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Abstract

Forests worldwide are overstocked with small-diameter trees, putting them
at increased risk of disease, insect attack, and destructive high-intensity wild-
fires. This overstocking is caused primarily by the low market value of these
small-diameter trees, which are generally unsuitable for sawn timber production
and yield low prices when sold for biomass fuel, paper, or fibre-based engineered
timber products. Considerable research in recent decades has demonstrated the
potential for these small-diameter trees to be used in minimally processed round
segments as structural elements in buildings, bridges, towers, and other infras-
tructure. Recent structures have also demonstrated the use of trees with major
curvature and branching, which are also of low market value, in their round
form as primary structural elements. Such “whole timber” construction serves
as a low-cost, low-impact building system while providing revenue to forest
owners to conduct harvests of low-value trees as required for sustainable forest
management. This paper reviews developments in whole timber construction,
presenting new non-destructive evaluation techniques, digital survey, design and
fabrication methods, new processing technologies, and a diverse range of novel
connection types and structural systems. It is shown that the key materials
characterisation, processing, and design challenges for whole timber construc-
tion have been largely addressed, and that whole timber has the potential to
be an important complement to other timber products in construction globally

in the coming decades. It is recommended that future work focus on exploit-
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ing new digital technologies and scaling whole timber structural applications
through increased prefabrication.

Keywords: sustainable forestry, thinnings, round timber, whole timber,
timber structures, non-destructive evaluation, sustainable construction, timber

connections, structural design, digital design

1. Introduction

1.1. Historical Applications

Minimally processed round segments of trees, or “whole timber”, have been
used as load-bearing elements in human structures since at least as early as the
Neolithic (Coudart, 2013). Numerous examples of architecture by pre-industrial
societies worldwide show the variety and ingenuity with which cultures have
taken advantage of the inherent structural characteristics of timber in its whole
form to create large-scale buildings, bridges, and fortifications. Particularly no-
table examples are the actively-bent longhouse frames of the Iroquois (Nabokov
et al., 1989), the gridshell-like Fale of pre-colonial Samoa and Tonga (Barnes
and Green, 2008), the log-type churches of pre-industrial Russia (Brumfield,
1997), and the “woven timber arch” bridges of Song-dynasty China (Figures la,
1b, and 16d) (Zhou et al., 2018).

Whole timber was also used on a massive scale during industrialisation in
forested regions worldwide, being incorporated into bridges and various tem-
porary structures (Figure 2) in expanding road and railway networks (Keefer,
1888). The temporary logging “trestle” bridges of the Pacific Northwest of the
United States are a particularly striking example. Engineers in these areas used
abundantly available timber in its whole form as combined foundation piles and
above-ground load-bearing elements, rapidly erecting large bridges and viaducts
at low cost. Figure 2 shows the Cedar River logging trestle bridge, built in 1925
by the Pacific States Railway Company. The bridge used 30 metre whole tim-
bers as primary structural elements, and was among the tallest trestle bridges
in the world at the time, at 62 metres in height (Slauson, 1971).

Later, whole timber was used as cost-effective utility poles for rural elec-
trification and telecommunications (Wolfe, 1999) — a practice which continues

today. Whole timber has also been used throughout history and to the present
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Figure 1: 1la: The “Rainbow Bridge” in Bianjing, China, shown depicted in the Song Dynasty
painting “Along the River During the Qingming Festival” by Zhang Zeduan (1085 — 1145
CE), used a “woven timber arch” of whole timber as its primary structure (Zhou et al., 2018).
Public domain image (Zeduan, 1145). 1b: The Xianju Bridge is one of an estimated 100
whole timber woven timber arch bridges remaining in China (Zhou et al., 2018). Photograph
by Azrael Green (CC BY-SA 3.0) (Green, 2011).
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Figure 2: The Cedar River logging railroad trestle bridge, built in 1925. Photograph by Darius
Kinsey (Kinsey, 1925). Courtesy of the Maple Valley Historical Society.

day as low-cost structural foundation piles. In industrialised regions, the de-
velopment of inexpensive timber fasteners and the industrialisation of timber
processing and distribution has led to the almost exclusive use of sawn timber

and engineered timber products in above-ground structures today.

1.2. Contemporary Applications

Starting in the 1960’s and continuing to the present, governments in forested
regions around the world have been increasingly faced with a major forestry
challenge: an overabundance of small-diameter trees (100-250 millimetres in
diameter), putting forests at increased risk of destructive high-intensity wild-
fires, disease, and insect attack, while suppressing the growth of trees intended
for commercial harvests (Wolfe and Mosely, 2000, Ferndndez-Golfin et al., 2007,
Scott et al., 2011, Lim et al., 2013, Bayatkashkoli and Hemmati, 2015, Fuchigami
et al., 2016, Erber et al., 2016, Underhill, 2017, Vega et al., 2017, Hiroshima
et al., 2018).

