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Abstract

Shell structures are a highly efficient and elegant way of covering large unin-
terrupted spaces, but their complex geometry is notoriously difficult to model
and analyse. This paper describes a novel free-form shell modelling technique
based on structural harmonics. The method builds on work using weighted
Eigenmodes for three-dimensional mesh modelling in a computer graphics set-
ting, and extends it by specifically adapting the technique to an architectural
design context. This not only enables the sculpting of free-form architectural
surfaces using only a few control parameters, but also takes advantage of the
synergies between Eigenmodes and structural buckling modes, to provide an effi-
cient means of stiffening a shell against failure by buckling. This paper includes
a full case study of the iconic British Museum Great Court Roof to demon-
strate the applicability of the developed framework to real-world problems, and
the software developed to implement the method is available as an open-source
download.

Keywords: Harmonics, Fourier analysis, Free-form surfaces, Curvature,
Buckling

1. Introduction

The last decade of technological advancements, both in design and construc-
tion, has set architects free to explore a wide variety of building shapes, which
in effect has given rise to a trend of complex free-form buildings in contem-
porary architecture. Since the requirements for low-energy buildings are ever
more stringent, and designs focus on material economy and efficiency, it is no
longer sufficient to design such buildings from a purely aesthetic point of view.
As a response, form-finding techniques have been developed to generate efficient
shapes, where form follows force. However, these methods are associated with
a very restricted design space, expressing a theoretical optimum with little or
no appreciation of other design constraints, whereas the best designs in practice
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strike a balance between form and force as part of an integrated design process.
Such a process is generally supported by two components: a flexible modelling
strategy using a limited number of variables to control the geometry; and a live
evaluation of some property that is desirable for design. NURBS, and to a lesser
extent Subdivision Surfaces, are typically used for the first part, whilst stresses
or deflections are the most common structural quantities to measure success.
Surprisingly little research has been carried in the use of buckling as a criteria
at the design stage, even though this is often later identified as a critical failure
mode for shells.

Observations of historic buildings, such as those of Candela and Dieste for
example, combined with a newly conducted study by Malek (2012), point to-
wards the influence of curvature as an essential design parameter, to increase
the stiffness of a shell and hence its buckling capacity. Interestingly, a novel
free-form modelling approach proposed by Michalatos and Kaijima (2014) gen-
erates shapes by a summation of waves, which are inherently rich in curvature.
However, the approach has several unexplored properties in relation to Fourier
analysis, is not easily understood by the uninitiated, and needs further adapta-
tion to an architectural context.

The research presented here further develops the described free-form mod-
elling approach, and takes advantage of the resulting double curvature to stiffen
the shell against buckling failure. It is implemented as an interactive plug-in to
the Grasshopper modelling environment (McNeel, 2018), a visual-programming
style parametric-modelling software application commonly used in the archi-
tecture, engineering and construction (AEC) industry. This ensures the imple-
mentation is compatible with existing architectural design work flows seen in
practice, and is released under an open-source license (Brandt-Olsen, 2018a)
to promote industry uptake. The plug-in aims to assist designers in optimis-
ing their response to conflicting design constraints and deliver more economic
solutions without restricting artistic creativity.

2. Harmonic modelling

Harmonic modelling was originally developed by Taubin (1995) in the con-
text of surface fairing, but has recently found several other applications, in-
cluding mesh quadrangulation, mesh segmentation and geometry compression
(Zhang et al., 2007). The work of Hildebrandt et al. (2011) is particularly
elegant, since it uses the approach both as a means of parametric dimension
reduction and to facilitate shape modification in a computer graphics context.
In this current paper, the authors develop these ideas specifically for real-world
structural design applications, combining the low dimension parametrisation
with an understanding of how the structure will resist buckling loads. This
provides design flexibility, control of surface smoothness and allows designers to
take into account structural engineering considerations during the early stages of
design. The variables associated with this approach are numerical scalar values
that control the weighted summation of mode shapes with different frequencies.
This concept is more abstract than the usual representation of a NURBS-like
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control polygon, but has other advantages. For example, it is known from
Fourier analysis, that representing a function in the frequency domain provides
information that it is impossible to extract from the spatial domain. Separat-
ing a shell-surface into a linear combination of its component harmonics can
inform an understanding of how it will behave as a structure, as well as allow-
ing surface smoothing by removing undesirable high-frequency components that
contribute insignificantly to the final shape, a consideration that is important
in architectural design.

