
Proceedings of the International Association for  

Shell and Spatial Structures (IASS) Symposium 2013 
„BEYOND THE LIMITS OF MAN” 

23-27 September, Wroclaw University of Technology, Poland   

J.B. Obrębski and R. Tarczewski (eds.) 

 

1 

Topology Optimization of Algorithmically Generated Space Frames 

Paul Shepherd1, Will Pearson2 

1 Lecturer in Digital Architectonics, Department of Architecture & Civil Engineering, University of Bath, Bath, UK, p.shepherd@bath.ac.uk 
2 Researcher, Department of Architecture & Civil Engineering, University of Bath, Bath, UK, w.j.b.pearson@bath.ac.uk 

Summary: This paper outlines a simple method for algorithmically generating efficient space-frame geometries.  By using Conway operators, the top 
and bottom surface of a shell-like space frame is generated, and these two layers are then linked together to form a structurally sound space-frame.  

The structural performance of the frames is then improved by applying existing structural layout optimisation methods, resulting in an efficient and 

elegant way of generating efficient and elegant structures. 
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1. INTRODUCTION 

Doubly-curved structural forms are becoming more popular as an 
expression of architectural creativity and the application of modern 

technology to building design.  If the shape of such a form is carefully 

chosen to respect the flow of forces within, an efficient structural system 
can be derived in which the majority of the dominant forces lie within 

the structural depth and are transmitted down to the foundations as axial 

forces within the members, reducing the required resistance in bending.  
Such funicular forms provide elegant solutions, and are the result of 

structural efficiency being placed high on the list of design priorities. 

However, this approach is becoming less common, and other 
architectural requirements are beginning to dominate, driving the design 

away from pure shell-like solutions into the realm of free-form 

‘sculpture’.  In such cases, a single layer of structure may no longer 
produce an efficient design, as member depth needs to be increased 

substantially in order to accommodate the resulting bending moments of 

these non-funicular forms.  The structural typology therefore moves 
away from the single layer grid towards a truss-like solution, or its two-

way spanning equivalent the space-frame. 

This paper outlines a flexible approach to the development of efficient 
space-frame solutions to doubly-curved structural forms.  It combines 

structural grid generation tools such as Subdivision Surfaces [1] and 

Conway operators [2] to algorithmically generate upper- and lower-layer 
structural grids.  It incorporates a novel and efficient topology layout 

optimization algorithm developed by Gilbert & Tyas [3] to connect the 

two layers together.  This leads to an efficient structural solution, which 
minimizes material, and can take into account practical considerations 

such as member buckling and joint costs. 

The result is a robust and flexible tool to explore potential solutions, 

guiding the designer towards structurally sound designs whilst still 

allowing the user the freedom and control to express their design intent.  

Carefully harnessing the power of the computer in this way can give rise 
to complex solutions which would otherwise be ‘Beyond the limits of 

Man’. 

2. FRAME GENERATION 

The techniques outlined in this paper are widely applicable.  However, 

in order to facilitate a clear and simplified explanation of the underlying 

research, the scope of this paper has been limited to the design of a 
space-frame supporting structure for a doubly-curved roof surface.  In 

this context, the designer, be they architect or engineer, may or may not 

have a clear idea of the exact geometry of the roof they wish to build, 
but certainly have an open mind towards the structure which will 

support it.  This section can only give a brief overview of space frame 

design covering the issues pertinent to the proposed approach.  For a 
more complete and in-depth treatment the authors recommend the 

excellent book by Chilton [4]. 

 

 

2.1. Initial Surface Mesh 

Given modern digital design processes it is likely that an initial roof 
geometry will be defined using a doubly-curved NURBS surface.  

However, in order to support such a surface with discrete structural 

members, and perhaps also driven by cladding constraints, such a 
continuous NURBS surface is almost always discretized into a mesh-

like hierarchy of members meeting at nodes, with or without cladding 

faces, before structural- and façade-engineering is considered.  Often the 
underlying NURBS surface is simply sampled at regular intervals using 

its underlying UV parameterization, leading to a topologically 

quadrilateral grid of members.  Depending on the relative importance of 
respecting the original surface vs. rationalizing the geometry of the 

resulting façade panels, alternatively methods might be used which 

approximate the NURBS surface but lead to planar panels [5] or 
parametric surfaces (i.e. torus patches).  Two surface mesh construction 

algorithms are particularly relevant to this research. 