This overstocking is caused largely by insufficient prescribed low-intensity
burning in fire-prone forests, and insufficient early harvests (“thinnings”) in
planted forests. In plantation forestry, trees are typically planted in tight spac-
ings to promote straightness and high growth ring density, generally with the
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requirement that they be thinned one or two times before final harvest. Thin-
ning is expensive however, and the value of small-diameter trees is low in most
regions, meaning that forest managers often cannot cover the costs of the thin-
nings necessary to ensure the health and profitability of their forests through to
the final harvest.

Small-diameter trees typically have large fractions of structurally inferior ju-
venile wood and knots and are often too small in cross-section to yield enough
structural-grade sawn timber to justify their harvest (Erikson et al., 2000, Low-
ell and Green, 2001, Hernandez et al., 2005). Industries which process small-
diameter timber into fibre-based engineered wood products, pulp for paper pro-
duction, or biomass products for energy and heating have high processing costs
and suffer from global commodity market price fluctuations, resulting in low
and unreliable revenues for forest owners selling to these markets (Wiedenbeck
et al., 2016, Ranta et al., 2017). Structural glue-laminated beams and panels
(cross-laminated timber) using boards from small-diameter trees are a promising
application (Hunt and Winandy, 2003, Hernandez et al., 2005, Herawati et al.,
2010, Komariah et al., 2015, Liao et al., 2017), but may also be complicated
by low yields of lamination-grade boards from small-diameter trees with large
fractions of juvenile wood (Hernandez et al., 2005).

A number of studies worldwide have identified the opportunity for small-
diameter timbers to be used as structural elements in their whole, round form,
requiring minimal processing, and offering high market value to forest owners
seeking to conduct thinnings (Burton et al., 1998, Ranta-Maunus, 1999, Wolfe,
2000, LeVan-Green and Livingston, 2001, Brito, 2010). The strength-reducing
effects of knots are less severe for small-diameter timber used in its whole form,
because the strength of structural timber is largely governed by local fibre dis-
continuities around knots caused by sawing (Wolfe and Murphy, 2005). Whole
timbers also have significantly higher cross-sectional area and section modulus
than the largest sawn elements which can be produced from them, as determined
by an inscribed rectangle at the smaller end of a tapered whole timber. The life-
cycle impact of whole timber construction has also been shown to be lower than
conventional sawn timber construction at a residential scale, provided whole

timber is used close to its source (Cooke, 2011).
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A number of whole timber structural product suppliers and fabricators have
been established in recent decades (WholeTrees, n.d.d, TTT, n.d., Loggo, n.d.,
FEEL, n.d.), demonstrating the market potential for increased use of whole
timber in high-value structural applications. These businesses, besides engaging
in design and fabrication of bespoke whole timber structures, have developed
and marketed standardised prefabricated whole timber construction elements
such as panelised floor and wall plates (Figures 160,16p,17a), beams (Figures
18 and 16t) and roof truss elements (Figures 16t,161), space trusses (Figures 3a
and 3b), and foundation systems at relatively high production volumes, with
the potential for significant scaling in the future.

A number of researchers have also developed low-cost structural applications
for whole timber in rural and developing regions (Logsdon, 1982, Jayanetti,
2000, Brito, 2010, Brito and Junior, 2012, Brose, 2018). These designs take
advantage of the minimal processing, skilled labour, and expensive equipment
required to build using whole timber in its most basic form. Finally, a key
thread of whole timber research has explored the use of curved and forked
trees, which are also of low market value, in high-value architecturally expressive
structures with the help of new digital survey, design, and fabrication tools and
re-imagined traditional carpentry methods (Sahu and Wang, 2015, Mollica and
Self, 2016, Devadass et al., 2016, Self and Vercruysse, 2017, Von Buelow et al.,
2018, WholeTrees, n.d.d, Marshall et al., 2018).

1.3. Future Applications

As timber construction, through its low life-cycle impact and carbon seques-
tration benefits, is increasingly seen as the most sustainable building system in
many regions (Tettey et al., 2019), whole timber is likely to occupy a number of
important niches in the industry depending on local resource availability, pro-
cessing capability, and construction needs. Because of the potentially higher
emissions associated with its transport due to low packing efficiency and of-
ten high moisture contents when used in construction (Mayhew, 2018), whole
timber is likely to be most appropriate where used locally. Figure 4 shows the
density of forest cover globally, and is a general indication of the regions where
timber, and in particular whole timber, is likely to be an appropriate building

material.
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Figure 3: 3a: The roof truss of the Muroto Indoor Stadium (built in 2017 in Muroto, Japan)
is the largest known whole timber spanning structure today, covering a floor area of 50 by 50
metres and doubling as an earthquake-resistant disaster relief shelter. 3b: View of structural
connections in Muroto Indoor Stadium roof truss during construction. Photographs courtesy
of Professor Katsuhiko Imai.
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Figure 4: Global forest cover density in 2010. Adapted with permission of the United Nations
Food and Agriculture Organisation (FAO, 2012).

