces since unlike standard 
boundary vertices their adjacent edge loop does not define a fold crease. 

The results of the method on a Y-shaped node are shown below (Figure 66) and a few states at 
intermediate iterations are noted (Figure 67). 

 
Figure 66: A single Y component before perturbation (a) and after perturbation (b). Green faces are planar and white vertices are 
developable. Image courtesy (S Bhooshan, Bhooshan, et al. 2015) 
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Figure 67: Relaxation sequence of a pair of Y components. Image courtesy (S Bhooshan, Bhooshan, et al. 2015) 

 

4.2.4 Input mesh discretization 
 
The discretization of the input mesh presented some problems with regard to the numerical 
stability of the perturbation process. The mesh had many-creases (~ 85), and certain areas 
needed to be manually adjusted to achieve convergent solutions. 

 



Page | 65  
 

 

Figure 68  Separation of mesh into CCF moulds, subsequent to perturbation. Image courtesy (S Bhooshan, Bhooshan, et al. 2015) 

4.3 Manufacturing information 

4.3.1 Planar development / Unfold layout 
 

These discrete CCF meshes were first isometrically flattened into 2D meshes (Figure 69) using 
in-built tools in Rhinoceros. Subsequently smooth boundary curves were derived for laser-
cutting. This ensured minimum deviation during the unfolding process, as opposed to 
constructing a refined mesh in 3D and flattening it. 

 

Figure 69: (A) Input mesh unrolled, (B) Extracted curves, (C) Typical panel fabrication drawing. Image courtesy (S Bhooshan, 
Bhooshan, et al. 2015) 

4.3.2  Constructing smooth boundary curves 
 

A procedure to interpolate between discrete flattened rulings to their exact smooth (limit) 
rulings is described in Kilian et al. (2008). This procedure is constructed from the fact that the 
rulings of a smooth developable surface are the limits of ruling edges of the discrete mesh. Thus 
a smooth boundary curve can be constructed by interpolating additional rulings as shown in 
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Figure 70, and subsequently drawing a curve that starts on any given ruling and meets intersects 
subsequent rulings. 

 

 

Figure 70 Procedure for generating smooth boundary curves in the planar domain 

In the production of the cutting-layouts for the moulds however, readily available 
interpolation schemes in Rhinoceros were used to construct smooth curves passing through the 
discrete flattened vertices. This caused some of the curves to become over-constrained and have 
rapidly changing curvatures (Figure 71). Additionally, the interpolated curves were not an exact 
fit to the CCF geometries in the sense that if the smooth curves were to be folded back to 3D, 
they wouldn’t align with the computed 3D geometry. Such instances were few, and were 
manually corrected in the planar domain.  
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Figure 71: Shows the smooth interpolation of the crease lines using various NURBS schemes 

4.4 Summary 
 
This prototyping exercise in a real-world design scenario greatly helped to: 
 
i. Formalize the computational method described previously, 

ii. Reveal the synergy between the discrete funicular structures and moulds for casting 
concrete that are curve-folded from sheet material.   

 
The CCF technique is most amenable in cases where the compressive mesh has 
consistently signed (positive or negative) mean curvature (S Bhooshan, Bhooshan, et 
al. 2015). This is usually the case in the case of funicular meshes. Additionally, the 
cross-sectional depth of the mould, and thus the cast element, is dependent on the 
curvature of the curved creases. These, in turn, are dependent on the volume of the 
tetrahedron of the 1-ring neighbourhood of the vertex, or the distance of the vertex to 
the plane formed by its 1-ring vertices (Figure 72). 
 

 
Figure 72 Relation between CCF moulds and element depths. Image courtesy (S Bhooshan, Van Mele, et al. 2015) 

This correlation was subsequently stated as a constrained optimization problem in 
the use of the Force-density method that was employed to find the funicular shape in 
this exercise. This is described in Bhooshan, Van Mele, et al. (2015) 

modified control-point curve 
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iii. Reveal the potential use of the boundary vertices as additional degrees of freedom as 
described previously. This additionally prompted the exploration of the analytical 
solution for the gradient of developability at such vertices (Section 3.5.1). 

iv. Identification of potential fabrication-related problems with regard to generating 
smooth, cutting curves from discrete parameterization of CCF geometries. This 
prompted the discovery of the procedure to construct smooth limit curves from PQ 
discretization that is described in Kilian et al. (2008).  

