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Abstract 

Gridshells are one of the best ways to cover a large space without introducing intermediate structural 

supports. However, their vulnerability in terms of stability and moment resisting capacity can also bring 

severe challenges when determining an optimal design. In order to increase the structural stability and 

moment stiffness whilst maintaining efficient material placement, this paper explores the introduction 

of second-layer grids, not across the entire structure, but only in areas where such additional stiffness is 

necessary. A density-based topology optimisation method, formulated within the framework of the Solid 

Isotropic Material with Penalization (SIMP) approach, is adopted to determine the paths along which 

the second-layer grids should be configured. To demonstrate the feasibility of the SIMP method to 

discrete structures, several benchmark examples are analysed. Under uniformly distributed loads, the 

relationship between the initial and minimal stiffness of the elements in the SIMP formulation is found 

to be a key factor in achieving binary topology optimisation results as to whether or not there should be 

elements present at any given location. The mechanical analysis of the structures shows that the obtained 

partial double-layer gridshell is more stable and material-saving compared to the single-layer gridshell 

under the specified load.  

Keywords: Topology optimisation, gridshell structure, SIMP approach, uniformly distributed load. 

1. Introduction 

Gridshell structures are generally accepted to be amongst the most efficient designs to cover large 

column-free spaces. They take advantage of double-curvature to provide geometrical stiffness out of 

plane and transfer the applied loads mainly through axial force to the boundary. Large compression 

forces may appear, especially near the boundary or along the main in-plane load paths. In this way, a 

loss of stability at some part of the structure, or even globally, may occur, and can result in severe 

damage. Additionally, gridshell structures could be vulnerable in terms of their moment resisting 

capacity, since their structural depth is comparatively low compared to the span. In order to increase the 

flexural stiffness and structural stability, a second-layer of grid is often introduced, which can 

significantly increase the effective structural depth. In this paper, the authors explore the introduction 

of secondary layers of structure in specific areas of the gridshell. By configuring second-layer grids only 

where necessary can effectively enhance the gridshell and bring extra economic benefits. 

However, the identification of rational paths for configuration of second-layer grids remains a 

challenging problem. Extra difficulties may arise when free-form gridshells are considered, since they 

can have complex geometries, radically varying curvatures, randomly distributed internal openings and 

irregularly boundary conditions. Similar issues have been investigated when dealing with problems of 

mesh generation (Su et al. [1]), rib/stiffener design for plate and continuous shell structures (Li et al. 

[2], Tam and Muller [3], Michalatos and Kaijima [4], Wang et al. [5], Ji et al. [6], Lam and Santhikumar 

[7]). The methods adopted for the research reported in this paper is drawn from the field of continuum 
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topology optimisation (Sigmund [ 8 ], Sigmund [ 9 ]), and a SIMP (Solid Isotropic Material with 

Penalization) approach is implemented. The SIMP approach is applied here to discrete structures 

modelled with beam elements, rather than continuous structures modelled with continuum elements. 

This work proposes a method for identifying the paths, along which second-layer grids can be 

configured. In the following section, the problem formulation and optimisation procedures are 

introduced. Section 3 presents two benchmark examples and Section 4 discusses the reasons behind the 

less-than-ideal results. Section 5 then provides two extended examples with enhanced outcomes. Section 

6 presents the formation of the partial double-layer gridshell and the mechanical analysis results of the 

single-layer and partial double-layer gridshells. The conclusions that can be drawn from this 

investigation are summarized in the final section. 

2. Problem formulation and optimisation procedure 

2.1. Compliance minimization problem 

In order to obtain a practical and rational solution to a topology optimisation problem, it is crucial that 

the objectives and constraints are properly determined. Stresses and displacements can reflect the 

strength and stiffness, respectively, but might only be representative of a local part of the structure. 

Structural compliance, defined as the sum of the loads multiplying with the displacements, is a metric 

that can reflect the global structural stiffness. The results obtained by minimizing structural compliance 

are usually taken as the representation of the optimal material distribution under the external load and 

can be viewed as the force paths. Therefore, minimizing structural compliance is set as the objective 

function for this work and it is expected that the topology optimisation results can provide rational 

suggestions on the configuration paths for second-layer grids.  