As climate change further intensifies the frequency and severity of major
wildfires (Jolly et al., 2015, Seidl et al., 2017), a key application of whole timber
construction in future may be in and near communities at risk of forest fire.
Whole timber construction businesses in these areas could provide high-value
markets for small-diameter timber from fuel reduction thinnings near such com-
munities, where such fuel treatments are most effective at reducing risk to life
and property from wildfires (Schoennagel et al., 2017). The building systems
sold by these businesses could provide low-cost, low-impact construction solu-
tions needed for disaster relief shelter, relocation, and reconstruction efforts as
part of a regional adaptive wildfire resilience strategy.

Many regions, particularly in the Global South, face significant affordable
housing and infrastructure shortages (Bredenoord et al., 2014), which must
be addressed using construction technologies with low associated greenhouse
gas emissions if global emissions are to be kept within safe levels. Subject
to appropriate mechanical characterisation, the use of low-value timber from
abundant industrial tree plantations in these areas as structural elements in
minimally processed whole form could serve as part of a low-cost, low-impact
building solution for affordable housing and infrastructure in these developing
regions.

Finally, new digital technologies for survey, design, and fabrication of struc-

tures using trees with significant curvature and branching may create potential
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Figure 5: Classification of whole timber by degree and type of processing.

for new high-value construction markets for such low-value trees in developed
regions, contributing to a more balanced consumption of forest resources in

these areas.

1.4. Review Aims and Scope

In the past several decades, a significant body of research on whole timber
construction has developed worldwide, and numerous innovative and celebrated
structures have been built using whole timber (Figures 3a,7a,7b,17b,19a,19b,20,21,
Table 5). Major efforts by the United States Forest Products Lab and a Eu-
ropean project around the turn of the millennium produced reviews of the lit-
erature of whole timber materials testing, design, and construction at the time
(Ranta-Maunus, 1999, Jayanetti, 2000, Wolfe, 2000, Barnard, 2001, Stern, 2001,
LeVan-Green and Livingston, 2001). There has, however, been no globally com-
prehensive review of whole timber construction since these publications. This
has resulted in unrealised potential as innovations in material survey and char-
acterisation, processing technologies, connection design, and structural systems
since this time have not been applied in other locations where they could have
positive social and environmental impact. This paper reviews the literature and
built examples of whole timber construction over the past two decades, with
the aim of facilitating better cross-fertilisation of ideas globally in the field and
accelerating future research and design.

In the past, literature in the field has typically referred to unsawn timber
as “round timber”, regardless of whether timbers had been used in its original
irregular and tapered form, mechanically rounded to a circular section, or under-
gone further mechanical processing. In this paper, for clarity, the term “whole
timber” is introduced as an overarching definition to describe timbers which

are left substantially whole, but may undergo various degrees of additional pro-
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cessing. This processing may include mechanical rounding, flat-siding, hollow
coring, profiling, or no mechanical processing other than debarking, in which
case timbers are considered to be “unregularised” (Figure 5). Where relevant,
the degree of processing, as defined in Figure 5, is mentioned explicitly in the

text.

2. Properties of Whole Timber

Whole timber (in particular, small-diameter, forked, and curved timber) has
a number of physical characteristics which distinguish it from sawn timber prod-
ucts, and which must be considered for construction purposes. The following

sections discuss these properties.

2.1. Bending Strength of Whole Timber

Various studies have demonstrated that unsawn timbers have higher and less
variable bending strengths than sawn timbers (Sandoz, 1991, Wolfe, 2000). This
increased strength can be attributed to two factors: unbroken fibre continuity
around knots in unsawn timbers, and a favourable shape factor for circular
timber sections in bending compared to rectangular ones.

Local fibre discontinuities around knots in sawn sections are the main fac-
tor contributing to bending failure in sawn timber. In unsawn timber, fibres
travel around knots, resulting in a semi-ductile failure phase and higher ulti-
mate strength in bending (Sandoz, 1991).

In an investigation of the bending strength of non-standard timber cross-
sections, Newlin and Trayer (1924) found that small clear timber samples with
circular cross-sections exhibited average bending strengths approximately 1.15
times that of square sections of equivalent area. This increased strength can
be attributed to the effect of section geometry on the elastic-plastic failure
behaviour of timber cross-sections in bending (Brunner, 2000).