v. Highlight the need for penalty functions in the proposed perturbation method. 
Additional penalty functions to reduce deviation from the input mesh were not 
necessary in the case of this prototype due to use of additional freedom afforded by the 
boundary vertices. This was also aided by the relatively good approximation of curve-
foldable geometry provided by the input mesh. For generalized use however, penalty 
functions could be added an additional force to minimize deviation from input mesh, as 
several other authors do (Kilian et al. 2008; Poranne et al. 2013; Wang & Tang 2004). 

vi. Develop the sequence of Conway operators needed to (procedurally) transform a 
compression mesh to one that has a topology suitable for CCF geometries. 
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5 CASE STUDY 2 
 

The research described in this dissertation was under development at the time this exercise, 
and the author was part of the collaborative design-and-build team that executed the prototype. 
Both the computational methods and the production of manufacturing information is described 
in a co-authored paper(Chandra et al. 2014). The contributions of this prototyping exercise to 
the research of the dissertation is noted at the end of this chapter and acknowledged in the 
statement of co-authorship. Lastly, the construction prototype was funded by an educational 
workshop organized by the current author, under the Visiting School Program of the 
Architectural Association, London. 

This exercise was an attempt to investigate simplification of the proposed perturbation 
method (Chapter 3) whence dealing with a specific class of geometries. In effect, the results of 
this exercise confirmed that some of the constraints of the proposed method could be relaxed in 
specific cases. A key point of departure was to geometrically construct feasible geometry as 
opposed to an iterative and local search method. As such, the method used in this prototype 
benefits from speedy computation and thus an edit-and-observe exploratory strategy to design. 
Critically however, it is applicable to a specific class of geometries, i.e. convex polyhedral 
meshes and it produces quasi-developable solutions. As shown previously (Section 3.6), the 
geometries could indeed be solved using the more generally applicable iterative perturbation 
method proposed (IPM) in this dissertation. The method discovered during the course of this 
design-make exercise could serve as good input geometry, upon which the IPM could be further 
applied. 

 
Figure 73 Skeleton representation of a closed polyhedron, developed as CCF geometry and assembled on-site. Image courtesy 
(Chandra et al. 2014) 

5.1 Method 
 

5.1.1 Conway operators and the method of reflection 
 
It is well acknowledged that planar curved folds are simpler to solve as noted in the introductory 
survey (Section 2.3) and Mitani & Igarashi (2011).Further, several iterations of paper models 
demonstrated that the creases remained nearly planar unless they were forced out of plane by 
external forces. Thus, whilst the user-specified polygon is modelled using well-known mesh 
editing tools (in-built in Autodesk Maya in this case), it is subsequently converted to a 
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polyhedron by applying planarization routine described in Chapter (3). Subsequently the 
constructive method used in this exercise, constructs, from the polyhedron, developable surfaces 
that are its curved-foldable, skeletal representation. We can recall that CCF geometries are two 
developable strips meeting along a crease. Mitani & Igarashi (2011) have shown that given any 
one the developable surfaces, the other can be computed as its invert-reflection (Section 2.3). In 
extension, the constructive method used in this exercise also constructs the first surface - the 
independent surface (white surfaces in Figure 74). The dependent surface (dark grey surfaces in 
Figure 74) is constructed as derivate of the independent surface.  

The construction of the independent surface follows a procedure already described in (Section 
4.2) and involves the sequential use of mesh operators known as the Conway operators 
(Conway et al. 2008). Users input, is needed in choosing the parameters of each operation. The 
specific sequence of operators that were used in the exercise is shown in (Figure 75). Other 
applications are described in (0).The dependent surface forms the inward extrusions from the 
independent surface, and is computed through an adaptation of the reflection method(Mitani & 
Igarashi 2011).Lastly, the resultant geometry is used to produce manufacturing information such 
as unfolded cutting layouts, and their assemblies. 

 

Figure 74 Independent surface in white, dependent surface in dark grey. Image courtesy (Chandra et al. 2014) 

5.1.2 Independent surface 
 
This step of the constructive method generates the independent surface by the applying the 
following series of operations on a convex polyhedron (Figure 75):  

1. Chamfer and Bevel Conway operators(Hart, G, 1998) applied to all vertices and then edges 
respectively 

2. Cubic Bezier curves extracted from faces of polyhedron  
3. Planar polygonal surfaces generated at each vertex 
4. Translational surfaces generated at each edge  
In the above sequence, operations 1-2 permit a significant range of design variations and define 
the curves that form the edges of the designed surface. Operations 3 and 4 are surfacing 
operations, replacing each vertex of the original polyhedron with a planar polygonal surface and 
each edge with a translational surface.  These translation surfaces have no Gaussian curvature 
by virtue of the planar faces of the initial polyhedron. In others words, the independent surface 
is developable by construction. 
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Figure 75 Geometric operations to construct the independent surface from a user-defined polyhedron. Image courtesy (Chandra et 
al. 2014) 

5.1.3 Dependent surface 
 
Early attempts to compute the dependent surface involved using the method of reflection 
(Mitani & Igarashi 2011). However the reflected surfaces tended to intersect each other (Figure 
76). This prompted the search for a closed form solution specific to these types of closed convex 
polyhedral geometries.  