If the exact geometry of the surface is not important, Subdivision 
Surfaces present a simple and useful method of generating candidate 

structural meshes.   Their implementation involves a topological 

refinement of a coarse sampling of the original surface, followed by a 
geometrical smoothing process which maintains C2 continuity (i.e. rate-

of-change of surface normal).  This recursive, fractal-like nature 

provides control over the size of the mesh facets and C2 continuity 
results in a smooth and aesthetically pleasing approximation of the 

original surface.  Subdivision Surfaces can be constrained to a 

prescribed boundary and methods are available to vary the density of the 
mesh across the surface to respect the underlying structural behavior.  A 

detailed explanation of Subdivision Surfaces is outside the scope of this 

paper, but is dealt with in detail in many previous works by the author, 

for example [1]. 

2.2. Conway Operators 

In order to respect the original surface geometry, the smoothing part of 
the Subdivision algorithm is no longer appropriate.  Hence only 

topological operations can be performed, and newly introduced nodes 

might be projected back onto the original surface.  In this case, Conway 
Operators [2] offer a simple means of manipulating candidate structural 

grids to provide the designer with a myriad of options, and such 

operations lend themselves easily to implementation in computer 
programs and parametric modeling systems. 

There are three basic Conway operators, dual, ambo and kis.  Each 

replaces the vertices, edges and faces of an original mesh with some 
combination of new vertices, edges and faces, depending on the 

operation.  For example the dual operator, as visualized in Fig. 1, 

replaces every vertex with a face and every face with a vertex.  It has 
been widely used in building design, since the relation of the dual to the 

original topology lends itself well to providing supporting structure for 
panels.  The lesser known operations of ambo and kis (see Fig. 2 & 

Fig. 3 respectively) present additional methods of topology manipulation 

and in the case of space-frame design are equally of interest. 
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Fig. 1  Original hexagonal mesh (blue dashes) with its dual (orange) 

 

Fig. 2  Hexagonal mesh (blue dashes) with its ambo (orange) 

 

Fig. 3  Hexagonal mesh (blue dashes) with its kis (orange) 

 

 

The true value of these operations to the structural designer comes in 

their ability to be combined to form even more complex Conway 
operators.  For example the truncate complex Conway operator, which 

grows a new face at a vertex by introducing new vertices a set distance 

along each connected edge, as shown in Fig. 4, is actually the product of 
applying a simple dual operation, followed by a kis, followed by another 

dual. 

 

Fig. 4  Hexagonal mesh (blue dashes) with its truncate (orange) 

These examples are all applied to a hexagonal base mesh to demonstrate 

their flexibility, but they can also be applied to more traditional 
triangular and quadrilateral meshes.  Whilst originally derived as 

operations on closed polyhedra to generate other closed polyhedrons, the 

same operations can be applied to surface grids to produce other surface 
grids (by treating the grid as part of an extremely large polyhedron 

surface) although special treatment of the boundary is required (see 

Section 4).  For a clear and accessible description of how to implement 
Conway Operators algorithmically the reader is directed to Hart [6]. 

2.3. Second Layer Structure 

The methods described above can be used to generate a structural grid to 
support a given doubly-curved roof surface.  However, unless the 

underlying surface is particularly well chosen, for example as the result 

of a funicular formfinding process, it is unlikely that simply building this 
structural grid will be an efficient solution to the problem of supporting 

the roof loads.  The need to resist inevitable bending moments will 

usually require significantly sized members, especially given the long 

structural spans normally associated with such freeform buildings.  

Introducing a second layer of structure below the first is often an 

efficient way of providing sufficient bending resistance, introducing 
many small members to replace fewer larger ones.  In the same way that 

a warren-truss is usually an efficient replacement for the equivalent one-

dimensional beam element, here a three-dimensional pin-jointed space-
frame is proposed as an efficient alternative to designing the single-layer 

grid to carry the bending moments alone. 

