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ABSTRACT 

A weightless wire coat hanger bent out of its plane is one of the simplest possible structures. All it does is 
transfer a force and moment around a closed space curve. Assembling a family of coat hangers enables us to 
build up trusses and frames and if we allow an infinite number of coat hangers which overlap we can assemble 
plates, shells and fully three dimensional structures. We can apply loads to these structures via a loading frame 
and wires, also made from coat hangers. 

A wire carrying an electric current produces a magnetic field in the space surrounding the wire. For the bent 
coat hanger we can imagine that there is a vector field surrounding the wire as a result of the force and moment 
in the wire. We can use this vector field to obtain expressions for the forces and moments in a shell in 
equilibrium with applied loads. 
 
Keywords: Shell structures, Beltrami stress function, Airy stress function, coat hanger, Cauchy stress, Cosserat 
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1. INTRODUCTION 

It is well known [17] that the equations of static 
equilibrium of an unloaded 2 dimensional 
continuum are 

𝜕𝜕𝜎𝜎𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜏𝜏𝑦𝑦𝑥𝑥
𝜕𝜕𝜕𝜕

= 0 

𝜕𝜕𝜏𝜏𝑥𝑥𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑦𝑦
𝜕𝜕𝜕𝜕

= 0 

𝜏𝜏𝑦𝑦𝑥𝑥 = 𝜏𝜏𝑥𝑥𝑦𝑦 
 
 

and that these equations are automatically satisfied 
by 

𝜎𝜎𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕2

 

𝜎𝜎𝑦𝑦 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕2

 

𝜏𝜏𝑥𝑥𝑦𝑦 = 𝜏𝜏𝑦𝑦𝑥𝑥 = −
𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 
 
in which 𝜙𝜙 is the Airy stress function [2, 3, 17]. 

Thus stress corresponds to ‘curvature’ of the 𝜙𝜙 
surface if 𝜙𝜙 is plotted in the third dimension, 
perpendicular to the 𝜕𝜕 − 𝜕𝜕 plane. A concentrated 
axial force in a structural member represented by a 
straight or curved line, such as a truss element or 
cable, corresponds to a fold or concentrated 
curvature in the 𝜙𝜙 surface. 

What is perhaps less well known is that the bending 
moment in a member corresponds to a discontinuity 
in the 𝜙𝜙 surface, which is effectively two infinite 
(in terms of the tangent of the slope) folds separated 
by a vertical surface [19]. This is consistent with the 
fact that a bending moment in a straight or curved 
line is produced by infinite tensile and compressive 
forces separated by an infinitesimal lever arm. 
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Figure 1: Bending moment in a flat triangular wire 

This is illustrated in figures 1 and 2. Figure 1 shows 
a triangular wire lying in a plane together with the 
bending moment in the wire due to some forming 
process. In 2 dimensions the structure is 3 times 
statically indeterminate. The bending moment and 
forces in the wire are represented by the Airy stress 
function 𝜙𝜙 which is the third vertical coordinate in 
figure 2 showing a triangular ‘island’ surrounded by 
an infinite flat horizontal ‘sea’. The magnitude of 
the force in the wire is equal to the tangent of the 
slope of the plane representing the ‘land’ and its 
direction is parallel to a contour line on the plane. 
The variable height of the ‘cliffs’ is equal to the 
bending moment. The line of action of the force is 
where an extrapolation of the ‘land’ plane enters the 
‘sea’. 

Here we have shown a triangular wire, but it can be 
of any shape with a straight or curved sides, 
provided that it lies in a plane. 

 

 

Figure 2: Airy stress function is a triangular ‘island’ with 
sloping plane ‘land’ and vertical ‘cliffs’ surrounded by an 
infinite horizontal ‘sea’. Here we have shown a triangular 
wire, but it can be of any shape with a straight or curved 

sides, provided that it lies in a plane 

By assembling Airy stress function islands side by 
side we could model the truss and loading frame 
shown in figure 3 in which the arrows represent the 
loads on the truss from the loading frame. If there is 
no bending moment in a member there is no 
discontinuity in 𝜙𝜙, the cliffs are of the same height 
on adjoining islands. 

 
Figure 3: Truss and loading frame made from coat 

hangers. Truss shown with thick lines, loading frame 
shown with thin lines and loads applied to truss are 

indicated by the arrows. Forces and moments are added 
for members running alongside each other. The moments 

cancel for a pin-jointed truss 
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2. EXTENSION TO THREE DIMENSIONS 

We shall refer to closed wire frames as ‘coat 
hangers’. So far we have only considered a coat 
hanger or system of coat hangers all lying in the 
same 2 dimensional plane. We will now consider a 
coat hanger bent out of its plane to form a 3 
dimensional space curve as shown in figure 4, 
which also shows two green and yellow plastic 
hoops, one going around the wire and the other not. 

If the coat hanger were to be cut with a pair of 
pliers, the two sides of the cut would spring apart 
and we would need to apply a force and a moment 
to bring the two sides back together and to line up. 
The force may well be much larger than the own 
weight of the hanger, and so for purity we shall 
imagine that the hanger is floating weightless. 