2.1. Framework

The translation of the theory behind Fourier analysis to arbitrary discrete
meshes would not be directly possible without the missing link observed by
Taubin: ”The classical Fourier transform of a signal can be seen as the de-
composition of the signal into a linear combination of the eigenvectors of the
Laplacian operator” (Taubin, 1995). Mathematically, this can be expressed as:

L · −→v = λ · −→v (1)

Here L is the Laplacian matrix, λ the eigenvalues and −→v the eigenvectors.
The Laplacian is a second order differential operator in n-dimensional space,
which defines the divergence of the gradient. For a mesh, this is equivalent to
the difference between a function value at a specific vertex and the (weighted)
average of the function at the 1-ring connected vertices. Even though the Lapla-
cian only incorporates local information, it is still capable of acting globally and
reveals properties that are unique to the given mesh (Zhang et al., 2007). In
matrix form, it is defined as an n by n matrix, where n is the number of vertices
in the mesh and its elements are given by:

Lij =


−wij , if i 6= j and vi adjacent to vj .∑

j∈N(i) wij , if i = j.

0 , otherwise.

(2)

Here wij = wji is an edge weight and N(i) is the set of vertices included
in the 1-ring neighbourhood of vertex vi. Masses associated with vertices vi
and vj are typically included in the edge weight, which generally result in a
non-symmetric matrix. However, symmetry is prioritised in this context to
guarantee real eigenvectors that create an orthogonal basis equivalent to the
complex exponential function used for the Fourier Transform (Zhang et al.,
2007).

Since a discrete Laplacian that meets all the properties of the continuous
operator cannot exist on general meshes (Vallet and Lévy, 2008), several dif-
ferent weighting schemes exist. The simplest discretisation of the operator is
the graph Laplacian, which is defined by an edge weight equal to 1 and with a
uniform mass distribution. It means that the matrix has -1 in off-diagonal cells
where two vertices are connected by an edge, and the sum of the edge weights
(thus the valence) on the diagonals. This definition of the graph Laplacian is
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very simple and easy to compute and is applicable to arbitrary mesh topologies,
but the drawback is that it solely depends on topology and not geometry. As
a result, Pinkall and Polthier (1993) derived the widely used geometric mesh
Laplacian with cotangent weights:

wij = cot(αij) + cot(βij) (3)

Where αij and βij are the angles at the two vertices opposite to the edge
connecting vertices vi and vj as illustrated in Figure 1. In order to compute an
opposite angle, the mesh must be triangulated. For an edge located at a bound-
ary, there is no opposite angle, and so αij or βij is set to zero, corresponding to
Neumann boundary conditions (Vallet and Lévy, 2008).

Figure 1: Angles associated with the cotangent weights

This definition lacks a proper mass weighting, which means that the weights
are dependent on the mesh density. To account for this, Vallet and Lévy (2008)
propose the following definition, which respects the symmetry criteria:

wij =
cot(αij) + cot(βij)√

Ai ·Aj

(4)

Here Ai is the area associated with vertex vi and Aj the area associated with
vertex vj . These areas can be calculated either using the barycell or voronoi
cell. The latter ensures that the area is independent of the mesh topology and
can be easily calculated from the hybrid approach of Meyer et al. (2003), so it
is the method adopted by the authors.

The eigenvalue problem in Equation 1 has many similarities with a finite
element modal analysis, which performs an eigen-decomposition of the stiffness
matrix of a structure in order to describe the vibrational modes (Cook, 1995).
However, more information, such as choice of material and degrees of freedom
(DOFs) is necessary to construct this stiffness matrix, which is unavailable in the
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context of free-form modelling at the conceptual design stage. The advantage of
the Laplacian operator is that it is solely related to geometry, but nevertheless it
can be thought of as a simplified stiffness matrix. This coherence gives a physical
interpretation of the eigenvectors as the vibrational modes of the mesh, and the
eigenvalues as the squared frequencies of vibration (Dong et al., 2006). This
physical analogy is important, because it enables the eigenvectors to be sorted
according to the magnitude of their eigenvalues. This means that the mode
which requires the least energy for the original shape to deform, geometrically
speaking the smoothest shape, can be ranked first. This is exactly what makes
this particular basis interesting compared to any other orthogonal basis.

In the context of free-form modelling, a single degree of freedom (DOF)
design approach has been chosen for simplicity and to avoid in-plane vibrational
modes. This means that the eigenvectors represent displacements along the
vertex normals. The first 8 eigenvectors resulting from an eigen-decomposition
of the graph Laplacian for a flat square mesh are shown in Figure 2 as modes
of vibration. Note that there exist as many modes as there are vertices in the
mesh.