To generate a second layer of structure below the first can be as simple 
as creating an exact copy of the first layer, but translating it in a given 

direction (usually below) as shown in red on Fig. 5.  This approach 

would be well suited to planar roofs, but is not necessarily applicable to 
doubly-curved complex geometries.  In areas where the translation 

direction is aligned with the roof tangent-plane, the separation of the two 

layers is minimal (see right of Fig. 5).  A more sensible approach would 
be to offset the second layer normal to the first, moving vertices of the 

original structural grid a set direction normal to the surface at that point, 

as shown in orange on Fig. 5.  This would keep a more uniform 
separation of structure and allow room for services to be included within 

the roof space although special treatment may be needed in areas of high 

curvature to ensure the layer does not self-intersect (see left of Fig. 5). 
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Fig. 5  An original structural layer (blue dashes) with its vertical offset 

(red) and normal offset (orange) 

The amount of separation between the two layers need not be constant.  

It would seem sensible to increase the separation, and therefore the 

resulting structural depth of the space-frame, in areas where bending is 
likely to be higher.  This could be calculated explicitly if non-uniform 

loading were dominant.  However simply using the local curvature at a 

vertex to define the offset for that vertex is a sensible starting point. 

The second layer need not retain the topology of the first.  Subdivision 

Surface operations might be more applicable here than on the first layer 

since the exact position of the second layer is usually less critical (it has 
been generated by the structural designer and not the roof designer 

anyway).  Certainly further Conway operators can be applied to the 

second layer to generate alternative patterns.  The dual operator has been 
used historically for the second layer of a space frame since the 

topological relation between the two allows for east connection between 

them (see below).  However other Conway operators, and combinations 
of them, can lead to a wide range of patterns for second layers.  And the 

mathematical nature of the operations leads to some interesting 

properties when it comes to connecting the two layers 

2.4. Inter-layer Connection 

Depending on the topological relationship between the two layers of 

structure, various methods of connecting the two present themselves.  In 
the simplest case of offsetting one layer from another, the simplest 

solution to connecting them would be to join each vertex on one layer to 

its corresponding vertex on the other.  For structural stability, this would 
require moment connections at each node, in a similar way to a 

Vierendeel truss.  In node and bar structures, providing this moment 
connection is often difficult and therefore in this paper only pin-jointed 

structures are considered.  This requires the introduction of diagonal 

elements between layers, either as well as the direct connecting elements 
(as with a Pratt truss) or instead of the direct elements (as with a Warren 

truss). 

 

Fig. 6  Original layer (blue), connected (in grey) to its dual (orange) 

 

If the second layer has a different topology to the first, for example as 
the result of Conway operators, then an appropriate method of joining 

the two layers needs to be derived.  Rules of thumb can be derived, for 

example when an operation converts vertices to faces (such as a single 
dual or ambo) each vertex of the original layer can be connected to 

every vertex of the corresponding face on the second layer (see Fig. 6).  

Similarly for a kis operation which introduces an extra vertex in the 
second layer corresponding to the center of a face in the first, the new 

vertex can be connected back to those surrounding its corresponding 

face.  However the vast array of possible relationships from the infinite 
combinations of Conway operators makes explicit tabulation of such 

rules impossible. 

An alternative and simpler, if less elegant, method of connecting the two 
layers is to simply join each vertex in the first layer to any vertex in the 

second if the distance between them is less than a chosen limit.  This 

limit could be constant for the entire structure, or perhaps scaled by the 
layer separation distance on a vertex by vertex case when this separation 

is not constant.  Care needs to be taken that sufficiently many vertices 

are connected together to lead to a structurally viable design.  In 
particular, as discussed in [4], Maxwell’s rule needs to be satisfied such 

that the total number of bars is at least three times the number of vertices 

minus six. 

3. FRAME OPTIMISATION 

Once the two layers have been connected together and a structurally 

viable topology determined, the design could proceed to size each 
member, giving sufficient strength to support the relevant roof load.  

However, pin-jointed space-frames lend themselves particularly well to 

structural optimization methods which can inform the process of 

connecting the two layers together and the relative sizes of members. 