 

Figure 76. The method of reflection produces intersecting surfaces. Image courtesy (Chandra et al. 2014) 

The solution computes an extrusion vector at each crease-vertex of the independent surface such 
that the sum of angles projected by the existing faces and the new faces sum up to 2ߨ. In other 
words, the extrusion vector is computed such that the crease-vertex becomes developable.  

In Figure 77, consider P, A and B to be border vertices and the line PC to be an interior edge on 
the designed surface. A solution set {Q} exists such that every vertex Qi: 

∠APC + ∠BPC + ∠APQ + ∠BPQ = 2π 
 
Or:  
  
ଵߠ ൅	ߠଶ ൅	ߠ௫ ൅	ߠ௬ ൌ  ߨ2	
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Figure 77. Computing the dependent surface. Image courtesy (Chandra et al. 2014) 

 

As {Q} contains an infinite number of solutions, the solution space is constrained to the bisector 
plane of angle ∠APB (Figure 77a) and its intersection with a unit sphere centred at P, which 
limits the number of solutions to the folded-state with vertex Qf (Figure 77b), and the unfolded-
state with vertex Qu (Figure 77c). We could also make assumptions of other linear and 
polynomial relations between ߠ௫ and	ߠ௬, which will result in higher order roots for Qi. If no 

assumption is made regarding the relation between the two angles, the solution space {Q} would 
be the intersection of a quartic surface and the unit sphere centred at P.  

If P1 and P2 are points on edges PA and PB respectively nearest to Qi, and d1 & d2 are the 
distances from P to P1 and P2 respectively we can state that: 

݀ଵ ൌ 	݀ଶ		 ൌ ඥሺ	ݏ݋ܥሺ2ߨ െ	ߠଵ െ	ߠଶሻ ൅ 1ሻ ∗ 0.5 

Thus the solution can be understood as the intersection of a unit sphere centred at P, with a line 
connecting Qu and Qf. Further, this line is the intersection of two planes, one centred at P1 with 
PA as its normal and the other centred at P2 and PB as normal. This results in a system with 
quadratic roots as shown below. This makes the length of the extrusion vector the only designer 
controllable parameter in the derived surface. 

ܳ௨ ൌ ૙ࡼ ൅ ௙ࡽ and    ࢂ௨ߣ ൌ ૙ࡼ ൅  ࢂ௙ߣ

Where: 

௨ߣ ൌ 	
ି௕ି√௕మିସ௔௖

ଶ௔
      and  ߣ௙ ൌ 	

ି௕ା√௕మିସ௔௖

ଶ௔
 

ࢂ ൌ ࡭ࡼ ൈ     ࡮ࡼ

ܽ ൌ ࢂ ∙   ࢂ

ܾ ൌ 2ሺࢂ ∙  ሻࡼ

ܿ ൌ ሺࡼ૙ ∙ ૙ࡼ െ 1ሻ 

૙ࡼ ൌ	൏ ,଴ݔ ,଴ݕ 0 ൐      ݔ଴ ൌ 	
ௗభ௬మ	ି	௬భௗమ
௫భ௬మ	ି	௬భ௫మ

଴ݕ       ൌ 	
௫భௗమ	ି	ௗభ௫మ
௫భ௬మ	ି	௬భ௫మ

 

݀ଵ ൌ 	݀ଶ		 ൌ ඥሺ	ݏ݋ܥሺ2ߨ െ	ߠଵ െ	ߠଶሻ ൅ 1ሻ ∗ 0.5 
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5.2 Quasi-developable solutions 
 

In summary, the independent surface is developable by construction. The crease vertices of the 
resulting geometry are also developable by virtue of the analytical solution described above. 
The dependent surface, on other hand is not developable i.e. the faces of the dependent quad 
strip are not planar. Unfolding a resultant, pre-dominantly quad mesh produces unfold error due 
to the non-planarity of mesh faces. This issue can be corrected in the 2D unfolded layout by 
merging spherical or hyperbolic vertices. This however would mean that the physical object will 
not match the digital 3D model. Constraints of time and the free-standing nature of the sculpture 
meant this issue was not addressed. However, in order to quantify the error in the geometry, 
several mesh resolution variants of the same base polyhedron (Figure 78), were digitally 
unfolded. The lower mesh resolution computed to significantly higher accuracy.   