In practice, whole timbers are often partially sawn to have one or more flat
faces (flat-sided), notched, or mechanically rounded to constant diameters in
order to simplify connection details and fabrication procedures, or due to aes-
thetic preference. Flat-siding breaks fibre continuity in the most highly stressed

regions of the timber cross-section, resulting in reduced bending strengths, but

10
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apparently without significant effect on compression strengths or longitudinal
modulus of elasticity (Villasante et al., 2016). ASTM D3957, a standard in-
tended for grading of whole timber for log home construction, provides guid-
ance on the maximum depth of such flat-siding, limiting the removals to 30%
of the radius of the whole timber), and recommends that the favourable form
effect ascribed to unsawn whole timbers not be applied to flat-sided whole tim-
bers (ASTM, 2015). Notching timbers (flat-siding timbers for a portion of their
length) also has certain strength reducing effects, which may not be accurately
accounted for in conventional design standards for rectangular sections. Dewey
et al. (2018) describes approaches for accounting for strength reductions due to
notches in whole timber sections. See Section 5.3 for a discussion of the effects
of mechanical rounding.

The improved bending strength of whole timber is often cited as a reason for
using it in structures (Wolfe and Mosely, 2000). While whole timbers likely have
higher bending strengths than similarly-sized sawn timber elements, it is impor-
tant to point out that member stiffness and connection strengths (not member
bending strengths) more typically govern the design of timber structures.

It should also be noted that the presence of juvenile wood in whole timber
(Figure 6) affects the failure mode in bending. Green et al. (2008) found that
timbers of small diameters (3 - 7 inches (75-175 millimetres)) and large propor-
tions of juvenile wood failed in bending in a “brash” (brittle) manner, raising
some concerns about their appropriateness for use in bending applications with

minimal load-sharing.

2.2. Juvenile Wood in Whole-Timber

Juvenile wood, also known as “corewood” or “crownwood”, is the wood
produced during the first 5-20 years of growth of a tree in its active crown (see
Figure 6) (Moore and Cown, 2017, Kretschmann, 2010). Juvenile wood is known
to have undesirable mechanical properties for use as structural timber, with
roughly 10% to 50% lower bending strength, tensile strength, and modulus of
elasticity than mature wood (Kretschmann, 2010). Juvenile wood also exhibits
much higher longitudinal shrinkage when dried than mature wood (as much as
10 times higher) (Kretschmann, 2010), which may lead to increased dimensional

instability, such as twisting, during drying (Boren and Barnard, 2000). Juvenile

11
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Figure 6: Occurence of heartwood, sapwood, juvenile wood and mature wood in trees. Longi-
tudinal shrinkage cracks related to drying are also shown. Adapted in part from Kretschmann
and Cramer (2007). Courtesy of the United States Department of Agriculture Forest Service,
Forest Products Laboratory.

wood is also likely to be less naturally resistant to decay than mature wood
(Latorraca et al., 2011, Schimleck et al., 2018), and to contain more knots (Wolfe
and Murphy, 2005), which further reduce its strength.

The emphasis on the use of young, small-diameter trees in whole-timber con-
struction means that whole timber used in construction is likely to have high
proportions of juvenile wood. Selection and grading standards for structural
whole timber often exclude timbers of small diameters, or specify minimum
growth ring densities to limit the amount of juvenile wood in structural tim-
bers (ASTM, 2017d,b, AS, 2010). This means that the design values provided
by these standards are not safely applicable to many small-diameter timbers,
and designers must conduct their own destructive testing to characterise the
properties of the whole timber considered for construction (See Section 4.1 for
a discussion of destructive testing of whole timber).

It is also important to point out that, although standard timber design guid-

ance typically includes a favourable size effect strength adjustment for timbers

12
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of smaller cross-sections based on the Weibull “weakest link” theory of brittle
material failure, this adjustment cannot safely be applied to timbers with large
fractions of juvenile wood. Larson et al. (2004) confirmed the existence of a
size effect for whole timbers, but noted that this effect was counteracted by the

presence of juvenile wood in timbers with large proportions of it.

2.3. Mechanical Properties of Curved Timber

Trees may develop significant curvature as a reaction to available light, ob-
stacles, competitors, or due to the effects of wind or snow loads (Groover, 2016).
Trees with major curvature have poor market value, and may have unfavourable
mechanical properties due to their growing conditions. When any limb of a
tree grows at an angle of greater than one or two degrees beyond vertical,
it is likely to develop what is known as “reaction wood” (Wiedenhoeft, 2010,
Groover, 2016). Reaction wood helps trees respond to asymmetrical gravity
loads experienced during growth (Groover, 2016). Reaction wood may also be
formed in vertically-growing trees subjected to increased lateral wind loads ex-
perienced, for example, after a thinning (Cown, 1974). In hardwoods, reaction
wood manifests itself as “tension wood” and is largely found in the portion of
the cross-section experiencing tension. In softwoods, reaction wood takes the
form of “compression wood” and is found in the portion of a limb experiencing
compression (Wiedenhoeft, 2010). Reaction wood is usually denser than nor-
mal wood, and may be stronger. It however, exhibits much higher longitudinal
shrinkage when dried to below fibre saturation point than normal wood (up to 5
times greater in tension wood and up to 10 times greater in compression wood)
(Glass and Zelinka, 2010). This can result in significant warping and checking
(longitudinal cracking) upon drying (Wiedenhoeft, 2010).