The key concept behind modelling with harmonics is that any n-dimensional
vector (representing the normal displacements) can be constructed as a linear
combination of the computed eigenvector basis. The coefficient (referred to
as the weight) related to each eigenvector determines the proportion of that
harmonic in the final shape. A low parametrisation of the mesh is obtained
when a number of the higher order frequencies are excluded, in order to generate
smoother shapes. Therefore, the number of design variables is vastly reduced
from one value (displacement) per node, to one value (weight) per included
mode.

2.2. Boundaries

It is essential that control over the boundary of the mesh is available, in order
for this method to be useful in an architectural engineering context. Due to the
single degree of freedom design approach it is only possible to control whether
a vertex is fixed or not, hence no sliding boundary supports can be modelled.
To fix vertices, the Laplacian matrix must be manipulated in such a way that
this control is acquired. By setting the diagonal matrix elements related to
the fixed vertices, to a relatively large number, the connectivity information
is maintained (therefore preserving smoothness). The large ratio between the
artificial vertex stiffness and the other values in the matrix ensures that the
modes associated with a movement of those vertices appear last in the sorted
eigenvector list, since they would require most energy to deform. Studies by the
authors have shown that setting the diagonal matrix entry of fixed nodes to a
value around 100,000 gives a good compromise between maintaining smoothness
and suppressing movement for typical architectural problems. This means that
these modes still exist, but are excluded when only the first k modes are used,
where k is defined as:

k ≤ n− c (5)
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Figure 2: The first 8 mode shapes of a flat square mesh

Here n is the number of vertices and c is the number of imposed constraints.
The first 8 modes of the same flat square mesh as Figure 2, but with a fixed
perimeter, are shown in Figure 3, demonstrating the desired level of control over
surface boundaries.

2.3. Target approximation

It is generally difficult to manually identify the right modes, and assign each
the correct weight, to match a certain spatial intent, since designers are not
(yet!) familiar with this interactive mode of design exploration. Thus, given a
particular starting mesh, it is important to be able to back-calculate the right
modes, and their corresponding weights, in order to best represent a particular
target surface.
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Figure 3: The first 8 mode shapes of a flat square mesh with the perimeter fixed

By expressing the target surface as a vector consisting of n normal-distance
values in relation to the n vertices of an initial mesh, and projecting this vector
onto each of the eigenvectors using the dot product, it is possible to calculate
the weights corresponding to each mode (Rong et al., 2008).

X̃i = X · −→e i (6)

Where −→e i is the ith eigenvector, X is the constructed vector of normal
distance values and X̃i is the weight corresponding to the ith eigenvector. This
weight indicates the proportion of the specific mode that exists in the given
target surface.

If all the modes with their corresponding weights are included, a perfect
representation is obtained. However, it is desirable to find a suitable cut-off
limit (choice of k in Equation (5)) to reduce the number of design variables. By
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sorting the modes according to their corresponding weights (absolute values) in
descending order, such that the modes with the highest weights are listed first,
it is possible to extract useful information about the primary components of the
target surface. A pareto-front style plot of how the RMS value of the normal-
distances between the generated surface and the target surface reduces as the
number of included modes increases, can help to identify this trade-off and select
the number of modes to include. In this context, boundary conditions are useful
because they help to achieve a better approximation of the target surface with
fewer variables.

The method is demonstrated for a simple case where a planar starting geom-
etry (a circle with a radial grid) with a fixed boundary attempts to approximate
a cone-shaped target surface, as shown in Figure 4. The corresponding pareto-
front style plot (Figure 5) shows how the RMS error rapidly decreases by the
time the four most significant modes have been introduced. This suggests a
natural cut-off limit to achieve a good approximation with a reduced number of
variables. The plot furthermore shows that the best approximation is obtained
by including the 10 most significant modes. By this point the RMS error is suf-
ficently small and more modes do not improve the accuracy within 6 significant
digits.