In practise however, these surfaces were almost planar or quasi-developable. For the purpose of 
architectural installations in paper and sheet aluminium, the resulting geometry was within 
acceptable tolerance for fabrication, as further illustrated by the reasonably precise edge 
alignment.  

 

 

Figure 78. Key results from unfold error measurements. Image courtesy (Chandra et al. 2014) 

5.3 Manufacturing information 
 
The resultant geometry is used to generate manufacturing information, in the form of unfolded 
CAD/ CAM data. 
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Figure 79. Process of CAD/ CAM info generation. Image courtesy (Chandra et al. 2014) 

5.4 Summary  
 

This prototyping exercise in a real-world design scenario greatly helped to: 
 

i. Develop computationally simple and manipulation friendly method that be can be 
used for specific low-resolution convex polyhedral geometries.  
 
The ease of using polyhedral meshes and their manipulation using ubiquitous mesh 
modelling tools enabled speedy exploration of variations and is amenable with edit-
and-observe strategies that designers tend to prefer (Figure 80).  

 

 

Figure 80. Parametric variations of the independent and dependent surface computed from the same base polyhedron. Image 
courtesy (Chandra et al. 2014) 

This intuitive nature of mesh editing tools lead to their incorporation, extension and 
formalised description in this dissertation (Chapter 6). 
 

ii. Demonstrate the useful-ness of CCF geometries in construction. 
 
Apart from the obvious benefit of using sheet material to produce curved surfaces, they 
also ease the on-site description of geometry and assembly of parts due to their capacity 
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to be formed with minimal effort. In this exercise, 2 metre tall skeleton was built from 
sheet aluminium with teams of 10-15 students within a matter of 6-8 hours (Figure 81). 
 

 

Figure 81. 2m long aluminium polyhedron, folded and assembled in 6 hours by a group of 15 students. Image courtesy (Chandra 
et al. 2014) 

iii. Prompted the understanding of the analytical solution for the position of boundary 
vertices, and revealed the potential to use the degree of freedom that they afford. 
This eventually was incorporated into the method described in Chapter (3). 
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6 PROCEDURAL GENERATION OF INPUT GEOMETRIES 
 

The perturbation based method proposed in this research requires a user-defined mesh of 
pre-dominantly quad topology as its input. This enables the use of well-known and interaction-
friendly mesh tools, to produce such an input mesh.  This section describes some strategies in 
combining popular tools that operate locally on each of the vertices, edges or faces of an easy-
to-manipulate coarse mesh, to produce a higher resolution mesh with topology that is 
appropriate as an input. However, it should be noted that some amount of experience and 
intuition regarding curve-crease folding is necessary. The fundamental theorems and properties 
of developable surfaces noted in Section (2.1.1) and Section (2.1.2), along with some of the 
design heuristics mentioned in Section (2.3.1) would be beneficial to know. 

6.1 Pleated geometries 
 

The simplest example of a curve-crease fold is one with a single crease or fold line. The 
discrete topology of such a mesh consists only of quads. The corresponding input geometry, 
therefore can be constructed by starting with one or more quads, and the use of edge-extrusion 
operations to form either a mountain or valley crease (Figure 82 a & b). A higher discretization 
can subsequently be achieved by converting the coarse mesh to its corresponding sub-divided 
and smoothed surface (Section 1.2.2) and deleting the edges rows parallel to the crease(Figure 
82 –c & d). The recursive indexing scheme of sub-division surfaces makes it amenable to 
keeping track of the edges that need to be deleted. This however was not implemented in the 
research, and existing tools in Autodesk Maya were used to partially automate the process.  

 

Figure 82 Use of Extrude operator on crease edges, Catmull-clark smoothing and edge-deletion to produce CCF topology 

Successive application of extrusion operations can be combined to form alternate mountain 
and valley creases (Figure 83), and thus can form the basis of generating appropriate input 
meshes for pleated geometries. It can be noted that such operations and the use of subdivision 
surfaces, allow an intuitive link between prismatic origami and its CCF counterpart (Section 
2.3.1 and Figure 21). 