Because the coat hanger is assumed to be 
weightless, the force and moment about a given 
fixed point are both constant, regardless of where 
the cut is made. Of course the moment about the cut 
itself does vary, according to the force and lever 
arm from the fixed point. 

There is no stress in the space around the coat 
hanger, but within the wire itself there is a state of 
stress resulting in the force and moment. The plastic 
hoop going around the wire encircles this force and 
moment, whereas the other plastic hoop encircles 
no force or moment. We are not interested in the 
actual stress in the wire or how thick the wire is, it 
could be very fat provided that the plastic hoop 
goes fully around it. This suggests that equilibrium 
is best discussed by considering a line integral 
around a curve, in this case the curve being one or 
other of the plastic hoops, not the coat hanger. 

 

 

Figure 4: Wire coat hanger bent 
into 3 dimensional space curve and 
two green and yellow plastic hoops, 
one going around the wire and the 
other not 

 

 

Figure 5: Hard-broom (walis-
tingting) stall in the Philippines. 
Photo: Thamizhpparithi Maari, 
Department of Journalism and 
Mass Communication, Periyar 
University, India 
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Figure 5 shows some brooms. If we were to apply a 
bending moment to the collection of strands making 
up the broom head, it would be carried partly by 
moments in the individual strands and partly by a 
tension in some strands and compression in others, 
as in the classical Euler-Bernoulli theory of bending 
of beams. The moment in the individual strands 
would be termed Cosserat moment in continuum 
mechanics, after the brothers François and Eugène 
Cosserat. If one were to encircle a broom with a 
green and yellow plastic hoop one would only be 
interested in the total force and moment being 
transferred through the hoop. 

It should be emphasized that nowhere in this paper 
do we make any assumption regarding material 
properties. The material may be linear or non-linear 
elastic, there may be plastic and other forms of 
deformation. We are only concerned with static 
equilibrium in some deformed geometry, which 
may be very different from some ‘initial’ geometry, 
perhaps the straight wire from which a coat hanger 
was originally made. 

Before discussing the coat hanger in more detail, 
we need some preliminaries in order to fully 
understand the concepts of equilibrium of force and 
moment. 

 

Figure 6: Portion of curved surface bounded by a closed 
space curve C, all contained within an un- loaded material, 

or combination of materials, subject to stress, but which 
may contain stress-free regions 

3. EQUILIBRIUM IN 3 DIMENSIONS 

Let us imagine a weightless 3 dimensional material, 
or combination of materials, in which forces and 
moments are distributed, and which may contain 

stress free regions like the air around our coat 
hanger, ignoring air pressure. 

Figure 6 shows a portion of curved surface inside 
our material bounded by a closed space curve C. 
One can imagine many different portions of surface 
all bounded by the same curve. The curve C is 
analogous to the plastic hoop going around the wire 
in figure 4, rather than the coat hanger itself since 
we are interested in the force and moment passing 
through the curve. 

The total surface area, treated as a vector, of any of 
these portions of surface bounded by C must be the 
same. Similarly, for equilibrium, the total force and 
moment about a fixed point crossing all surfaces 
bounded by the curve C must be the same. If we 
imagine a ruled surface defined by straight lines 
passing through the curve and a fixed point 𝐑𝐑, then 
using the properties of the vector product we have 
the total area, treated as a vector, 

𝐀𝐀C =
1
2
�(𝐫𝐫 − 𝐑𝐑) × 𝑑𝑑𝐫𝐫
C

 

=
1
2
�𝐫𝐫 × 𝑑𝑑𝐫𝐫
C

−
1
2
𝐑𝐑 × �𝑑𝑑𝐫𝐫

C
 

(1) 

in which 𝐫𝐫 is the position vector of a typical point 
on the curve C and 𝑑𝑑𝐫𝐫 is the vector joining two 
adjacent points on C. 

However 

�𝑑𝑑𝐫𝐫
C

= 0 

so that 𝐑𝐑 can be any constant vector without 
influencing the result for 𝐀𝐀C. Note that reversing 
the direction of travel around the curve changes the 
sign of the area and the total area of a closed 
surface, made up of two different surfaces passing 
through curve C, is zero. 

We can use the permutation pseudo-tensor 𝛜𝛜, whose 
components Green and Zerna [7] describe as 𝜖𝜖-
systems, to perform the vector product 

𝐜𝐜 = 𝐚𝐚 × 𝐛𝐛 = −𝐛𝐛 × 𝐚𝐚 = 𝐛𝐛 ∙ 𝛜𝛜 ∙ 𝐚𝐚 
= (𝐚𝐚𝐛𝐛) ∙∙ 𝛜𝛜 = 𝛜𝛜 ∙∙ (𝐚𝐚𝐛𝐛) 
= 𝑎𝑎𝑖𝑖𝑏𝑏𝑗𝑗𝐠𝐠𝑖𝑖 × 𝐠𝐠j 
= 𝑎𝑎𝑖𝑖𝑏𝑏𝑗𝑗𝜖𝜖𝑖𝑖𝑗𝑗𝑖𝑖𝐠𝐠𝑖𝑖 
= �𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦�𝐢𝐢 + (𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧)𝐣𝐣 
+�𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥�𝐤𝐤. 
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where 𝐠𝐠𝑖𝑖 and 𝐠𝐠𝑖𝑖 are the covariant and contravariant 
base vectors and we have used the Einstein 
summation convention [7]. 𝐢𝐢, j and 𝐤𝐤 are unit 
vectors in the 𝜕𝜕, 𝜕𝜕 and 𝑧𝑧 directions. Hence we can 
write equation (1) as 