Another consideration is that the obtained topological results should display comparative coarseness. If 

the resulting paths were densely distributed, the partial double-layer gridshell generated by adding 

second-layer grids under these paths would be little different compared to a fully double-layer gridshell. 

On the other hand, if the paths were too coarse, the addition of the second-layer grids might not be 

sufficient and the resulting partially double-layer gridshell might display little enhanced effect compared 

to the single-layer solution. Therefore, a constraint function that can control the coarseness of the 

obtained paths is needed, and it is set as the material volume constraint for this work. 

Given the above considerations, the optimisation problems of identifying configuration paths for the 

addition of second-layer grids, for partially double-layered gridshell structures, can thus be formulated 

as: 

                                               min         𝐶(𝑿) = 𝑼𝑇𝑲𝑼 = ∑ 𝐸𝑒(𝑥𝑒)𝑢𝑒
𝑻𝑘𝑒𝑢𝑒

𝑛
𝑒=𝟏  

                                   𝑠. 𝑡.         𝑲𝑼 = 𝑭 

                                                               𝑉(𝑿) = ∑ 𝑥𝑒𝐴𝑒𝑙𝑒
𝑛
𝑒=𝟏 ≤ 𝛼𝑉0 

                                                               𝑥𝑒 ∈ [0, 1]

                                                                               

(1) 

where xe is the pseudo physical density of element, with a value of 0 indicating that the element is 

removed and 1 meaning that the element is maintained, X is the vector of design variables. le and Ae are 

the length and cross-sectional area of element, respectively; α is the user-defined material volume 

fraction; ke and ue the element stiffness and deformation in the local coordinate system, respectively, 

and Ee(xe) the material stiffness of the element, hence Ee(xe) ue
Tkeue represents the elemental strain 

energy. 

In topology optimisation of continuum structures, the Solid Isotropic Material with Penalization (SIMP) 

approach has been widely adopted to facilitate the polarization of design variables (Sigmund [8], 

Sigmund [9]). Following the modified SIMP approach provided in (Sigmund [9]), the elemental material 

stiffness can be defined as a function of its pseudo physical density:
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𝐸𝑒(𝑥𝑒) = 𝐸𝑚𝑖𝑛 + 𝑥𝑒
𝑝

(𝐸0 − 𝐸𝑚𝑖𝑛)                                                     (2)

 where Emin is the minimum elemental material stiffness which is set to a small value to avoid singularity 

and allow the load-transfer; E0 is the initial elemental material stiffness; p is the penalization factor 

which, if larger than 1, will penalize the material stiffness of elements with intermediate densities. p is 

usually increased gradually as iterations progress, to stabilize convergence. 

2.2. Sensitivity analysis 

During the optimisation process, the design variables are allowed to vary continuously between 0 and 

1, therefore, a gradient-based method can be used to update the design variables. The optimality criteria 

(OC) method has been implemented in continuum topology optimisation problem (Sigmund [8]) and 

has shown stable convergence efficiency, therefore, it is adopted here as the optimizer. 

As shown in Eq. (1), the pseudo physical density xe is the design variable. The sensitivities of the 

objective function (structural compliance) and constraint function (material volume) with respect to the 

design variable xe can be calculated from Eqs. (3) and (4), respectively: 

𝜕𝐶

𝜕𝑥𝑒
= −𝑝(𝐸0 − 𝐸𝑚𝑖𝑛)𝑥𝑒

𝑝−1
𝑢𝑒

T𝑘𝑒𝑢𝑒                                                (3) 

𝜕𝑉

𝜕𝑥𝑒
= 𝐴𝑒𝑙𝑒                                                                    (4) 

2.3. Optimisation procedure 

During the optimisation process, at the beginning of every iteration, xe is substituted into Eq. (2) to 

calculate the elemental material stiffness and Eq. (1) to calculate the structural compliance and material 

volume. Then, sensitivity analysis of the objective and constraint functions is carried out based on Eqs. 

(3) and (4). Based on the sensitivity information, design variables are updated using OC method. Further 

iterations are then carried out based on the updated design variables until the convergence criterion is 

satisfied. The overall optimisation procedure is detailed below as pseudocode:  

1.   Initialize design variable X=1, α, iter = 0, change = 0.1, p = 1 and pmax=10; 

2.   while change > 0.01 and iter ≤ 1000 

3.  iter = iter + 1; 

4.  Solve FE problem based on the design variables X; 

5.  Calculate the objective and constraint functions, as well as their sensitivities (Eqs. (3 & 4)); 

6.  Update design variable to get Xnew using OC method; 

7. Calculate change = || Xnew - X ||; X = Xnew; 

8.  if {iter > 40 and p < pmax} then p = min{(iter)/40, pmax}; 

9.   end while. 