There is little literature concerning the mechanical properties of whole tim-
bers with significant curvature (and therefore, containing large fractions of reac-
tion wood). Designers seeking to use curved timbers in construction should be
aware of the properties of reaction wood, and exercise good engineering judge-
ment as to the appropriateness of the selected timbers for the chosen structural
application. It should be pointed out that due to fibre continuity, the structural
performance and dimensional stability of curved timbers used whole is likely

better than if those timbers were sawn.

13
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2.4. Mechanical Properties of Forked Timber

The mechanical properties of timbers with forks are not well understood. A
number of researchers have studied the anatomical features of branch junctions
(Shigo, 1985, Slater and Ennos, 2013, Slater et al., 2014, Slater and Ennos,
2015, Ozden et al., 2017), and the mechanical behaviour of junctions (Mattheck
and Vorberg, 1991, Smiley, 2003, Gilman, 2003, Dahle et al., 2006, Kane, 2007,
Kane et al., 2008, Ciftci et al., 2014, Slater and Ennos, 2015, Buckley et al., 2015,
Liang, 2015). At the time of writing, little actionable guidance for determination
of design capacities of junctions has resulted from these studies. Several studies
have suggested that the best predictor of the strength of junctions subjected
to spreading was the ratio of the diameters between branches (Gilman, 2003,
Farrell, 2003, Kane et al., 2008). However, even this was a relatively poor pre-
dictor (r ~ 0.55) and not necessarily applicable to species outside of the studies
conducted. Some authors have suggested that the strength of junctions with
codominant branches (branches of similar diameter and no clearly subordinate
branch) is lower than equivalent junctions with clearly subordinate branches
(Smiley, 2003, Gilman, 2003, Kane et al., 2008). Kane et al. (2008) cautions
that codominant junctions should be considered to have capacities of approxi-
mately 70% of non-codominant ones (at least for the species and diameter ranges
considered). Designers should proceed with caution when specifying forked tim-
bers in their structures and exercise good engineering judgement based on the
available literature concerning the species and junction typologies under consid-
eration. Figures 7a and 7b show an example of forked timbers successfully used
as primary structural elements in a roof truss (Mollica and Self, 2016, Devadass

et al., 2016).

3. Geometric Survey

An accurate geometric survey of whole timber, whether of standing trees
before harvest, or of felled timber, is a critical step in whole timber construction,
particularly if the timbers used will not be processed to uniform diameters
(see Section 5.3 for a discussion of mechanical rounding). Accurate geometric

measurements are required for back-calculation of mechanical properties during

14
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Figure 7: Ta: The Wood Chip Barn uses whole beech and larch timbers from the surrounding
forest as primary structural elements. (Mollica and Self, 2016, Devadass et al., 2016). T7b:
Forked beech timbers are used as part of a Vierendeel frame in the Wood Chip Barn (Mollica
and Self, 2016, Devadass et al., 2016). Courtesy of the Architectural Association School of
Architecture.
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destructive and non-destructive testing, for structural design, and for fabrication

purposes.

3.1. Survey Methods

Traditionally, geometric information about whole timber for construction
has been collected using conventional manual measurement tools (tape measure,
tree callipers). In these cases basic measures are recorded: usually length, butt
and tip diameter, sweep and crook (Jayanetti, 2000, ASTM, 2017b,d). Taper
is typically assumed to be linear between end-diameter measurements (Wolfe
and Mosely, 2000). In the past two decades, new 3D scanning tools such as
photogrammetry and LIDAR, combined with new CAD approaches and digital
fabrication tools have made it increasingly possible for designers to consider
timber with highly irregular geometries (forks, major curvature) for construction
(see Figures 7a and 7b) (Stanton, 2010, Monier et al., 2013, Sahu and Wang,
2015, Mollica and Self, 2016, Devadass et al., 2016, WholeTrees, n.d.a, Self and
Vercruysse, 2017, Von Buelow et al., 2018, Marshall et al., 2018, Allner and
Kroehnert, 2018).

8.2. Scan Data Post-Processing and Registration

A key challenge with using 3D scanning technologies for whole timber con-
struction is the rationalisation of surface representations (Figure 8a) into forms
which are more convenient for structural design, analysis, and fabrication. Miller
(2013), Devadass et al. (2016), and Allner and Kroehnert (2018) used a “skele-
ton” representation (Figure 8b) whereby a skeleton representing the area cen-
troid of circles fitted to a timber surface representation was used for alignment
of structural members during design, and for a finite element analysis.