 

(a) (b) (c) (d)
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Figure 83 Successive use of Extrude operator on crease edges to produce pleated topologies 

 

6.2 Mixed polygon topologies 
 

The simplest example of a CCF geometry that requires its discrete representation to include a 
combination of triangles and quads is a 3-crease fold (Figure 84). The figure shows the use of  
chamfer and bevel Conway operators (Conway et al. 2008) on the vertices and edges of a cube, 
the corresponding subdivision surface and derived topology of rulings of such a tri-fold 
geometry.  The steps (a-c) show:  

1. The application chamfer operation on a particular vertex,  
2. Bevel operation on the some edges. In terms of indexing, these edges will have indices 

corresponding to the edges of incident on the original vertex. 
3. Deleting the original faces and extrusion of the border edges to form the outer row of 

faces. 
 

Subsequent steps (e – f3) show the familiar conversion to a higher resolution mesh using the 
Catmull-Clark sub-division scheme, and deletion of edges parallel to the creases. In this case the 
deletion of highlighted edges makes additional intuitive sense in that rulings of CCF geometries 
cannot intersect except at conical parts (Solomon et al. 2012)( Section 3.2).  

 

Figure 84 Use of Chamfer and Bevel operators, Catmull-Clark smoothing and edge-deletion to produce 3-crease CCF topology 
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Chamfer and Bevel operations as shown above, can be applied on a mesh with several 
vertices and edges to produce a topology of appropriate rulings. Figure 85, shows the 
application of such operations on a user-defined mesh with 24 vertices, to construct an 
appropriate CCF topology that was subsequently used to produce the physical prototype 
described in Chapter (4). 

 

 

Figure 85 Application of Chamfer and Bevel operators from Figure 84 on mesh used to construct prototype 1 (Chapter 4) 

 

All CCF topologies are combinations of quad-strips with triangles, which after perturbation, 
will represent discrete combinations of developable (planar-quad) strips intersecting with planar 
regions (triangles). Thus a combination of extrusion operations with chamfer and bevel can be 
used to explore a variety of input geometries. 

  

user-defined mesh bevel edges extrude faces

delete boundary faces subDivion level 1 subDivion level 2
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7 SOFTWARE IMPLEMENTATION 
 

The introduction and survey of the state-of-art in design and computational methods for curve-
crease-folding (Chapters 1 & 2), attempted to provide context for the aspects that motivated the 
current dissertation: A computational method to design curve-crease-folded geometries, which 
is amenable to an edit-and-observe modelling paradigm (Section 2.5).  Additionally it would 
operate directly on a user specified 3D geometry and find the nearest CCF geometry that would 
be suitable for manufacture. The literature review also highlighted major representational 
structures – smooth and discrete, along with the major algorithmic themes discerned in prior 
work: analytical methods, constructive techniques, approximating approaches, and modelling & 
simulation of thin-shells. The objectives mentioned above, and a proclivity towards edit-friendly 
mesh-based modelling paradigm involving minimisation of (Elastic) energy associated with 
CCF geometries meant that software implementation of this dissertation required the both an 
appropriate data structure(Section 7.1) and numerical techniques to minimise objective 
functions(Section 7.2). 

7.1 Discrete Data structure 
 

Given the context described above, a mesh data structure was a natural choice to represent 
the topology of CCF geometries. There are several well-established mesh-data structures used in 
computer graphics, simplest of them being the face-based structure which only maintains a list 
of vertices that form each face. However the discrete differential quantities that are an integral 
part of the modelling paradigm critically require easy computation of the 1-ring neighbourhood 
of every vertex i.e. a cyclically ordered list of the vertices that are connected to any given 
vertex. These are rather tedious to compute with a simple data structure and thus more involved 
data structures such as winged-edge (Baumgart 1972)and Half-edge (Kettner 1998)meshes are 
used. Both structures maintain, in addition to a list of vertices that form a face, additional 
topological information such as the two faces incident on an edge, the two vertices that make an 
edge including differentiating the start and end  vertices, etc. Parameters that affect the choice 
between these representations include memory usage versus extent of processing required to 
compute adjacencies, such as edges emanating from a vertex, the faces incident at a vertex, the 
frequency of access to such information as vertex normals, face areas etc. This dissertation 
implemented a modified version of the simpler-and older winged-edge data structure. For more 
on mesh representation the reader is referred to Botsch et al. (2010). 

7.2 Minimisation of functions 
 

Minimisation of differentiable functions such as the elastic energy associated with developable 
and CCF geometries, involve more than solutions to linear system of equations as shown in 
Chapter 3). Subsequently they require numerical integration of ordinary differential equations 
(ODE) to find their maxima or minima.  