3.1. Topology Optimization 

Mathematical optimization aims to minimize (or maximize) a given 

quantity subject to a number of constraints.  In a structural engineering 

sense it is usual to minimize the volume of material used in a structure 
subject to constraints of structural equilibrium and material strength 

characteristics.  Many different approaches to structural optimization are 

available, changing either material properties, member sizes or the 
geometry of the structure itself.  However, for the case of space-frames, 

topology layout optimization is particularly attractive, since it involves 

connecting a set of vertices together with the minimum volume of 
straight structural pin-jointed bars required to support a given load. 

Since every vertex in a given structure could potentially be connected to 

every other, the number of possible structural members grown with the 

square of the number of vertices.  This has meant that until recently, 

evolutionary optimization algorithms, which assess populations of 

potential structures and try to improve upon them, have been the only 
way to tackle such problems with realistic numbers of members.  

Solutions of this type are not guaranteed to be globally optimal, since a 

degree of randomness is involved in the process. 

Various techniques to find a truly global optimal solution to topology 

layout optimization problems have been developed [7] using linear 

programming to identify unnecessary members.  However, until 
recently, the large number of potential members has meant that they 

were only applicable to impractically small problems, even using 

powerful modern computers. 

3.2. Member Adding 

Rather than initiating the optimization from intractably large fully-

connected ground-structures with every vertex connected to every other, 
recent improvements have been suggested whereby only a structurally 

viable ground-structure is required for layout optimization.  Rather than 

simply removing unused members for a large list of potential members, 
this approach can start from a sparsely connected structure and can add 

in missing members which are required for optimality.  It trades one 

single operation on a huge ground structure for a number of iterations on 
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lesser-connected structures.  Since the optimal structure is usually not 

highly connected, this trade-off pays dividends and allows problems 
with millions of vertices to be solved in sensible time on a standard 

desktop computer. 

Since members are added to a feasible ground structure from a list of 
potential members, this list can be filtered to only allow a sub-set of all 

the many potential members to be considered.  Whilst this might mean 

that the solution is no longer the globally optimal solution for a given set 
of vertices, it allows some characteristics of the original ground structure 

to be preserved.  For example, if the topology of the first layer of 

structure needs to be preserved, either for aesthetic reasons or because it 
corresponds with a specific cladding regime, then potential members 

which would like two vertices within the first layer can be removed from 

the list of candidates for adding.  The same might also be applied to the 
second layer, such that only potential members which span from one 

layer to the other are considered.  Similarly, members which would join 

two valley vertices (as shown in Fig. 5) might cut across the volume of 
the building and clash with internal architectural space (as might well 

happen since a tie cable would provide an efficient structural solution to 

the problem of the roof arch spreading).  In this case, such potential 
members could be pre-filtered out of the system by clash-detection tests 

with the underlying architectural volume. 

A detailed description of the mechanics of the member-adding 
procedure is outside the scope of this paper, but the theory is outlined in 

[8] and its practical application demonstrated in [9].  These references 

show how considerations of member buckling, node design and joint 
cost, multiple and projective load cases as well as no-go zones for 

structure can all be incorporated into the topology layout optimization 
scheme. 

4. IMPLEMENTATION 

The workflow described above has been implemented as a plug-in to the 
Rhinoceros-based parametric modeling tool Grasshopper [10]. A 

bespoke mesh class was developed in C# providing all of the Conway 

operators described in this paper. The topology optimization algorithm 
was implemented using the open source linear programming library 

available in Google Or-Tools [11]. 

4.1. Grasshopper 

Grasshopper provides a flexible and fully customizable parametric 

interface for 3d modeling (through scripting and custom plug-ins) with a 

large and active user community. Custom plug-ins can be developed in 
C# or VB (.NET). The aim here was to develop a number of components 

that together could be used to generate the optimized space-frames 

described in the paper. 

4.2. Mesh 

Conway operators require a mesh structure that is capable of 

representing polygonal faces and that can perform efficient adjacency 
queries (i.e. list all faces ordered anti-clockwise around a vertex). 

Grasshopper’s built-in mesh structure is currently limited to triangular 

and quadrilateral faces, making a bespoke representation of a mesh 
necessary for this implementation. 