𝐀𝐀C =
1
2
��𝑑𝑑𝐫𝐫(𝐫𝐫 − 𝐑𝐑)� ∙∙ 𝜖𝜖.
C

 (2) 

The advantage of using the permutation pseudo-
tensor is that it enables us to perform operations 
such as the vector triple product, 

𝐚𝐚 × (𝐛𝐛 × 𝐜𝐜) = 𝛜𝛜 ∙∙ �𝐚𝐚𝐚𝐚 ∙∙ (𝐛𝐛𝐜𝐜)� 
= 𝜀𝜀𝑖𝑖𝑗𝑗𝑖𝑖𝑎𝑎𝑗𝑗𝜀𝜀𝑖𝑖𝑘𝑘𝑘𝑘𝑏𝑏𝑘𝑘𝑐𝑐𝑘𝑘𝐠𝐠𝑖𝑖  
= �𝛿𝛿𝑘𝑘𝑖𝑖 𝛿𝛿𝑘𝑘

𝑗𝑗 − 𝛿𝛿𝑘𝑘
𝑗𝑗 𝛿𝛿𝑘𝑘𝑖𝑖 �𝑎𝑎𝑗𝑗𝑏𝑏𝑘𝑘𝑐𝑐𝑘𝑘𝐠𝐠𝑖𝑖  

= 𝑎𝑎𝑗𝑗�𝑏𝑏𝑖𝑖𝑐𝑐𝑗𝑗 − 𝑏𝑏𝑗𝑗𝑐𝑐𝑖𝑖�𝐠𝐠𝑖𝑖  
= (𝐜𝐜 ∙ 𝐚𝐚)𝐛𝐛 − (𝐚𝐚 ∙ 𝐛𝐛)𝐜𝐜 

in which 𝛿𝛿𝑘𝑘𝑖𝑖  is the Kronecker delta. We can also 
write the curl of the vector field 𝐮𝐮 as 𝐚𝐚 ∙∙ ∇𝐮𝐮 in 
which ∇𝐮𝐮 is the gradient of 𝐮𝐮 and is the second 
order tensor defined by 𝑑𝑑𝐮𝐮 = 𝑑𝑑𝐫𝐫 ∙ ∇𝐮𝐮. 

Hence we can write equation (1) as 

𝐀𝐀C = −
1
2
� ��𝑑𝑑𝐫𝐫(𝐫𝐫 − 𝐑𝐑)� ∙∙ 𝛜𝛜�
C

. (2) 

Since the force due to stress must be the same for 
all areas bounded by C, we can introduce the 
second order tensor 𝐒𝐒 and write 

𝐟𝐟C = �(𝑑𝑑𝐫𝐫 ∙ 𝐒𝐒)
C

 (3) 

as the force ‘passing through’ the curve C. This is 
perhaps not immediately obvious until we realize 
that reversing the direction of travel around the 
curve changes the sign and so the total force on a 
closed surface is automatically zero, remember that 
our material is weightless. 

We can rewrite (3) using the gradient of 𝐒𝐒, 

𝐟𝐟C = ��𝑑𝑑�(𝐫𝐫 − 𝐑𝐑) ∙ 𝐒𝐒� − (𝐫𝐫 − 𝐑𝐑) ∙ 𝑑𝑑𝐒𝐒�
C

 

= −��(𝐫𝐫 − 𝐑𝐑) ∙ 𝑑𝑑𝐒𝐒�
C

 

= −� ��𝑑𝑑𝐫𝐫(𝐫𝐫 − 𝐑𝐑)� ∙∙ ∇𝐒𝐒�
C

. 

(4) 

If 𝛔𝛔 is the stress tensor in the material, we have 
from (4) and (2) 

−
1
2
�𝑑𝑑𝐫𝐫(𝐫𝐫 − 𝐑𝐑)� ∙∙ 𝛜𝛜 ∙ 𝛔𝛔 = −�𝑑𝑑𝐫𝐫(𝐫𝐫 − 𝐑𝐑)� ∙∙ ∇𝐒𝐒 

1
2
𝛜𝛜 ∙ 𝛔𝛔 = ∇𝐒𝐒 

so that 

𝛔𝛔 = 𝛜𝛜 ∙∙ ∇𝐒𝐒. (5) 

Therefore 

∇ ∙ 𝐒𝐒 = 0 (6) 

confirming that equilibrium of force is satisfied. 
Note that we are in Euclidean space so that the 
fourth order tensor ∇∇𝐒𝐒 is symmetric in its first two 
parts. 