7.2.1 Runge Kutta Integration scheme 
 

This dissertation implemented the well-known numerical approximation method called the 
Runge Kutta integration. Other popular choices are Euler integration and Verlet integration. For 
more on Numerical integration techniques and their comparative strengths, see Baraff et al. 
(1997). A nuance in the choice of integration schemes is deciding between implicit and explicit 
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schemes. Explicit schemes are easier to implement as most of them are variants of the simplest 
Euler method. Implicit schemes are harder to implement and are computationally more 
expensive since they require solutions to linear system of equations, every iteration. However 
they are numerically very stable. It can be noted that the explicit formulation of the integration 
scheme (RK4) was used in this dissertation. This is well-known to be unstable for certain types 
of time-dependent equations. This is particularly so for partial differential equations, such as the 
ones described in Chapter (3). This instability is acknowledged in Section (3.7.1) and the use of 
implicit schemes of integration is mentioned in the concluding chapter (Section 8.3.4). 

7.2.2 Data-structures suitable for iterative and local methods 
 

The data structures previously mentioned – winged and half-edge – are well suited for 
localised inspection of meshes. This makes them also suitable for use within iterative 
optimisation methods, which would require localised quantities such as curvature to be updated 
every iteration. The localised flexibility offered by these data structures also extends to dealing 
with varying number of sides in mesh faces – for example, a mix of triangles and quadrilaterals. 
This can be compared with global and non-iterative optimisation methods such as Laplacian-
based mesh fairing (Botsch et al. 2010), which compute localised quantities once and solve for 
the stationary points of functions directly or non-iteratively within a finite number of steps.  
Additionally, such methods assume uniform discretization – triangular or quadrilateral, such 
that they are easier to describe within a matrix-based mathematical and data structure that is 
usually used in such methods.  

7.3 Implementation 
 

The stand-alone software application used in the dissertation was implemented using C++ 
1.0, compiled to run on 64-bit Windows 7. The application follows the established Model-
View-Controller paradigm(MSDN n.d.) by implementing the necessary call-back functions 
within free-GLUT, a portable and simple openGL software development toolkit and associated 
application programming interface (API). The call-back functions of Setup and Update (Figure 
86) is used to initialise and modify the 3D Model containing the necessary topological, 
positional and optimisation data apart from variables and other infrastructure.  The functions of 
mousePress and KeyPress are used to control the display or states of the model. 

Following from Sections 7.1 & 7.2, a base Mesh class was implemented to manipulate 
topological data, and another class – ActiveMesh – was derived and extended from the base 
class to handle the optimisation aspects. The Mesh class includes methods to  

a. Compute Gaussian curvature and its gradient at each vertex  
b. Compute best-fit-plane for each face 
c. Compute distance from best-fit-plane and its gradient at each vertex  

Etc 

The ActiveMesh class on the other hand is used to manage calls these methods for across all the 
vertices, accumulation of forces, integration of the resultant ODE and updating the vertex 
positions. 
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Figure 86 showing the implementation of the Model-View-Controller pattern of software design and its interaction with the 
proposed algorithm and data-structures described in sections 7.1 & 7.2 

 

7.4 Existing software  
 

Existing software that enables modelling of developable surfaces is limited. This extends also to 
curve-crease-folded geometries.  

7.4.1 Continuous representation  
 

In the continuous representation, the usual and often only means to model developable 
surfaces is to loft between free-form splines such that the resulting surface is developable. Most 
commercial CAD packages that include NURBS based tools (McNeel® Rhinoceros, 
Autodesk® Maya), include this feature. Frank Gehry, whose architecture is famously known of 
its use of developable surfaces, initiated the development of Digital Projects software platform 
(using CATIA as a foundation), to enable the design and construction of his projects (Glymph et 
al. 2004). Gehry technologies have since been a pioneering contributor to the development of 
tools to represent and manipulate developable surfaces for architectural use. 
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7.4.2 Discrete representation 
 

Options available within discrete representation were, until recently, also limited. However the 
following tools are now available and they allow the design of curve-crease-folded geometries 
in addition to origami folding. It can be noted that all of these software, simulate the folding of 
planar layout of rulings into a 3D shape i.e. the inverse of the problem that is tackled in this 
dissertation. 

 

Freeform origami 

As described in the introductory survey (Chapter 2 -  Figure 27),  Tachi (2009) developed 
one of the earliest and complete simulations of multi-fold prismatic origami. He subsequently 
extended his prismatic origami software to another called Freeform Origami which includes 
solutions to fold (and unfold), planar meshes with curved crease lines. Figure 87, shows the 
folding sequence for a three-crease mesh, as produced by this freely available and stand-alone 
software. 