Another challenge in 3D scanning applications for whole timber is the accu-
rate registration of scan data to physical timbers for fabrication and assembly
purposes. Devadass et al. (2016) described a method whereby physical marker
holes on timbers were captured in photogrammetry scans and used as physical

positioning points on a fabrication jig.

3.3. Forest Inventory Data
Increasingly, airborne and terrestrial laser scanning (Figure 9) and pho-

togrammetry are being used for forest inventory by forest managers (Hyyppé

16
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Figure 8: 8a: Surface mesh representation of timber produced using photogrammetry. 8b:
“Skeleton” representation of a whole timber generated from post-processing of surface mesh

representation (Mollica and Self, 2016). Adapted with permission of the Architectural Asso-
ciation School of Architecture.

et al., 2018). Some of these tools are capable of producing three-dimensional
surface representations of individual trees for entire forest plots with millimetre-
level precision (Liang et al., 2016). Such digital survey data of forests is expected
to become increasingly commonplace as technology matures and costs are re-
duced (Liang et al., 2016). In future, this inventory data, subject to appropri-
ate mechanical characterisation and identification of strength-reducing defects
in the trees in question, could be used to explore feasible whole timber de-
signs which take into account the regional availability of trees with particular

geometric characteristics (diameter, taper, curvature, forks).

4. Material Characterisation

In order to design safe, serviceable, and efficient structures, designers must
be able to accurately characterise the mechanical properties of the structural
materials to be used. The determination of characteristic materials properties
values for whole timber for construction is challenging for a number of reasons.

Firstly, whole timber is typically not sold by conventional timber products
suppliers as a graded structural product. This means that designers must often

purchase whole timber directly from foresters or landowners and conduct their

17



Figure 9: Terrestrial laser scanning (TLS) of a forest plot. With permission from Liang et al.

(2016).

Table 1: Selected material grading, testing, and design standards relevant to whole timber
construction (ASTM, 2017d, 2015, ANSI, 2017, ASTM, 2014, 2017b, 2015, 2017a,c, NDS,
2018, BSI, 2010, 2005, NZS, 1993, 2001, ICC, 2017).

Organisation Number Relevance to Whole Timber Construction

Selection € Grading

ASTM D3200
ASTM D3957
ANSI 05.1
EN 14229
NZS 3605

Destructive Testing

ASTM D198
ASTM D1036
EN 14251
Design

ASTM D2899
ICC 400

ANSI/AWC ~ NDS
NZS 3603

AS/NZS 7000

Adapts ASTM D25 whole timber pile visual grading criteria and ASTM D2899 design
adjustments to structural whole timbers.

Visual grading rules and design value adjustments for flat-sided and profiled round timber
elements.

Visual grading criteria for utility poles.

Visual grading criteria and destructive testing methods for utility poles.

Visual grading criteria and proof testing methods for “house piles” and construction poles and
piles.

Test methods for full-scale timber elements of any cross-section (applicable to whole timber).
Cantilever bending tests for utility poles and methods for extracting small clear samples from
whole timber.

Test methods for full-scale whole timber for use in structures.

Design value adjustments for whole timber piles.

Log home design standard.

United States timber design standard. Includes section dedicated to whole timber design,
referencing ASTM D2899.

New Zealand timber design standard. Provides strength adjustments for mechanical peeling
(debarking).

Provides strength adjustments for mechanical rounding of whole timbers.
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own material characterisation, which may be an unfamiliar and daunting pro-
cess. Furthermore, designers seeking to building with whole timber often aim to
use trees with small diameter, high proportions of juvenile wood, and curvature
and branching. Trees with these characteristics often fall outside of scope of
the limited standards available for whole timber material grading, testing, and
design. Table 1 summarises a selected list of standards globally which are of-
ten used as guidance for whole timber research, design, and construction. This
summary is intended to facilitate finding relevant guidance for specific whole
timber research and construction scenarios more easily.

The rest of this section describes methods designers can take to determine
characteristic mechanical properties of whole timber for construction. Gener-
ally, designers have three approaches by which to determine the characteristic
mechanical properties values of whole timber. These approaches may be used

independently, or in combination with one another:

1. Determine characteristic values from standard guidance for visual grading
/ selection themselves or through a certified grading company. Timber
must be of a species and provenance included in the guidance and meet
minimal grade criteria.

2. Conduct destructive tests of a representative sample of the whole timber
material to infer characteristic values for the remaining material to be
used in construction.

3. Develop a non-destructive evaluation model for a similar or representative
sample of the material, then use this non-destructive evaluation method

to grade all of the material to be used in construction.

Designers have also used non-destructive evaluation methods as preliminary
timber selection aids and as an additional safety measure to identify defects and

unexpectedly poor unfavourable mechanical properties in individual members.