10. Output the topology defined by the design variables X. 

3. Benchmark examples 

In this paper, a spherical gridshell structure (shown in Figure 1a) with a span of 100 m and a height of 

30 m is chosen as the design example. The structure has pin-supports on all the lower nodes and 

members are modelled using beam elements with a uniform steel tubular section with outer diameter of 

500 mm and a wall thickness of 20 mm. The steel has an elastic modulus of E0 = 2×1011 Pa (Emin = 

E0/109). The shell is divided into 48 elements around the base and 12 elements over a meridian, as shown 

in Figure 1a. The elements are grouped according to the structure’s symmetry, giving 30 groups of 

elements that have identical structural responses under symmetric load, as depicted in Figure 1b. During 

the optimisation process, the densities of the independent elements are treated as design variables (and 

are set to 1 initially), and then adjusted each iteration until convergence. Live load acting on the roof 

panels in the gravity direction with a magnitude of 1 kN/m2 is considered. The load is transferred to the 
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structure as a concentrated nodal force based on the node’s tributary area. The material volume fraction 

α is set to 0.4. 

To investigate the feasibility and efficiency of the proposed method, the structure is optimized without 

penalization (p≡1) in the first example. In the second example, the penalization factor p is gradually 

increased to the maximum value (pmax=10) to drive the intermediate physical densities towards 0 or 1. 

The results of these two examples are presented in Figures 2 and 3, respectively, where Figures 2(a) 

& 3(a) present the optimal structures with the line thickness representing the element densities and 2(b) 

& 3(b) plot the associated changes of structural strain energy as iterations progress. Figures 2(c) & 3(c) 

report the history of the design variables during the optimisation process and 2(d) & 3(d) show the 

results of the KKT (Karush-Kuhn-Tucker) check in the OC process. According to the KKT conditions 

(Boyd and Vandenberghe [10]), at the local minimal, the differential of the Lagrangian function should 

be zero as a necessary condition. Therefore, the KKT condition can be applied to verify whether a true 

local minimum is obtained, and it is simplified herein as: (∂C/∂xe )/(∂V/∂xe ) equals to a constant for 

xe∈(0, 1). 

 

                                (a) Initial structure                                                         (b) Group information 

Figure 1: Structural information of a spherical gridshell 

3.1. Example without penalization 

In Figure 2a, the elements with design variables (pseudo physical density, xe) larger than 0.001 are 

shown in dark, while those with xe less than 0.001 are in red. Without penalization, the obtained optimal 

structure presents a wide range of design variables and there is no clear way to identify which elements 

can be removed and which should remain. In Figure 2b, an increment of strain energy appears in the 

early iterations as the design variables were shrunk to satisfy the material volume constraint. From 25 

iterations, the strain energy decreased, and the value became comparatively stable after approximately 

100 iterations. Similar change can be also seen in Figure 2c, where it shows that the design variables 

changed significantly during the first 100 interactions and become stable afterwards. However, after 

optimisation, almost all the elements ended up with intermediate design variables, only Group 27 have 

a density close to 1, and only Groups 8, 9, 17 and 30 have densities close to zero. This is clarified in 

Figure 2d, the bar graph shows the ranges of the design variable and the red and green bars show the 

groups with the desired extreme values. 

Figure 2d also shows the values of (∂C/∂xe )/(∂V/∂xe ) for each group of elements, plotted as a blue line. 

For elements with 0.001 < xe < 1, the (∂C/∂xe )/(∂V/∂xe ) values are nearly the same (marked with ‘star’ 

symbols on Figure 2d). This can be viewed as one of the evidence verifying the obtainment of a local 

minimum. 
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                          (a) Optimal structure                                  (b) History of structural strain energy 

  
          (c) History of design variables (G: Group)                                       (d) KKT check 

Figure 2: Optimisation results without penalization 

3.2. Example with penalization 

The second example adopts exactly the same optimisation procedure as for the first, except that the 

penalization factor p is linearly increased from 1 to 10 between iteration 40 and 440. The resulting 

optimal structure is shown in Figure 3a, where it displays a clear distinction between elements that could 

be deleted (red lines) and those that should remain (black lines). Figure 3b shows that the structural 

strain energy increased until convergence, a different behaviour to the case without penalization 

(Figure 2b). This is partly because, with penalization, more design variables were driven towards zero. 