Using a similar argument to that for area and force, 
the moment about the point 𝐑𝐑 crossing all surfaces 
through the curve C must be the same and equal to 

𝐦𝐦C𝐑𝐑 = � �𝑑𝑑𝐫𝐫 ∙ �𝐁𝐁 + 𝐒𝐒 ∙ 𝛜𝛜 ∙ (𝐫𝐫 − 𝐑𝐑)��
C

 

= � �𝑑𝑑𝐫𝐫 ∙ �𝐁𝐁 + 𝐒𝐒 ∙ 𝛜𝛜 ∙ (𝐫𝐫 − 𝐗𝐗)��
C

+ 𝐟𝐟C ∙ 𝛜𝛜 ∙ (𝐗𝐗 − 𝐑𝐑) 

(7) 

in which we have introduced the second order 
tensor 𝐁𝐁, which we will later see contains the 
Beltrami stress functions as its components. The 
term leading to 𝐟𝐟C ∙ 𝛜𝛜 ∙ (𝐗𝐗 − 𝐑𝐑) is necessary because 
it is the moment due to the force 𝐟𝐟C acting through 
the point 𝐗𝐗 about 𝐑𝐑. If we were to change 𝐑𝐑 by 𝑑𝑑𝐑𝐑 
then 𝐦𝐦C𝐑𝐑 would change by 𝐟𝐟C ∙ 𝛜𝛜 ∙ (−𝑑𝑑𝐑𝐑) =
𝑑𝑑𝐑𝐑 × 𝐟𝐟C as we would expect. 

Thus 

𝐦𝐦C𝐑𝐑 = � �𝑑𝑑�(𝐫𝐫 − 𝐑𝐑) ∙ 𝐁𝐁��
C

 

−��(𝐫𝐫 − 𝐑𝐑) ∙ 𝑑𝑑𝐁𝐁�
C

 

−� ��𝑑𝑑𝐫𝐫(𝐫𝐫 − 𝐑𝐑) ∙∙ (𝐒𝐒 ∙ 𝛜𝛜)��
C

 

= −� ��𝑑𝑑𝐫𝐫(𝐫𝐫 − 𝐑𝐑)� ∙∙ (∇𝐁𝐁 + 𝐒𝐒 ∙ 𝛜𝛜)�
C

 

(8) 

and using the same argument that lead to the stress 
tensor, we have the Cosserat moment tensor, 
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𝛍𝛍 = 𝛜𝛜 ∙∙ (∇𝐁𝐁 + 𝐒𝐒 ∙ 𝛜𝛜), (9) 

which gives the moment per unit area crossing a 
surface. 

Hence, after a little manipulation, we have 

∇ ∙ 𝛍𝛍 + 𝛜𝛜 ∙∙ 𝛔𝛔 = 0, (10) 

confirming that equilibrium of moments is 
automatically satisfied. Note that if ∇ ∙ 𝛍𝛍 = 0 then 
the stress tensor 𝛔𝛔 is symmetric, as is assumed in 
non-Cosserat continuum mechanics. 

Equations (6) and (10) can be found as equations 
(47a) and (47b) in Das Cosserat Kontinuum by 
Hermann Schaefer [14] translated by David 
Delphenich [1]. 

If the curve C is exceedingly small and close to the 
point 𝐑𝐑 and 𝐒𝐒 is finite, then equation (7) reduces to 

𝐦𝐦C = �(𝑑𝑑𝐫𝐫 ∙ 𝐁𝐁)
C

. (11) 

4. THE SIGNIFICANCE OF TENSORS 𝐒𝐒  
AND 𝐁𝐁 

The stress 𝛔𝛔 is defined in terms of 𝐒𝐒 in equation (5) 
and the Cosserat moment tensor 𝛍𝛍 is defined in 
terms of 𝐒𝐒 and 𝐁𝐁 by equation (9). Since equation (5) 
contains the gradient of 𝐒𝐒, then 𝐒𝐒 can be finite while 
𝛔𝛔 is infinite, as happens in the theory of shells when 
we imagine that a shell is a surface of zero 
thickness and we have a step change in 𝐒𝐒 across the 
surface. The same applies to 𝛍𝛍 and 𝐁𝐁 and the 
bending moment in a shell corresponds to a step 
change in 𝐁𝐁. Schaefer [13, 14, 1] imagines a 
continuum surrounded by a ‘crust’ in which a step 
change in 𝐒𝐒 and 𝐁𝐁 resist the stresses contained 
within. 

Clearly 𝛔𝛔 and 𝛍𝛍 are zero in empty space, but this 
does not necessarily apply to 𝐒𝐒 and 𝐁𝐁. The plastic 
hoop surrounding the wire of the coat hanger is in 
empty space (forgetting about the air), yet when we 
integrate around the curve of the hoop we obtain the 
force and moment in the wire. 