4.1. Destructive Testing

A number of built projects have used destructive testing to determine the
mechanical properties of whole-timber to be used in construction (Huybers,

2002, Woodward and Zoli, 2013). Destructive testing is also used to develop
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statistical relationships between non-destructive evaluation results and the true
strength properties of a batch of whole timber members.

Destructive testing of “small clear samples” cut from whole timbers are a
relatively convenient and cost-effective way of characterising the mechanical
properties of timber in question disregarding the strength-reducing effects of
knots and slope of grain (Woodward and Zoli, 2013). Results from small clear
sample tests can only be adjusted to design values for full-scale members when
the timbers tested conform to the grading rules established in the grading and
selection standard corresponding to the given design value adjustment standard.
These grading rules prescribe limits on strength-reducing characteristics such as
knots, slope of grain, and other defects. ASTM D25, for example, provides grad-
ing rules for whole timbers to be used as structural piles, for which ASTM D2899
is the relevant design value adjustment standard (ASTM, 2017b,c). Destruc-
tive testing of full-scale members must be conducted in order to establish the
strength properties of whole timbers when the timbers in question do not con-
form to grade criteria. The EN 14251 standard provides full-scale destructive
test methods specifically for structural whole timbers, and ASTM D198 and
D4761 provide destructive test methods primarily intended for timbers with
rectangular cross-sections, but are also applicable to whole timbers (BSI, 2005,

ASTM, 2015, 2013).

4.2. Non-Destructive Fvaluation Techniques

Non-destructive evaluation (NDE) of structural timber is often used to es-
timate the mechanical properties, and, in particular the strength, of timber
without actually having to test that material to destruction. Visual grading,
the oldest NDE approach for timber, allows for prediction of strength by cor-
relating externally visible growth characteristics and strength-reducing traits
with destructive tests. A key research challenge for whole timber construction
has been the application of more sophisticated timber NDE methods, such as
machine stress grading, acoustic and vibration methods, and x-ray scanning
to whole timber to improve the accuracy and speed of mechanical properties
characterisation of whole timber for construction. Table 2 provides a selected
list of research into NDE methods for whole timber, and is intended to allow

researchers to quickly determine which studies over the past two decades are
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Table 2: Selected research into non-destructive evaluation techniques for whole timber. The
symbol e indicates that the study in question used the given NDE method. For each study,
it is indicated whether the timbers used were mechanically rounded or left unregularised.

Author Mechanically Visual Static Transverse  Longitudinal X-Ray
Rounded? Grading Bending Vibration Stress
Wave
Chui et al. (1999) No . .
Ranta-Maunus (1999) No . . .
Wolfe and Mosely (2000) No . °
Wang et al. (2001b) No . . .
Wang et al. (2004) No .
Green et al. (2004) Yes . . .
Green et al. (2006) Yes . . .
Prieto et al. (2007) Yes ° . .
Ferndndez-Golfin et al. (2007) Yes . . °
Morgado et al. (2009) No . .
Vestgl and Hgibg (2010) No . .
Giudiceandrea et al. (2011) No .
Moore et al. (2013) No . .
Elsener et al. (2013) No .
Roussel et al. (2014) No
Giudiceandrea et al. (2016) No
Carreira et al. (2017) No .
Vega et al. (2017) Yes
Morgado Telmo F. M. et al. (2017) No
Ruy et al. (2018) No
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relevant background literature for the NDE method which is to be studied or
applied, taking into account whether timbers were tested in unregularised or
mechanically rounded form.

While many of these studies demonstrate the feasibility of NDE techniques
for whole timber strength grading, it is important to point out that before such
methods can be used to grade whole timber with confidence in the field, ex-
tensive testing for large numbers of timbers of the species and provenance in
question must first be carried out to develop the statistical relationships be-
tween NDE tests and actual strength values determined by destructive testing.
Some whole timber supply and construction businesses have invested in exten-
sive testing programs to develop NDE models for their whole timber resource,
with the aim of improving the accuracy of design values and reducing over-design

of whole timber elements in their built structures (SBIR, n.d.).

4.2.1. Visual Grading

A number of visual grading standards have been developed for whole tim-
ber. ASTM D3200 was developed in order to adapt existing grading rules for
whole timber piles to the use of whole timber as structural poles on a single
grade pass/fail basis, and was included into the United States National De-
sign Specification for Wood Construction in 2001 (Line et al., 2004). ASTM
D3200 replaces the diameter and taper requirements of ASTM D25 visual grad-
ing standard for piles, but otherwise uses all the rules specified in D25, and
recommends that ASTM D2899, the design standard for whole timber piles, be
used to determine design values for structural poles.

The log home industry has developed a standard (ASTM D3957) intended as
guidance for log suppliers to develop their own commercial visual grading rules
and design values for whole timbers intended for use in log buildings (Burke,
2004, ASTM, 2015). In particular ASTM D3957 provides guidance on develop-
ing visual grading methods for whole timbers which have been flat sawn on one
face, and therefore are more vulnerable to fibre continuity-related failures than
unsawn whole timbers. D3957 categorises unsawn and flat-sided whole or round
timbers intended for use as bending elements as “sawn round timber beams”.