Additionally, the large penalization factor further decreases the stiffness of elements with intermediate 

densities, leading to the stiffness reduction of the whole structure. Figure 3c shows that the design 

variables changed largely at the beginning of the optimisation, and they reached a stable value after the 

400th iteration, at which point the penalization factor arrived at the maximum. At convergence, 11 groups 

of elements were marked for deletion (as their design variables are close to 0) and the remaining 

elements had densities ranging between 0.6 and 0.9. In Figure 3d, the values of (∂C/∂xe)/(∂V/∂xe) for 

the groups with 0.001 < xe < 1 were nearly the same, again verifying the obtainment of a local minimum.  
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                  (a) Optimal structure                                    (b) History of structural strain energy 

       

         (c) History of design variables (G: Group)                                           (d) KKT check         

Figure 3: Optimisation results with penalization 

4. Theoretical investigation on barriers to obtain binary designs 

Even with penalization adopted, the algorithm still failed to guarantee a binary design (with design 

variables equal to purely 0 or 1), regardless of the fact that the KKT check demonstrated the achievement 

of a local minimum. The reasons behind this phenomenon are investigated in this section via a simple 

theoretical example. 

A simple two-spring structure (connected in series but with different stiffnesses k1 and k2) is considered, 

as shown in Figure 4. The overall stiffness of the structure is given in Eq. 5: 

𝑘 =
1

1

𝑘1
+

1

𝑘2

=
𝑘1𝑘2

𝑘1+𝑘2
                                                                   (5) 

To explore why the algorithm in the examples above prefers intermediate design variables rather than 

binary 0 and 1 values for the optimal structure, two different combinations of design variables are 

assigned to the two-spring structure. The first (Combination 1) assumes the elements have distinct 
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design variable x1=1 and x2=0, the second (Combination 2) assumes intermediate design variables 

x1=x2=0.5. The structural stiffnesses corresponding to these two combinations of design variables are 

calculated through Eqs. (2) and (5) and the results are summarised in Table 1, where Emin=qE0, q is a 

scaling factor. 

 
      Figure 4: A two-spring structure 

 

Table 1: The overall stiffness of a two-spring structure 

 
Combination 1 Combination 2 

x1 x2 x1 x2 

x 1 0 0.5 0.5 

Ee(xe) E0 Emin Emin + 0.5p(E0 - Emin)  Emin + 0.5p(E0 - Emin)  

kcomb 
𝐸0𝐸𝑚𝑖𝑛

𝐸0 + 𝐸𝑚𝑖𝑛
=

𝑞𝐸0

1 + 𝑞
 

𝑞𝐸0 + 0.5𝑝𝐸0(1 − 𝑞)

2
 

 

To guarantee a binary optimisation result, kcomb,1 must be greater than kcomb,2, therefore, the penalization 

factor p and the scaling factor q need to satisfy the relationship shown in Eq. 6 :
 

𝑞

1+𝑞
>

𝑞+0.5𝑝(1−𝑞)

2
                                                             (6) 

which gives 

1 > 0.5𝑝(
1

𝑞
+ 1)                                                            (7) 

To have kcomb,1> kcomb,2, the values of p and q need to satisfy Eq. (7). For a series of p from 1 to 10, the 

corresponding minimum values of q are shown in Table 2. For example, if p=1, the minimal choice of 

q is 1; if p=10, q should be larger than 1/1023. 