Figure 4: Approximation result for a cone

It may seem counter-productive to go to all this effort to generate an approx-
imation of the target surface, when the target surface itself is already available.
However, since the harmonic modelling process outlined here is intended for use
at the early conceptual design stage, where experimentation is still in progress
and no final shape yet exists, this method can identify new inspirational forms
emanating from the initial target, which may otherwise have been overlooked.
In the case above for example, a designer might note the surprising aesthetic
qualities of the 1, 2 or 4-mode surfaces, and decide to explore them instead
of the original cone. Using the harmonic modelling system new shapes can be
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Figure 5: The RMS error value as a function of the number of included modes to approximate
a cone

explored quickly within a more restricted design space.
Similarly, it is not immediately obvious why one might want to approximate

the target surface with a different starting mesh, instead of just converting the
surface into a mesh and using that directly, maintaining its spatial configuration.
However, this approximation approach has the advantage of making shape anal-
ysis an integral part of the modelling process itself, where high-frequency ’noise’
can be removed to create smoother geometries. Decomposing the target into its
harmonic components in relation to a simple known geometry gives an enriched
geometrical understanding of the shape and, perhaps more importantly, could
also help simplify the construction process and/or eliminate structural stress
concentrations.

2.4. Application in practice

In practice, a mixed approach between arbitrary harmonic modelling and
target approximation is most likely to be of interest. This work flow is charac-
terised by the following steps:

1. Model a NURBS surface to represent the spatial intent.

2. Create a simple mesh of desirable density to be used as basis for the surface
approximation.

3. Impose boundary constraints (optional), choose the type of the Laplacian
matrix, compute the Eigen-decomposition, and back-calculate the, for ex-
ample 10, most significant modes and their weights to approximate the
target surface.
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4. Display these modes separately to achieve a better understanding of how
the surface is composed. Optionally remove higher frequency (noisy)
modes. Interactively adjust the weights to explore alternative design op-
tions related to the design space suggested by the original target surface.

5. Look for inspiration among the other less significant modes and extract
interesting new modes to introduce.

3. Buckling evaluation

Buckling is an instability problem of a structure in compression, which
leads to sudden failure before the ultimate compressive stress of the material
is reached. It is characterized by a significant change in displacement resulting
from a small load increment, which occurs at the so-called bifurcation point.
Since shell structures carry load mainly through compression and have minimal
capacity to resist out-of-plane deformation, they are often particularly vulner-
able to buckling failure, the sudden nature of which, often without warning,
makes it particularly dangerous.

Therefore, an additional benefit of using the design method outlined here is
that it is relatively easy to evaluate the buckling capacity of the shapes generated
by the harmonic approach. The buckling capacity is usually quantified by means
of a buckling load factor (BLF), which specifies the multiple of the applied load
that could be supported by the structure before buckling would occur. As it is
intended that this method guides shell design during the conceptual stage, it is
essential that the evaluation of buckling is an integrated part of the modelling
environment (in this case Grasshopper), to enable live feedback and help steer
design decisions towards solutions insusceptible to buckling.

There are many methods available to perform buckling analysis for shells,
the simplest of which would be to perform a linear analysis using finite element
software. This approach is based on the original undeformed configuration,
from which the stress state resulting from the applied load is computed, and
used to construct a geometric stiffness matrix. The purpose of this matrix is
to either increase the conventional stiffness matrix if the structure is in ten-
sion, or decrease it if the structure is in compression. The buckling problem
is subsequently solved as an Eigenvalue problem. Since the harmonic analysis
carried out in the parametrisation stage involves the calculation of Eigenvalues
and Eigenvectors, re-using this information to assess buckling would seem par-
ticularly efficient. This linear approach would not take the deformed shape into
account, which might alter the force distribution in a manner other than purely
scaling the initial stress state (Cook, 1995). As a consequence, linear buckling
analysis often overestimates the load-carrying capacity of shells, and provides
unconservative results. However, this limitation was evaluated by the authors
and was found to be acceptable for use in the conceptual design stage, where
only qualitative results are needed. Karamba3D (2018) would therefore have
been an ideal candidate to calculate the buckling load factor, since it is part
of the Grasshopper framework. Unfortunately, at the time this research was
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conducted, the Karamba3D consistently crashed when integrated within an au-
tomated optimisation work-flow with more than 5 design variables (weights to
control the shape). Another candidate for buckling analysis could be isogeomet-
ric analysis, for example based on the work of Leonetti et al. (2018). However, at
the time this research was conducted, there was no reliable isogeometric analysis
engine available within the Grasshopper framework.