 

Figure 87 Folding sequence for a three-crease mesh, as produced by Freeform Origami software 

Kangaroo plug-in for McNeel® Grasshopper 

Daniel Piker, previously an architect at Foster & partners, developed a plug-in called 
Kangaroo, for the visual programming interface of Grasshopper that operates within the CAD 
software of Rhinoceros™. This plug-in is a general purpose particle-spring simulator that 
allows the user to subject any given mesh to several custom physically-based and virtual forces. 
A recent extension (2013) to the plug-in enables the simulation of the folding process of a given 
(planar) layout of ruling. The plug-in achieves the simulation of rigid transformations by 
modelling rotations based on hinge-like forces across user-specified crease-edges. 

King-kong plug-in for McNeel® Grasshopper 

The introduction of this dissertation mentions the recent developments in robotic folding of 
sheet metal. Gregory Epps, who holds the patent mentioned previously (Chapter 1, Figure 1), 
and his company roboFold®, also developed a plug-in called King-Kong for Grasshopper. It 
operates similarly to kangaroo. It is however, restricted to explore only folding simulations. 
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8 CONCLUSIONS AND FUTURE WORK 
 

8.1 Summary 
 

Curve-crease-folded geometries are a special case of intersecting and inter-dependent set of 
developable surfaces. As summarized in the introduction (Chapter 1), there are several 
disciplines contributing to the historic and continued development of the field: design, art, 
mathematics, computer graphics, industrial design etc. Compatibility with interactive, edit-
friendly, exploratory, and well-established CAD work-flows was subsequently set-out as an 
explicit objective for the current research. Additionally, the resultant geometries were required 
to be suitable for manufacture. 

Further, the survey of prior work (Chapter 2) highlighted the vast amount of prior work in the 
area of computational representation of developable surfaces, and their more recent extensions 
to curved crease folding. The survey noted several algorithmic approaches to computationally 
describe both developable surfaces and CCF geometries: Analytical, Geometric, approximation, 
and the modelling and simulation of thin shells. It also noted seminal contributions in the field 
of CCF – (Huffman 1976; Resch 1974; Mitani & Igarashi 2011; Demaine & O’Rourke 2007; 
Koschitz 2014), and the particular influence of Tachi & Epps (2011)and Kilian et al. (2008)on 
the current research (Section 2.5.2). Finally, it concluded by setting out the rationale for the 
method followed in this research (Section 2.8): a method to perturb input geometries towards 
their nearest CCF solution.  

The research subsequently detailed an iterative and local method, based on the framework of 
Dynamic Relaxation (Day 1965), to minimize an objective function(Section 3.3). This 
perturbation method proposed in this dissertation, draws from the various approaches including 
the modelling paradigm of interactive computational tools (Section 2.5), the optimization 
approach of Kilian et al. (2008) and Wang & Tang (2004), and the physical-digital design 
strategies of Tachi & Epps (2011). 

Two case-studies (Chapters 4 & 5) attempted to utilize the proposed method in realistic design 
and build scenarios. Case study 1(Chapter 4) showed the compatibility between discrete 
funicular skeletal structures and the use of CCF moulds to cast concrete. The second case study 
(Chapter 5) similarly showed the ease of physical and on-site production and assembly of CCF 
panels. 

The research noted the design strategies to develop planar layout of rulings and corresponding 
3D folded geometries, as extensively described in Koschitz (2014)( Sections 1.1 & 2.3). The 
research built upon this exhaustive and intuitive compilation of David Huffman’s design 
gadgets and proposed the use of Conway (mesh) operators (Hart n.d.; Conway et al. 2008) to 
develop equivalent (discrete) topologies in 3D (Chapter 6), that will be suitable for application 
of the perturbation method to produce CCF geometries. Finally, two important considerations – 
mesh data structures and numerical integration methods – and attendant details as required for 
implementation of the proposed iterative and local method are noted in Chapter (7). 

8.2 Conclusions 
 

Most surveyed methods presented difficulties when incorporated within an intuitive, interactive, 
edit-and-observe, exploratory method of design. This research aimed to overcome these 
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difficulties through the use of Dynamic Relaxation (DR)(Day 1965) for the (interactive) 
modelling of CCF geometries. It followed in the vein of discrete differential geometry methods 
and utilized discrete operators and their gradients (Meyer et al. 2003; Desbrun et al. 2002) 
within a DR framework, to perturb meshes to satisfy the geometric criteria of CCF geometries 
outlined in Kilian et al. (2008).  