Table 2: Values of p and q satisfying Eq. (7) 

p 1 2 3 4 5 6 7 8 9 10 

q (fraction) 1 1/3 1/7 1/15 1/31 1/63 1/127 1/255 1/511 1/1023 

q (decimal) 1 0.3333 0.1429 0.0667 0.0323 0.0159 0.0079 0.0039 0.0020 0.0010 

As presented in Section 3, (p, q) equals to (1, 1/109) for the first example. In the second example, p 

started with 1 and gradually increased up to 10, and q maintained as 1/109. It is obvious that, in these 

two examples the values of (p, q) did not satisfy the condition set up in Eq. (7). Therefore, during the 

optimisation process, in order to result in a stiffer overall structure, adjacent elements were favoured 

that had intermediate design variables, rather than very large or very small design variables. Hence, the 

optimal structures failed to present binary included/deleted patterns of elements.  
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5. Extended examples 

Based on the analysis in Section 4, it can be concluded that a binary optimisation result can be only 

achieved if suitable values of p and q are adopted in the optimisation process. For example, to obtain a 

binary design for the two-spring structure, if p=10, a q larger than 1/1023 is needed. However, the 

gridshell structure is consisted of interconnected elements and is sustaining distributed load, therefore 

it is different from the two-spring example and the p-q relationship identified in Section 4 is not directly 

applicable to the gridshell. Based on the trial study done by the researcher, in general, (p=10, q=1/10) 

can guarantee binary optimisation results for the gridshell structure. In the following, two extended 

examples are provided, one with a material volume fraction α equal to 0.4 and the other equal to 0.3; 

both have q = 0.1. During the optimisation process, the penalization power p is gradually increased to 

10 as before. The optimisation results are shown in Figures 4 and 5, respectively, where Figures 4a 

and 5a present the optimal structures and Figures 4b and 5b show the history of design variables for 

each group of elements. 

Figure 4 shows that optimisation result to the problem with a volume fraction of 0.4, which is a purely 

binary design, with all the groups having elements either deleted (design variables equal to 0), or fully 

present (design variables equal to 1). The history of the design variables in Figure 4b reflects the fact 

that the penalization procedure worked successfully as the elements with higher design variables were 

all increased to 1 and those with smaller design variables were all penalized to zero in the optimal design, 

leaving no elements with intermediate design variables.  

In Figure 5a, there are three more groups of elements (Groups 4, 19 and 29) marked for deletion (drawn 

in red) compared with Figure 4a, since the volume fraction is reduced to 0.3. Figure 5b shows that nearly 

all of the elements have been allocated design variables of either 0 or 1, except for Group 27. This is 

because the volume constraint of 0.3 cannot be achieved by including or deleting whole members, it is 

a constraint on volume rather than on the number of the elements included in the design. 

Comparing the optimisation results provided in this section with those in Section 3.2, it can be seen that 

binary designs involving design variables of either 0 or 1 can be obtained if suitable values of p and q 

are chosen. In such cases, the optimisation results can be used to guide the second-layer grid additions 

in the design of partial double-layer gridshell structures. 

          

                            (a) Optimal Structure                                             (b) History of design variables 

Figure 4: Optimisation results with volume fraction=0.4  
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                            (a) Optimal Structure                                           (b) History of design variables 

                                            Figure 5: Optimisation results with volume fraction=0.3  

6. Design of a partial double-layer gridshell structure 

As presented in Section 5, with a proper assignment of (p, q), binary solutions to the topology 

optimisation problem can be obtained. However, for the case of volume fraction=0.3, there are some 

isolated elements present in the optimisation result; while for the case of volume fraction=0.4, the 

optimal structural layout consists of smoothly connected elements. Therefore, the result corresponding 

to volume fraction=0.4 is adopted for the guiding paths of the second-layer grids, with the reverse V-

shape paths close to the lower boundary omitted. To facilitate the addition of second-layer grids, the 

grid division for the gridshell structure is regenerated with the consideration of the guiding paths and 

the result is shown in Figure 6a, termed “Single-Shell”. Based on the newly generated grids, second-

layer structures are added by following the dual principle proposed by Conway et al. [11]. The second-

layer nodes (bottom nodes) are generated by offsetting the centroids of the neighbouring faces of the 

guiding paths with an offset distance of 2m. Then, the bottom nodes are connected to the vertices of 

their affiliated faces to form web-members. The bottom chord members are generated based on the 

neighbouring relationship between the top faces. The obtained partial double-layer gridshell (PDouble-

Shell) is shown in Figure 6b. 