In order to demonstrate how buckling considerations can be included as part
of the design exploration using this frameowrk, the authors therefore calculated
the buckling load factors by performing a non-linear analysis using a physics-
based approach. Non-linear analysis in this context is complicated, since the
solution has to incorporate information about its actual geometry, which is not
fully known until the solution is found. The procedure therefore obtains a solu-
tion iteratively, using multiple, linear load-steps, and traces the displacements
as a function of load. Various numerical techniques exist to ensure that the
displacement stays as close to the correct (in reality unknown) value as possible
at each step. The most suitable technique in this case is dynamic relaxation
(Cook, 1995) and Kangaroo2 is a physics-engine system for the Grasshopper
framework that employs a position-based dynamic relaxation approach (Piker,
2015) with excellent stability, remarkable convergence speed, and includes cus-
tomisation functionality via scripting. For these reasons it was chosen by the
authors to implement a buckling evaluation scheme based on dynamic relax-
ation, where integration with the developed harmonic modelling framework and
computational speed (possibly at the cost of accuracy) were the main priorities.

3.1. Live simulation

Kangaroo2 works by defining a number of goals, which specify the directions
and magnitudes of forces acting on the predefined geometry (e.g. a mesh). These
forces are summed at each vertex as a weighted average, and the resultant vector
dictates the vertex displacement. This is an iterative process, which continues
until the residual force at each vertex is zero (within a small tolerance).

The buckling simulation follows the work-flow as outlined in Figure 6. Each
edge in the original triangulated mesh is converted into a spring goal by spec-
ifying the start and end vertex it spans between, its rest length equal to its
current length, and a stiffness value. The latter is divided by the rest length to
mimic elastic material behavior, where stress is proportional to strain. Fixed
vertices are converted into anchor goals by assigning a very high stiffness value
of a zero-length spring to each of them, which connects the vertex with a target
particle of infinite mass. This corresponds to a pinned support (all translational
degrees of freedom fixed) in a finite element analysis. To simulate bending be-
haviour, each edge with two adjacent triangular faces is converted into a hinge
goal, which applies out-of-plane forces to the four vertices, in an attempt to
maintain the angle between the triangular faces at its initial value in the un-
deformed mesh. The authors have determined that a hinge strength of 1/10
of the average spring strength (stiffness divided by rest length) works well in
problems of this sort, to ensure that the structure mainly resists the load by
axial force rather than bending, as is usually desirable for material efficiency.
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This framework approximates the structural behaviour of a shell with uniform
thickness, but it is important to note that since the strengths of the goals are
defined with arbitrary values chosen to aid convergence, it is only their relative
strength that is of importance. This means that the absolute values of the cal-
culated buckling load factors are not relevant, and cannot be directly compared
to the results from a finite element program. However, the change of buckling
load factor in relation to the shell geometry, is indeed of relevance.

Figure 6: Non-linear buckling flow diagram. K.E. is an abbreviation for kinetic energy.
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The load case considered in this study is the self-weight of the structure,
calculated as a lumped force on each vertex, represented by a downward vertical
vector with a magnitude corresponding to the area of its associated voronoi cell.
An iterative loop is then initialised, where the original load case is multiplied
by a load factor and converted to force goals. The load factor increases at each
iteration, based on a start value and a step size. The structure starts to move
when the first load step is applied and converges when the spring and hinge
forces equilibrate the load. The displacements are calculated and evaluated
against a defined buckling criteria. The loop is repeated until buckling has been
identified and the buckling load factor is output.

Automatically identifying when buckling occurs is not straight forward. It
requires a formulation of criteria that can detect a sudden change in vertex
displacements during the load increments. A number of different criteria have
been considered by the authors for this purpose, including individual vertex
displacements, an RMS value, or a maximum displacement value. The first
measurement enables local buckling modes to be detected, but is computation-
ally slower and requires more data to be stored. The other two measures are
more global, and therefore might ignore local effects, but are faster to compute.
Since computational speed is a high priority for interactive design exploration,
and the main interest with regard to curvature-stiffening of shells is on a global
scale, the authors have used the maximum displacement in relation to the un-
deformed geometry as a proxy for buckling. During the load increments, the
load-displacement curve can be traced, and the buckling criteria has been de-
fined as a combination of the gradient of this curve and a limiting displacement
value (in case the structure exhibits a very ductile behaviour) as shown in Figure
7. More specifically, buckling is deemed to occur if the gradient corresponding
to the current equilibrium configuration is 0.5 times larger than the previous
configuration, or the maximum displacement is larger than 1.0m. Note that for
snap-through buckling behaviour, it is generally recommended to incrementally
prescribe the displacement and trace the corresponding reaction forces, in order
to capture the post-buckling behaviour (Cook, 1995). In that case, the buck-
ling criteria would simply be a zero gradient value. However, it is difficult to
know which vertex to use to prescribe the displacement when many different
shell shapes are investigated at the same time. Additionally, it would require
a modification of the dynamic relaxation approach, which calculates unknown
displacements from known loads, and not the other way around. For these two
reasons, this strategy has not been adopted here.