5. THE BELTRAMI STRESS TENSOR 

If we were make the usual assumptions leading to 
the Cauchy stress tensor [4, 5, 6, 8, 9, 10, 11, 12, 

16, 18], then 𝛍𝛍 = 0, which does not imply that 
∇𝐁𝐁 + 𝐒𝐒 ∙ 𝛜𝛜 is zero in (9), only that it is symmetric in 
its first two parts. Then 

𝐒𝐒 = (𝛜𝛜 ∙∙ ∇𝐁𝐁)T −
1
2
𝛜𝛜 ∙∙∙ ∇𝐁𝐁𝐁𝐁 (12) 

in which 𝐁𝐁 is the unit tensor, and in Cartesian 
coordinates 𝐁𝐁 = 𝐢𝐢𝐢𝐢 + 𝐣𝐣𝐣𝐣 + 𝐤𝐤𝐤𝐤. The superscript ‘T’ 
means ‘transpose’. Then from equation (5) 

𝛔𝛔 =
1
2
𝛜𝛜 ∙∙ ∇ �𝛜𝛜 ∙∙ ∇�𝐁𝐁 + 𝐁𝐁T�� 

=
1
2
𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘𝜖𝜖𝑗𝑗𝑗𝑗𝑘𝑘∇𝑖𝑖∇𝑗𝑗(𝐵𝐵𝑘𝑘𝑘𝑘 + 𝐵𝐵𝑘𝑘𝑘𝑘)𝐠𝐠𝑖𝑖𝐠𝐠𝑗𝑗 

(13) 

confirming that 𝐁𝐁 contains the Beltrami stress 
functions as its components. 𝛔𝛔 is symmetric, and 
the antisymmetric part of 𝐁𝐁 makes no contribution 
to 𝛔𝛔. ∇𝑖𝑖 denotes the covariant derivative with 
respect to the curvilinear coordinate 𝜃𝜃𝑖𝑖 [7]. 

From this point on we shall assume the 𝐁𝐁 is 
symmetric so that equations (12) and (13) become 

𝐒𝐒 = (𝛜𝛜 ∙∙ ∇𝐁𝐁)T (14) 

and 

𝛔𝛔 = 𝛜𝛜 ∙∙ ∇(𝛜𝛜 ∙∙ ∇𝐁𝐁). (15) 

Of course the Airy, Maxwell, Morera and Prandtl 
stress functions are all special cases of the 
components of the Beltrami stress tensor. Airy [2, 
3] used an integral in 2 dimensions to find the total 
force on an element and then the divergence 
theorem to find the differential equations of 
equilibrium that are satisfied by the stress function, 
which now bears his name. Airy did not use the 
term ‘divergence theorem’ but instead described it 
as an application of the calculus of variations. Both 
of Airy’s papers were read in 1862 but published in 
1863, the Royal Society paper is an expanded 
version of the British Association for the 
Advancement of Science paper. 

We will continue to make the assumption 𝛍𝛍 = 0 in 
the remainder of this paper, but it is important to 
realize that this does not mean that the moment in 
the coat hanger wire is zero, or that the moments in 
the shells that we will consider later are zero. 
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6. A VECTOR FIELD 

Let us write 

𝐁𝐁 = 𝛄𝛄 =
1
2
�∇𝐮𝐮 + (∇𝐮𝐮)T� (16) 

and 

𝛚𝛚 =
1
2
�∇𝐮𝐮 − (∇𝐮𝐮)T� (17) 

where 𝐮𝐮 is a vector field. If we were to imagine that 
𝐮𝐮 is a fluid velocity then 𝛄𝛄 would be the symmetric 
strain rate tensor and 𝛚𝛚 would be the antisymmetric 
vorticity tensor. The corresponding vorticity vector 
is 

𝛀𝛀 =
1
2
𝐚𝐚 ∙∙ 𝛚𝛚 =

1
2
𝐚𝐚 ∙∙ ∇𝐮𝐮 (18) 

and 

𝛚𝛚 = 𝐚𝐚 ∙ 𝛀𝛀 = 𝛀𝛀 ∙ 𝐚𝐚. (19) 

It is sometimes more convenient to use the 
antisymmetric tensor form for vorticity, and some- 
times the vector form. The same applies to moment, 
but all the moments in this paper are in the vector 
form. 

For 𝛍𝛍 to be zero we have from equation (14) 

𝐒𝐒 =
1
2
�𝛜𝛜 ∙∙ ∇�∇𝐮𝐮 + (∇𝐮𝐮)T��

T
 

=
1
2
�𝛜𝛜 ∙∙ ∇�(∇𝐮𝐮)T��

T
 

=
1
2
𝜖𝜖𝑖𝑖𝑗𝑗𝑖𝑖∇𝑗𝑗∇𝑘𝑘𝑢𝑢𝑖𝑖𝐠𝐠𝑖𝑖 = ∇𝛀𝛀. 

(20) 

From equation (5) 

𝛔𝛔 = 𝛜𝛜 ∙∙ ∇∇𝛀𝛀 = 0 (21) 

and therefore we can use equation (16) to define the 
Beltrami stress function in the unstressed region 
outside the wire of the coat hanger. 