Several data-structures are available for the representation of meshes 

[12]. The half-edge method was chosen for its efficiency and constant 
time adjacency queries (per element retrieved). A half-edge mesh class 

was written in C# and the Conway operators were implemented as class 

methods of the mesh itself, accessible in Grasshopper via custom 
(compiled) components. 

When dealing with open meshes (a mesh containing boundary edges 

which bound only one face) Conway operators must be implemented 
such that they can handle boundaries. Two options are presented, using 

the dual operator as an example. The first, and most straightforward, 

option is to ignore the boundaries completely, that is to generate new 
faces for the internal vertices only (shown in red and orange in Fig. 7). 

This method is acceptable where the mesh is not required to extend right 

up to the boundaries of the original surface, such as might be the case 

for the lower layer of a space-frame. The second option is to define a 

rule for the ‘correct’ handling of boundary vertices and topology (e.g. 
yellow in Fig. 7). This would be desirable when Conway operators are 

used to generate a pattern for paneling, such as is usually the case with 

the upper layer of a space-frame. The irregularity of the mesh in Fig. 7 is 
noticeable close to the boundary. This is unavoidable without knowledge 

of the topology of the original mesh beyond these boundaries. 

 

Fig. 7  Initial hexagonal mesh (blue dashes) and its triangular dual 
showing internal faces unaffected by the boundary (red), slightly 

distorted (orange) and special-case boundary faces (yellow). 

4.3. Inter-Layer Connection 

To provide maximum flexibility, the more general distance-based inter-

connection approach was implemented. For each vertex on one layer 

corresponding vertices are found on the other layer which lie within a 
specified radius.  Structural elements are then added between each pair. 

In its most simplistic form, however, this approach suffers from the 

same pitfalls as the fully-connected approach to topology optimization.  
The number of proximity tests which must be performed increases with 

the square of the number of vertices. To improve the performance of 

proximity tests, Grasshopper’s built-in octree functionality [13] was 
integrated into the plug-in. 

4.4. Topology Optimization 

The topology optimization algorithm implemented here is built around 

the Google Or-Tools linear programming library (.NET) and compiled 

into a custom Grasshopper component. The input parameters are an 

initial, solvable ground-structure, a list of potential connections for the 
member-adding algorithm (optional), a list of nodal boundary conditions 

(both fixities and forces), tensile and compressive stress limits and joint 
cost. The available outputs include structural bars (represented as lines), 

bar radii, bar color (red=compression, blue=tension) and volume. 

Unstressed bars can be filtered out of the final output, although they 
should remain in the ground-structure during member-adding iterations. 

A member-removal approach is discussed in [8]. 

When member-adding is disabled, the optimization problem is simply 
constructed from the input parameters and solved. When enabled, the 

member-adding function is called for each iteration in which the solver 

is successful (i.e. an optimal solution is reached). The number of 
members added in a single iteration will decrease as the solution 

converges – therefor when there are no members added the optimal 

solution has been reached. 

If a list of potential members is supplied, only these connections are 

eligible for adding into the ground-structure, otherwise members may be 

added from any vertex to any other. This allows the user to limit the 
member-adding algorithm to only elements which connect one layer to 

the other, or to only vertices within a layer (see Section 3.2). 
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In order to implement this iterative algorithm in Grasshopper it is 

necessary to store persistent data within the custom component itself. 
Each time the component runs, instead of reading from the inputs it can 

load the persistent data, perform the required operation(s) and update it, 

so an option to reset the internal data using the input parameters also 
needs to be provided. Grasshopper’s timer component can be used to 

trigger the component to run at a set interval after the previous run has 

finished. In this case the ground-structure (complete with added 
members) is stored inside the component and updated incrementally 

each time the component is triggered by the timer. Once the algorithm 

determines that no members have been added, the attached timer is 
disabled automatically. 

 

 

4.5. Case-Study 

The tools described in this section were applied to a case study project, 
the British Museum Great Court roof. Taking the actual steelwork 

geometry as the initial mesh (Fig. 8a), various Conway operators were 

experimented with (for example Fig. 8b & Fig. 8c) before the 
combination of dual and ambo was chosen on aesthetic grounds as the 

starting point for the design study (Fig. 8d). 

It is worth noting in passing that the ambo operator is the dual of itself 
therefore when applied to closed meshes the output of the ambo 

operation is the same, regardless of whether it is prepended by the dual. 