A buckling analysis of a half-sphere shell with 20m diameter is shown in
Figure 8. It shows promising results in terms of computational speed (only 2.1
seconds for this example using a mesh with 353 nodes on a computer with the
following specification: Intel(R) Core(TM) i7-455U CPU @ 2.10 GHz, 8.00 GB
RAM, 211 GB SSD hard drive) and the shape just before buckling is consistent
with structural intuition. Further validation and a comparison with FE results
obtained using Autodesk Robot Structural Analysis have also been performed,
but such detail is outside the scope of this paper and interested readers are
pointed to the work of Brandt-Olsen (2015).

13



Figure 7: Combined gradient (left) and displacement (right) buckling criteria

Figure 8: Buckling simulation of a half sphere

4. Case study

The harmonic modelling technique described above, combined with the live
buckling evaluation, has been applied to a case study of the British Museum
Great Court Roof to demonstrate its potential in an architectural and structural
engineering context.

The aim of this case study was threefold: Firstly, to decompose the surface
into its harmonic components to gain a better understanding of its underlying
shape. Secondly, to investigate the trade-off between the number of included
modes and the accuracy of the surface approximation, whilst simultaneously
evaluating the effect of each mode with regard to the buckling capacity. Finally,
to explore different variations of the shape by modifying the modal weights,
based on a combination of considerations involving pure aesthetics and a buck-
ling optimisation.
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4.1. Shape analysis

A mesh (1806 vertices and 3372 faces), similar to the one used for the roof of
the British Museum Great Court before it was relaxed over the mathematically
defined surface (Williams and Shepherd, 2010), was used as the basis for the
harmonic modelling approach (see bottom of Figure 9). A NURBS patch, built
through the vertices of the British Museum Roof and intentionally extended
beyond the perimeter, functioned as the target surface, as shown in the top of
Figure 9.

Figure 9: Surface patch approximation and initial mesh

From a construction of the graph Laplacian, followed by an Eigen-decomposition,
the ten most significant modes, and their weights to approximate the NURBS
surface patch, were back-calculated, as visualised in Figure 10. The approxi-
mation result was smooth, had an RMS error value of 0.14m and a maximum
deviation from the target surface in the normal direction of 0.72m, which was
promising when compared to the size of the structure (72m x 97m) and the fact
that only ten modes were used.

4.2. Comparison with subdivision surface modelling

To demonstrate the advantages of this harmonic form-finding approach over
more traditional methods of surface modelling, a subdivision surface was used
to recreate the British Museum geometry. Using the same plan dimensions
(as shown in the bottom of Figure 9), a control polygon was constructed as
shown in the left of Figure 11. By fixing all vertices that lie on a boundary, only
allowing the other vertices to move vertically, and by taking advantage of the one
plane of symmetry, the number of parameters required to define the subdivision
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Figure 10: The ten most significant harmonic modes of the British Museum. The circles
at the top left of each icon show the mode number (with one being the mode with lowest
Eigenvalue). The red numbers in the centre of each icon give the weighting attributed to that
mode.

surface was reduced to twelve. This allowed for a fair comparison against the
harmonic modelling carried out in the previous section, which required only ten
parameters (modal weightings).

The ”Galapagos” genetic algorithm component built-in to Grasshopper was
used to try to match the subdivision surface to the initial target NURBS patch.
The vertical height above the reference plane of each of the twelve control points
was encoded as the genome. The objective function was taken as the RMS
distance to the target surface of the Level #2 subdivided vertices (shown on
the right of Figure 11). The genetic algorithm used a population size of 50
individuals per generation with 5% elitism. After 50 minutes of computation,
55 generations had been evaluated and the solution converged to that shown in
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Figure 11: Subdivision surface comparison, showing initial control polygon with blue circles
identifying movable vertices (left), and the resulting matched surface (right) with control
polygon in red.

Figure 11, which has an RMS error value of 0.27m and a maximum deviation of
1.86m. The near-instantaneous target-fitting using the harmonic form-finding
method described in the previous section had comparable RMS and maximum
errors of 0.14m and 0.72m respectively, with negligible computational overhead.
Thus the harmonic approach was able to approximate the target surface more
quickly and more accurately, despite having fewer degrees of freedom.