From equation (3) the force passing through a curve 
C is now 

𝐟𝐟C = �(𝑑𝑑𝐫𝐫 ∙ ∇𝛀𝛀)
C

= �𝑑𝑑𝛀𝛀
C

 (22) 

Using equation (7) and the fact that ∇𝐫𝐫 = 𝐁𝐁, 
the unit tensor,  

𝐦𝐦C𝐑𝐑 = � �𝑑𝑑𝐫𝐫 ∙ �𝛄𝛄 + ∇𝛀𝛀 ∙ 𝛜𝛜 ∙ (𝐫𝐫 − 𝐑𝐑)��
C

 

= � �𝑑𝑑𝐫𝐫 ∙ �𝛄𝛄 + ∇�𝛀𝛀 ∙ 𝛜𝛜 ∙ (𝐫𝐫 − 𝐑𝐑)��
C

+ 𝛚𝛚� 

= ��𝑑𝑑(𝐮𝐮 + (𝐫𝐫 − 𝐑𝐑) × 𝛀𝛀)�
C

 

(23) 

Now if we identify the curve C with one or other of 
the plastic hoops in figure 4, we can say that 𝐟𝐟C and 
𝐦𝐦C𝐑𝐑 are both zero for the curve that does not 
contain the coat hanger wire. 

However, to obtain non-zero force for the plastic 
hoop containing the coat hanger wire we need a 
constant discontinuity in 𝛀𝛀 equal to the force in the 
wire, 

𝐟𝐟wire = 𝛀𝛀discontinuity (24) 

across a surface passing through the wire. 

For the moment about 𝐑𝐑 we need a constant 
discontinuity in (𝐮𝐮 + (𝐫𝐫 − 𝐑𝐑) × 𝛀𝛀) equal to 𝐦𝐦𝐑𝐑 so 
that 

𝐮𝐮discontinuity = 𝐦𝐦𝐑𝐑 + 𝛀𝛀discontinuity
× (𝐫𝐫 − 𝐑𝐑) 

(25) 

where 𝐫𝐫 is now a point on the surface. Thus 
𝐮𝐮discontinuity corresponds to a rigid body motion 
since 𝐦𝐦𝐑𝐑 and 𝛀𝛀discontinuity are both constant. 

A plastic hoop encircling the coat hanger wire must 
pass through this surface an odd number of times, 
probably just once. However, a plastic hoop that 
does not pass around the coat hanger wire will pass 
through the surface an even number of times, or not 
at all. 

Equation (23) gives the moment about the fixed 
point 𝐑𝐑. However, if we imagine that the wire is 
described by a space curve representing its axis, 
then the moment in the wire about a point 𝐏𝐏 on the 
axis is 

𝐦𝐦wire axis = 𝐦𝐦𝐑𝐑 + (𝐑𝐑 − 𝐏𝐏) × 𝐟𝐟wire 
= 𝐮𝐮discontinuity at wire axis . (26) 
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In 3 dimensions the coat hanger is 6 times statically 
indeterminate, 3 components of force and 3 
components of moment. These 6 quantities 
correspond to our choice of the constant vectors 𝐦𝐦𝐑𝐑 
and 𝛀𝛀discontinuity in equation (25). 

7. PRESTRESSED PIN-JOINTED TRUSSES 

 

Figure 7: Upper image shows pin-jointed truss with 5 
nodes and 10 members. Lower image shows the truss 

‘exploded’ into 6 ‘coat hangers’ 

The simplest possible 3 dimensional prestressed pin 
jointed truss is shown in the upper image in figure 
7. The truss is free to move in space and it has 5 
nodes and 10 members. Given the 3 possible rigid 
body displacements and 3 possible rigid body 
rotations, there are 5 x 3 - 6 = 9 independent 
equilibrium equations. This confirms that choosing 
the tension or compression in any one member 
determines the tension or compression in all the 
others. 

The lower image in figure 7 shows the truss 
‘exploded’ into 6 ‘coat hangers’, each with its 
corresponding surface of discontinuity. 6 truss 
members are made up of a single wire and the 
remaining 4 members have 3 wires combined. 
Along each edge formed by a single wire there is a 
discontinuity in angular velocity about an axis 
parallel to the wire and no discontinuity in velocity. 
If one of these angular velocities is specified, the 
remaining 5 can be determined by the requirement 
that the sum of the moments in the 3 wires making 
up the remaining 4 members is zero. 

8. APPLICATION TO SHELLS 

Let us now imagine that the discontinuities in 𝐮𝐮 and 
its derivatives are no longer constant so that we 
have forces and moments in the surface of 
discontinuity itself as well as in the boundary coat 
hanger. 

 

Figure 8: Section through surface showing 3 dimensional 
curve C doubling back on itself 

It should be noted that we are only interested in the 
discontinuities in fluid velocity, vorticity and strain 
rate across the surface and not in the velocity field 
elsewhere, provided that the velocity and its 
gradient are continuous. The discontinuities in 
vorticity and strain rate are both determined by the 
discontinuity in the gradient ∇𝐮𝐮. However, the 
discontinuity in 𝐭𝐭 ∙ ∇𝐮𝐮, where 𝐭𝐭 is any vector 
tangential to the surface, is determined by the 
discontinuity in 𝐮𝐮. Thus we are only free to choose 
the discontinuities across the surface in the two 
vectors 𝐮𝐮 and 𝐧𝐧 ∙ ∇𝐮𝐮 where 𝐧𝐧 is the unit normal to 
the surface. 
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So far there are no external loads, only internal 
forces and moments. However, we can add loads by 
adding yet more coat hangers to produce loading 
wires, attached to some sort of loading frame, again 
made of coat hangers. If we replace equation (16) 
by 

𝐁𝐁 = 𝛄𝛄 + 𝐁𝐁load (27) 

in which we still have 

𝛄𝛄 =
1
2
�∇𝐮𝐮 + (∇𝐮𝐮)T� (28) 

then we can use the discontinuity in 𝐁𝐁load across 
the surface to represent the load. 𝐁𝐁load is not 
uniquely determined by the load since we can add 
any strain rate type tensor to 𝐁𝐁load without 
changing the load. 