However in this case, the input mesh has boundaries, and so the prior 
application of the dual operator was beneficial in dealing with these 

boundaries first. 

 

 

Fig. 8  Examples of Conway operators applied to the British Museum Great Court Roof:  

(a) original triangulation, as defined by [14]; (b) dual; (c) ambo + ambo, otherwise known as ‘expand’; (d) dual + ambo. 

a) b) 

c) d) 
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The original triangular mesh was offset vertically below the new mesh 

and inter-connected with a limiting distance of 2.8 units to produce the 
initial ground-structure containing 46,652 potential members (Fig. 9). 

The same process was then applied again using a limit of 5 units to 

produce a list of 136,712 potential new connections for the member-
adding stage. Fully pinned supports were assigned to boundary vertices 

of both layers and a uniformly distributed load was applied to the upper 

layer, representing the cladding.  An equal limiting stress was applied in 
both tension and compression, and joint-costs were not included. 

Fig. 9  Initial Ground Structure used for Optimization 

After the first iteration the ground-structure had a relative volume (the 

optimization efficiency measure) of 5,828.  This utilized less than half of 

its members, since only 21,624 out of the 46,652 members had non-
trivial cross-sectional area. After 13 further iterations, this volume was 

reduced to 4,892 (see Fig. 10), a material saving of 16%.  This was 

achieved by reducing a further 10,616 of the ground-structure members 
to negligible area, whilst adding 9884 new members between the two 

layers from the list of potentials. Further iterations were deemed 

unnecessary since the volume had already converged to a tight tolerance 
(changing by less than 0.25%). 

5. CONCLUSIONS 

A robust and flexible approach to the generation of efficient space-frame 
structures has been developed, which combines two algorithms that are 

surprisingly under-recognized by computational designers in general and 

the space structure design community in particular.  The innovative use 
of topological Conway operators allows the designer an easy method of 

generating aesthetically pleasing and structurally robust space frames.  

The application of a novel member adding topology optimization 
scheme leads to material efficiencies, reducing cost and embodied 

energy. 

The approach has been implemented in a common parametric modeling 
program (Grasshopper) demonstrating its accessibility and ease of use 

within the digital design workflow.  A simple but realistic case-study has 

shown some elegant design options can be quickly generated and a 16% 
saving in material is possible with just 13 optimization iterations. 

 

Fig. 10  Optimized layout showing compression (red) and tension (blue) 

where line-thickness represents the level of stress in a member 

5.1. Discussion 

Whilst the combination of Conway operators is an easy way to explore 

design options and can lead to some surprising and beautiful structural 
grids, the relationship between the two layers can quickly become lost.  

This can cause problems if a topological approach to joining them 

together is favored.  Some operations increase the number of vertices 
and others decrease it, so one layer can quickly become much denser 

than the other, which also leads to problems joining them together.  

Therefore the designer needs to be sensible in the type and sequence of 
operations they combine. 

Topology layout optimization lends itself very well to the optimization 

of space-frames.  And incorporating the member-adding technique 

provides an efficient means of deriving efficient structures.  However 

the highly mathematical implementation of linear programming means 

that it is not easy to incorporate directly into modeling software.  The 
authors have managed to implement it in Grasshopper thanks to a 

proprietary linear programming library, but this has its peculiarities and 

the inner workings are hidden.  A typical roof designer is unlikely to 
have a detailed grasp of the solver and if an optimal problem to the 

solution is not found it is often difficult to know exactly what needs to 

be done to fix it. 

5.2. Future Work 

To date the work of the authors has demonstrated the suitability of 

Conway operators and topology layout optimization to the design of 
space-frame structures.  Research is underway by the authors to develop 

sensible approaches to generating efficient designs for the structural 
layout of the original surface mesh by varying the distribution of nodes 

over the surface.  It will also investigate how the distance between the 

two grid layers might be varied over the surface, leading to more 
structural depth exactly where needed, and how the process naturally 

extends to multi-layer grids.  A more robust analysis of the topological 

effects of each of the Conway operators in terms of suggesting an initial 
strategy for connecting layers together is also in progress. 
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