The proposed method was successfully applied to several examples with varying topological 
complexity (Section 3.6). It was also successfully tested in a realistic design-and-fabricate 
scenario (Chapter 4). 

The method is implicitly dependent on the quality of the input geometries i.e. the input 
geometries should have an appropriate topology (Sections 3.1 & 3.2) to allow a successful 
search for a near-by CCF solution. The use of Conway operators to explore such appropriate 
inputs is shown in (Chapter 6). These operators are well-established in commercially available, 
mesh-based CAD software, and are thus, an intuitive tool-set to explore such topologies. The 
proposed method can be then used to visualize the nearest CCF solution. Such an edit-and-
observe strategy is amenable to the usual CAD design workflow (Bhooshan & El Sayed 2012) 
(Section 1.2.1).  As a positive side effect of user-defined input meshes, crease or fixed vertices 
need not be explicitly specified and are implicit in the input mesh. This further augments the 
ease of exploratory use. 

Lastly, the method developed in this research, does not require the use of sophisticated 
numerical optimisation routines as the DR based method can easily be incorporated into a 
localised mesh data structure as noted in Section (7.1). 

8.3 Limitations and Future work 
 

8.3.1 A specific, input dependent method  
 

As noted above, the proposed method requires that the input geometries have an appropriate 
topology. As such it is not a generally applicable method, unlike the one proposed by Killian et 
al. The proposed method is based on the representation of a developable surface as single-row 
of quads i.e. without internal divisions. The overall CCF topology should consist of such one-
row quad-strips meeting other one-row quad strips and/or triangles. The limitation on such input 
geometries is partially overcome by the use of well-known mesh operations(Section 6.2) and the 
manual application of heuristic measures such as those noted in Koschitz (2014)( Section 2.3.1). 
The production of a more comprehensive sequence of mesh-operation to produce appropriate 
3D geometries would be a very useful compendium for designers.  

Currently, these mesh-operations are almost procedural. However they require manual input in 
certain stages and cases (Sections 4.2.1 , 5.1.1 & 6.2). The extension of these to be fully 
procedural would significantly aid subsequent work such as conversion of prismatic, origami 
geometries to their CCF counterparts(Gattas & You 2014)(Figure 21 in Chapter 2 ). 

In addition, the proposed method has been found to be sensitive to the levels of discretisation 
i.e. it performs best at lower mesh resolutions. Investigation to the cause and solution for such 
instability is thus a potential avenue of further work. The current hypothesis is that these are 
artefacts of the numerical integration scheme (Section 7.2.1). 
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8.3.2 Penalty functions 
 

Additional penalty functions to reduce deviation from the input mesh were not necessary in the 
case of the physical prototypes produced during this research, due to use of additional freedom 
afforded by the boundary vertices. This was also aided by the relatively good approximation of 
curve-foldable geometry provided by the input mesh. For generalized use however, penalty 
functions could be added as an additional virtual-force to minimize deviation from the input 
mesh, as several other authors do (Kilian et al. 2008; Poranne et al. 2013; Wang & Tang 2004) 

8.3.3 Parameter dependency 
 

The proposed DR based method, currently requires weights for planarity and Gaussian 
curvature constraints to be chosen. The development of a robust mechanism to choose these 
weights in relation to the input geometry is an important aspect of future work. The current 
hypothesis is that development of unified, linear units of measurement for the two constraints 
would allow for such a choice. 

8.3.4 Numerical stability 
 

Currently, an explicit numerical integration scheme is used to solve the iterative minimisation 
problem (Section 7.2.1).This is known to be unstable in certain cases, especially those involving 
partial derivatives or gradients. The incorporation of an implicit scheme therefore, is another 
aspect of future work. 

8.3.5 Incorporation of 2D-3D workflow 
 

As the two case-studies in realistic design scenarios show (Chapters 4 & 5), it is often easier to 
correct certain errors and tolerances in the planar domain. A design work-flow that incorporates 
a folding simulation (Tachi & Epps 2011) and enables a 2D-3D correspondence would be very 
handy. This is particularly so, when the CCF geometries would have to interface with other 
geometry in a design context. 

8.3.6 Materially-based simulation 
 

The proposed method follows a modelling paradigm (Section 2.5) i.e. an approach where a 
material constraint such as inextensibility of material is abstracted into geometric constraints 
such as planarity and vanishing Gaussian curvature. However, for full-scale industrial 
production of CCF geometries, the incorporation of a materially-based simulation (Section 
2.5.1) would be ideal. Additionally, systemic quantification of material tolerances in the folding 
and unfolding process would be beneficial.  
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