If the imaginary fluid velocity and 𝐁𝐁load are zero 
above the surface shown in section in figure 8 and 
non-zero below, then it follows from equations (3), 
(11) and (14) that the force and moment crossing a 
cut 𝑑𝑑𝐫𝐫 in the surface are 

𝑑𝑑𝐟𝐟 = 𝑑𝑑𝐫𝐫 ∙ �∇𝛀𝛀 + (𝛜𝛜 ∙∙ ∇𝐁𝐁load)T� (29) 

and 

𝑑𝑑𝐦𝐦 = 𝑑𝑑𝐫𝐫 ∙ (𝛄𝛄 + 𝐁𝐁load). (30) 

Let us now introduce the second order tensors 𝐅𝐅 and 
𝐌𝐌 such that 

𝐧𝐧 ∙ 𝐅𝐅 = 0, (31) 

𝐧𝐧 ∙ 𝐌𝐌 = 0 (32) 

d𝐟𝐟 = (𝑑𝑑𝐫𝐫 × 𝐧𝐧) ∙ 𝐅𝐅 = 𝑑𝑑𝐫𝐫 ∙ (𝐧𝐧 × 𝐅𝐅) (33) 

and 

d𝐦𝐦 = (𝑑𝑑𝐫𝐫 × 𝐧𝐧) ∙ 𝐌𝐌 = 𝑑𝑑𝐫𝐫 ∙ (𝐧𝐧 × 𝐌𝐌) (34) 

in which 𝐧𝐧 is again the unit normal to the surface. 
Then it follows that 

𝐅𝐅 = −𝐧𝐧 × �∇𝛀𝛀 + (𝛜𝛜 ∙∙ ∇𝐁𝐁load)T� (35) 

and 

𝐌𝐌 = −𝐧𝐧 × (𝛄𝛄 + 𝐁𝐁load). (36) 

The tensors 𝐅𝐅 and 𝐌𝐌 represent the forces and 
moments in the shell. It should be noted that the 
forces will in general include normal shear forces as 
well as membrane stresses. The moments will 
include bending and twisting moments as well as in 
plane Cosserat moments which are important for 
structures such as the Mannheim Multihalle made 
from continuous timber laths (figure 9). 

In some theories it is assumed that the surface 
tensor representing bending and twisting moments 
in a shell is symmetric. The corresponding 
assumption with our notation would be that the 
trace of the in surface part of 𝐌𝐌 is zero. 

 

Figure 9: Mannheim Multihalle made from continuous 
timber laths crossing at the nodes. Shell is being test 

loaded by wires supporting water filled dustbins 

We can choose the discontinuities in the imaginary 
velocity field 𝐮𝐮 and in the vector 𝐧𝐧 ∙ ∇𝐮𝐮 arbitrarily 
and still ensure equilibrium of a shell structure. For 
a real shell the discontinuities will be determined by 
the elastic and other properties of the structure. 

We have 6 components for each of the second order 
tensors 𝐅𝐅 and 𝐌𝐌, subject to equations (31) and (32), 
and 3 equations of equilibrium of forces and 3 
equations of equilibrium of moments. We therefore 
have 2 × 6 + 2 × 3 = 6 ‘degrees of freedom’ 
which are the components of the discontinuities in 
the two vectors 𝐮𝐮 and 𝐧𝐧 ∙ ∇𝐮𝐮. 
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We can eliminate the discontinuities in 𝐮𝐮 and 𝐧𝐧 ∙ ∇𝐮𝐮 
to obtain the equilibrium equations for a shell, 
although the derivation is long and complicated and 
will not be included here. It is better to use methods 
which derive the equilibrium equations by just 
considering the surface itself or alternatively 
treating the shell as a thin 3 dimensional continuum 
as, for example in Green and Zerna [7] and 
Steigmann [15]. 

9. FLAT PLATES 

The derivation of the equilibrium equations for flat 
plates is much easier. If the plate lies in the 𝜕𝜕 − 𝜕𝜕 
plane, then 

𝐧𝐧 = 𝐤𝐤 (37) 

and let the imaginary fluid velocity, 

𝐮𝐮 = 0 when 𝑧𝑧 > 0 
𝐮𝐮 = 𝑢𝑢𝑥𝑥𝐢𝐢 + 𝑢𝑢𝑦𝑦𝐣𝐣 + 𝑢𝑢𝑧𝑧𝐤𝐤 when 𝑧𝑧 < 0. (38) 