4.3. Shape refinements

Since the structural performance of a shell can be noticeably affected by only
small changes to the geometry, it is possible to refine the shape with regard to
its buckling capacity by studying the effect of each mode. Some modes may only
be of aesthetic character, whilst others improve the buckling capacity. Thus, a
plot of the buckling load factor (BLF) as a function of the number of modes
included in the shell definition is shown in Figure 12. Note that pinned supports
were used along the boundary for the buckling analysis, which differs from the
design constraints of the British Museum itself.

It can be seen that, with the modes sorted in order of decreasing weight, if
the first four modes are used to define the shell geometry, the BLF is around
3.75, but this increases to 5.00 when the first eight modes are included. Figure
12 also shows that the addition of the third most significant mode (Mode #2 as
identified in the top middle of Figure 10) had a negative effect on the buckling
capacity. This observation seems sensible, since the failure mode was a collapse
of the dome-like part with the longest span, and Mode #2 decreased the height
in this zone. By omitting Mode #2 from the resulting shape (changing its weight
from -0.087 to zero), a buckling load factor of 5.85 was obtained, while the RMS
error value and the maximum deviation from the target surface were 0.32m and
0.92m respectively. These values have to be compared with a buckling load
factor of 5.50, RMS error of 0.14m and maximum deviation of 0.72m when all
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ten modes were included (as per Figure 12). So whilst the buckling load factor
has been increased, the deviation from the target surface has also increased. This
therefore suggests a design compromise, but one which can easily be resolved by
visually inspecting the proposed new surface as seen in Figure 13 and comparing
the height values against architectural requirements.

Figure 12: Buckling capacity when ’n’ lowest Eigenvalue modes are included

Figure 13: Resulting shape from the first 10 modes with (top) and without (bottom) Mode
#3

The decomposition of the target surface into its harmonic components has
therefore helped to understand the influence of each mode with regard to struc-
tural performance. By suppressing a mode detrimental to the buckling perfor-
mance, an improved shape with a more robust structural load-carrying capacity
has been found with little visible change in shape.

4.4. Shape variations
With the ten short-listed modal components for the British Museum Great

Court Roof, it was straight-forward to explore a variety of other design pos-
sibilities emanating from the original shape by modifying the weights of these
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modes and introducing new interesting modes as well. Figure 14 shows two al-
ternative Great Court Roofs generated using this method, chosen based purely
on aesthetics. This demonstrates that this is a useful approach to inspire and
drive exploration at the conceptual design stage.

Figure 14: Shape variations based on aesthetics

Automatically adjusting the weights of the mode shapes based on an evalu-
ation of the buckling capacity as part of an optimisation process has also been
explored. The efficiency of this work-flow was supported by the low-dimensional
parametrisation of the geometry of the mesh and the computational speed of the
non-linear Kangaroo2 buckling analysis. Thus, the optimisation variables be-
came the weights of the ten most significant modes, and the objective function
was to maximise the buckling load factor. The built-in “Galapagos” compo-
nent in Grasshopper was selected for this purpose, using a simulated annealing
search strategy (Carr, 2018). In order to compare the results objectively, it was
essential to ensure that the generated shapes shared the same increase in area
from the target surface, such that the best shape reflected geometric stiffness,
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rather than stiffness gained by using more material.
Instead of discarding every shell that did not meet the specific area require-

ment (the majority of the generated shapes and therefore not a very efficient
strategy), an algorithm was developed to adjust the weights such that each so-
lution was a potential candidate. The algorithm calculated the area of a newly
generated mesh and compared it with the area of a target mesh. Based on the
difference, it determined whether the weights had to be decreased or increased,
in order to be within a specified percentage of the target area. The weights
were subsequently changed in small steps, defined as a factor of the difference
between the weights of the target and the weights of the newly generated mesh
(using linear interpolation). The area of the adjusted mesh was evaluated after
each step, and a bisection strategy was implemented to adjust the size of the
last step, which would otherwise cause the area requirement to be exceeded.