  
(a) Single-layer gridshell (Single-Shell) (b) Partial double-layer gridshell (PDouble-Shell) 

Figure 6: Sketch of the single-layer and partial double-layer gridshells 

To compare the mechanical properties of the single-layer and partial double-layer gridshell, size 

optimisation is firstly carried out based on the fully stressed design (FSD) criteria, followed by an 

eigenvalue buckling analysis. Similar to the topology optimisation problem, beam elements with a 
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tubular section are adopted to simulate the structures. The elasticity modulus of material is 2×1011 Pa, 

the shear modulus is 7.69×1010 Pa and the yield stress is set as 200 MPa. Live load with an amplitude of 

1kN/m2 is applied to the top layer. The maximum stress ratio for size optimisation is set as 0.3, the 

optimal cross sections of structural members are shown in Table 2. The mechanical properties of the 

structures are presented in Table 3. The first eigenvalue buckling modes of these two structures under 

the external load are shown in Figure 7 with the colours representing displacement.  

As shown in Table 2, the sum of the element lengths of the Single-Shell is 10285m, while it is 23709m 

for the PDouble-Shell, the latter being around 2.3 times the former. Nevertheless, the PDouble-Shell 

consumes less material compared to the Single-Shell, and this demonstrates that by properly configuring 

second-layer grids, the material volume of structures can be reduced. Under external load, the stress and 

displacement values of the PDouble-Shell are close to that of the Single-Shell, as can be seen from Table 

3. The first eigenmode of the Single-Shell exhibits global buckling, while for the PDouble-Shell the 

buckling mainly occurs in the single-layer regions, as can be seen from Figure 7. The first eigenvalue, 

as well as the mean of the first ten eigenvalues, are shown in Table 3, and the values of both parameters 

are larger for PDouble-Shell than for Single-Shell. It can therefore be concluded that under the specified 

load, the strength and stiffness of the PDouble-Shell is similar to the that of the Single-Shell, as can be 

seen from the small difference of their stress and displacement values. However, the PDouble-Shell is 

more advantageous in terms of structural stability and requires less material compared to the Single-

Shell. Note that since the analysis has only considered a single loading case, to demonstrate the 

advantages of the obtained partial double-layer gridshells over the single-layer structures under practical 

loading scenarios, further investigation is still required, and is ongoing by the authors. 

 

Table 2: Size optimisation results of the single-layer and partial double-layer gridshells 

 Single-Shell PDouble-Shell 

Member Top-layer Top-layer Web Bottom-layer 

Sum of member length ∑L (m) 10285.29 10285.29 10185.51 3237.92 

Cross section d×t / (mm×mm) 168.3×10.0 139.7×8.0 42.4×3.6 60.3×3.0 

Material volume V /m3 51.12 40.26 

Table 3: Mechanical properties of the single-layer and partial double-layer gridshells 

 Stress/MPa Displacement/mm Eigenvalue buckling factor 

max mean max mean First Mean of the first ten 

Single-Shell 53.51 15.98 13.68 4.20 5.10 6.35 

PDouble-Shell 55.36 15.16 9.04 4.93 7.03 8.51 

 

  
(a) Single-layer gridshell (b) Partial double-layer gridshell 

Figure 7: First eigenvalue buckling mode of the single-layer and partial double-layer gridshells 
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7. Conclusions 

In order to generate paths suitable for the addition of second-layer grids in partial double-layer gridshell 

structures, a topology optimisation method based on the SIMP approach has been applied to a spherical 

gridshell. Several benchmark examples with different combinations of optimisation parameters (E0, Emin 

and p) are investigated, and the main conclusions drawn are as follows: 

(1) When distributed load is considered, the values of the initial and minimal material stiffness of 

elements in the SIMP formulation should be carefully determined if a binary design without intermediate 

values of design variables is required.  

(2) With proper assignment of the initial and minimal material stiffness, the case study demonstrates 

that the topology optimisation can provide binary designs, and the obtained topology suggests suitable 

locations for the placement of second-layer stiffening structures. 

(3) By incorporating the binary topology optimisation result, a new single-layer gridshell is generated. 

Subsequently, a partial double-layer gridshell is formed based on the new single-layer gridshell. 

Mechanical analysis of the single-layer and partial double-layer gridshells demonstrate that, the partial 

double-layer gridshell displays similar strength and stiffness properties to the single-layer gridshell, but 

the former is more stable and uses less material under the specified loading compared to the latter. 
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