Then when 𝑧𝑧 < 0, 

𝛄𝛄 =
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝜕𝜕

𝐢𝐢𝐢𝐢 +
𝜕𝜕𝑢𝑢𝑦𝑦
𝜕𝜕𝜕𝜕

𝐣𝐣𝐣𝐣 +
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧

𝐤𝐤𝐤𝐤 

+
1
2
�
𝜕𝜕𝑢𝑢𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝜕𝜕

� (𝐢𝐢𝐣𝐣 + 𝐣𝐣𝐢𝐢) 

+
1
2
�
𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑢𝑢𝑦𝑦
𝜕𝜕𝑧𝑧

� (𝐣𝐣𝐤𝐤 + 𝐤𝐤𝐣𝐣) 

+
1
2
�
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧

+
𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕

� (𝐤𝐤𝐢𝐢 + 𝐢𝐢𝐤𝐤) 

(39) 

and 

𝛀𝛀 =
1
2
�
𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑢𝑢𝑦𝑦
𝜕𝜕𝑧𝑧

� 𝐢𝐢 

+
1
2
�
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕

� 𝐣𝐣 

+
1
2
�
𝜕𝜕𝑢𝑢𝑦𝑦
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝜕𝜕

�𝐤𝐤. 

(40) 

If 

𝐁𝐁load =
1
2
𝑞𝑞(𝜕𝜕, 𝜕𝜕)(𝐢𝐢𝐣𝐣 + 𝐣𝐣𝐢𝐢) (41) 

then the plate is subject to an upwards load equal to 

𝑊𝑊 =
∂2𝑞𝑞
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 (42) 

per unit area. We therefore have plane stress in the 
plane of the plate plus bending out of the plane of 
the plate. 

Differentiating 

∇𝐁𝐁load =
1
2
�
∂𝑞𝑞
𝜕𝜕𝜕𝜕

𝐢𝐢 +
∂𝑞𝑞
𝜕𝜕𝜕𝜕

𝐣𝐣� (𝐢𝐢𝐣𝐣 + 𝐣𝐣𝐢𝐢) 

ε ∙∙ ∇𝐁𝐁load =
1
2
�
∂𝑞𝑞
𝜕𝜕𝜕𝜕

𝐤𝐤𝐢𝐢 −
∂𝑞𝑞
𝜕𝜕𝜕𝜕

𝐤𝐤𝐣𝐣� 

so that from (35) and (36) 

𝐅𝐅 = 𝐢𝐢
𝜕𝜕𝛀𝛀
𝜕𝜕𝜕𝜕

− 𝐣𝐣
𝜕𝜕𝛀𝛀
𝜕𝜕𝜕𝜕

(𝐢𝐢𝐣𝐣 + 𝐣𝐣𝐢𝐢)

−
1
2
�
∂𝑞𝑞
𝜕𝜕𝜕𝜕

𝐢𝐢 +
∂𝑞𝑞
𝜕𝜕𝜕𝜕

𝐣𝐣� 𝐤𝐤 
(43) 

and 

𝐌𝐌 = −
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝜕𝜕

𝐣𝐣𝐢𝐢 +
𝜕𝜕𝑢𝑢𝑦𝑦
𝜕𝜕𝜕𝜕

𝐢𝐢𝐣𝐣 

+
1
2
�
𝜕𝜕𝑢𝑢𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝜕𝜕

� (−𝐣𝐣𝐣𝐣 + 𝐢𝐢𝐢𝐢) 

+
1
2
�
𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑢𝑢𝑦𝑦
𝜕𝜕𝑧𝑧

� 𝐢𝐢𝐤𝐤 

−
1
2
�
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧

+
𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕

� 𝐣𝐣𝐤𝐤 

−
1
2
𝑞𝑞(𝐣𝐣𝐣𝐣 − 𝐢𝐢𝐢𝐢). 

(44) 

Now for simplicity let us consider the special case 
of plane stress when 

𝐁𝐁load = 0 (45) 

and 

𝜙𝜙 = 𝜙𝜙(𝜕𝜕, 𝜕𝜕) 

𝑢𝑢𝑥𝑥 = −𝑧𝑧
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

 

𝑢𝑢𝑦𝑦 = −𝑧𝑧
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

 

𝑢𝑢𝑧𝑧 = 𝜙𝜙 

(46) 
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below the plate. Then 

𝛀𝛀 =
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

𝐢𝐢 −
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

𝐣𝐣 (47) 

so that 

𝐅𝐅 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕2

𝐢𝐢𝐢𝐢 −
𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

(𝐢𝐢𝐣𝐣 + 𝐣𝐣𝐢𝐢) +
𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕2

𝐣𝐣𝐣𝐣 (48) 

and, from the discontinuity across the plate when 
𝑧𝑧 = 0, 

𝐌𝐌 = 0 (49) 

confirming that 𝜙𝜙 is the Airy stress function. 

10.  CONCLUSIONS AND FURTHER 
WORK 

We have demonstrated that the force and moment in 
an unloaded coat hanger bent out of its plane can be 
described by an imaginary fluid velocity field in the 
space outside the wire. 

The theory leads to expressions for the equilibrium 
forces and moments in a shell and contains the Airy 
stress function as a special case. 

The concept is quite difficult to understand and the 
application to further special cases will help clarify 
the matter. 
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