The optimal weights are shown in Table 1 and the resulting roof geometry
is shown in Figure 15, where it is evident that material has been distributed
towards the zones with larger spans, and that the curvature has been amplified.
This shell has the same area as the original roof geometry, but with a buckling
load factor of 8.55. In comparison, the as-built British Museum Roof has a
BLF of 5.50 (referring to Figure 12 with ten modes), which means that the
BLF of the optimized geometry is 1.6 times bigger. For comparison, when the
subdivision surface model from section 4.2 was re-run to maximise buckling load
factor instead of minimising distance to the target surface, a BLF of 5.78 was
achieved, better than the as-built surface but much lower than that achieved
using the harmonic modelling.

Table 1: Modal Weightings

Mode #
Weight

Target Surface Buckling Optimised
1 -1.000 -0.691
9 -0.091 -0.190
2 -0.087 0.088
42 -0.033 -0.123
38 -0.032 -0.157
27 0.030 0.022
32 0.024 0.081
50 0.018 0.098
16 -0.016 0.070

5. Conclusions

This paper has presented a free-form modelling strategy based on harmonics,
with a direct link to Fourier analysis, to achieve a low-dimensional parametri-
sation of the design space. A number of initiatives, including a single degree of
freedom design approach, control over boundary constraints, visualisation aids
and guidance towards specific spatial configurations have also been introduced
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Figure 15: Alternative British Museum Roof, based on an optimisation work flow

to adapt the method to an architectural and civil engineering design context.
The approach models real, physical shell structures in a specific parametric
design workflow commonly used in building design. In this context, the reduc-
tion of the design space to a few parameters is particularly important. WHilst
other methods are available to achieve this, using shell harmonics as the basis
for dimension reduction brings additional benefits. By removing high frequency
“noise”, the physical construction of the shell structure can be facilitated though
the repetition and rationalisation of building elements. And by assessing the
contribution of each mode to the structural performance of the resulting geom-
etry, buckling-inducing low frequency modes can also be removed. This synergy
between using Eigenmodes as the basis for design exploration/optimisation, and
also for structural performance analysis/optimisation, is particularly elegant.
The work reported here is encapsulated within a flexible, free-form modelling
tool, the Grasshopper implementation of which has been open-sourced by the
authors, and can be downloaded free from Github (Brandt-Olsen, 2018a).

A bespoke script for Kangaroo2 to simulate shell buckling has also been de-
veloped as a means of evaluating the buckling response of the generated shapes.
The inherent doubly-curved nature of these shapes has been proven to be a
useful means of stiffening the shells against buckling failure. A case study of the
British Museum Great Court Roof demonstrated this potential, and it was pos-
sible to increase the buckling capacity by redistributing material to provide more
curvature (for the same surface area). Thus, harmonic form-finding can inform
the design of shells at the conceptual stage, and encourages an interaction be-
tween the architect and the structural engineer. The authors have open-sourced
the non-linear buckling Grasshopper component used for this study, and it can
also be downloaded free from Github (Brandt-Olsen, 2018b).
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5.1. Discussion

One of the main disadvantages of modelling with harmonics is the lack of
tangible spatial control. The numerical parameters are more abstract to work
with and it is generally hard to predict the result of adding multiple mode
shapes together. However, this is mitigated by the ability to analyse the shape
during modelling. This approach is therefore unlikely to replace the two most
common free-form modelling strategies (NURBS and Subdivision Surfaces) di-
rectly. However, it certainly has great potential to broaden design efficiency
when used alongside them in combination.

It is also essential to note that the harmonic modelling approach and the
buckling evaluation can be seen as separate parts of a new design work flow.
Any other modelling strategy or structural evaluation can replace one of the
parts. However, using harmonic shapes and curvature as means of stiffening
shells nicely integrates the two approaches.

5.2. Future work

The advantages of the area-weighted cotangent Laplacian was not as signifi-
cant as expected in the context of free-form modelling, and it sometimes causes
undesirable non-smooth transitions near fixed boundaries. The authors aim to
investigate this issue further by considering other linear operators (e.g. the
Biharmonic operator), to see whether any behavioural differences occur. The
Biharmonic operator is especially interesting, since it mimics bending by aver-
aging curvature, and thus takes the 2-ring vertex neighbours into account. This
would allow control of tangency at the boundaries, although the single degree
of freedom approach would probably need to be sacrificed as a result.

The buckling simulation using Kangaroo2 also needs further calibration
against real structural properties in order to determine a more realistic ratio
between membrane and bending action. The membrane action would ideally
also be modelled using constant-strain triangle elements to more accurately sim-
ulate the in-plane stiffness, rather than converting the edges into springs. This
calibrated modelling with Kangaroo2 has shown much promise (Brandt-Olsen,
2018b).
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