To date, two timber products inspection companies (Timber Products In-

spection (TPI, n.d.) and the Log Home Council (Log and Timber Homes Concil
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(LHC), n.d.)) have been accredited to provide commercial grading services for
sawn round timber beams according to grading rules which they have devel-
oped based on ASTM D3957 for a number of species of timber commercially
available in the United States (Burke, 2004, TPI, 2008). Sawn round timbers
are intended for use in structures as bending or compression elements. Their
grades are typically listed as “Unsawn” along with two to three grades (“No 17,
“No 27 etc.) for timbers which are sawn on one face. Occasionally, “Unsawn”
timbers are graded into two separate strength classes.

Based on a study of small diameter whole timber conducted as part of
a major European research project, Ranta-Maunus (1999) proposed a volun-
tary product standard (VPS-SRT-2) for the development of new visual grad-
ing standards for whole timber intended for use as structural poles. Ranta-
Maunus (1999) developed and proposed one such visual grading standard for
Scandinavian-grown Scots Pine and Norway spruce smaller than 200 mm in di-
ameter based on testing conducted during the study, but no other visual grading
standards have been developed based on VPS-SRT-2.

Qualitative grading standards (such as EN 1927, EN 1316) also exist in some
countries for preliminary sorting of logs during purchasing, but the grading cri-
teria in these standards, have, by definition, not been correlated with destructive
tests, and so cannot be used to estimate strength properties (BSI, 2008, 2012).

Visual grading criteria also exist for utility poles (ANSI O05.1, EN 14229),
but these may be of limited applicability to structural whole timber because
the governing failure mode of utility poles is bending failure due to transverse
loads as cantilever columns rigidly fixed at their base, a scenario not common
for whole timber used in construction.

Visual grading is convenient because it requires minimal equipment and can
be carried out easily in remote sites. However the mechanical properties values
predicted by visual grading may be quite conservative because of the relatively
poor correlation between visually observable characteristics and mechanical be-
haviour. Green et al. (2006) found that ASTM 3957 visual grading procedures
for mechanically rounded 9 inch (23 c¢m) logs resulted in very conservative pre-
dictions of bending and compression strength. For a group of softwood species,

allowable bending strengths predicted by visual grading were 40%-60% of those
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determined by destructive testing, and predicted compression strengths were

around 40% of testing-derived values.

4.2.2. Static Bending

Non-destructive static transverse bending tests, typically referred to as “me-
chanical grading” or “machine stress grading”, are a common non-destructive
evaluation technique in sawn timber grading. These tests, conducted in the
elastic range, are used to estimate the longitudinal modulus of elasticity (MOE)
of the timber element. In timber, longitudinal MOE is strongly correlated with
strength properties, and this relationship is the basis for a number of NDE tech-
niques which, by measuring the MOE of timbers, provide a means for predicting
their strength (Galligan and McDonald, 2000, Ross, 2015). The MOE-strength
correlation has also been shown to be strong (r ~ 0.75) for small-diameter whole
timber (De Vries and Gard, 1998, Morgado et al., 2009). Although a number
of authors have successfully demonstrated the use of mechanical grading for
whole timber (see Table 2), imperfections in the roundness and straightness of
unregularised whole timbers made accurate determination of their geometric
properties difficult, affecting the accuracy of MOE calculations (Wang et al.,
2001b). The geometric survey methods described in Section 3 could be ap-
plied here to obtain more accurate measurements of geometry for such bending
tests. The tapered form of unregularised whole timbers also makes the back-
calculation of MOE from load-displacement results somewhat more challenging
than for timbers which have been processed to a uniform diameter. Wolfe and
Mosely (2000) describe a “moment-area” method for performing these calcula-
tions for tapered members based on a hybrid of methods described in ASTM
D143 and ASTM D1036 (ASTM, 2014, 2017a). Alternatively, finite element
methods using a “skeletonisation” approach could be conveniently applied here

using log geometries determined by 3D scanning.

4.2.8. Acoustic Methods

Acoustic NDE methods for timber use impacts or transducers to induce
internal stress waves in timber samples. Various characteristics of these waves
are then recorded to infer properties of the timber in question (Wang and Carter,

2015). The most mature acoustic NDE technology applicable to whole timber
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Figure 10: Longitudinal stress-wave testing of whole timbers (Wang et al., 2001a). Courtesy
of the United States Department of Agriculture Forest Service, Forest Products Laboratory.

characterisation is longitudinal stress wave testing (Figure 10). Longitudinal
stress wave testing works by inducing a stress wave at the end of a timber with a
hammer or a transducer and recording the time taken for the wave to travel along
the length of the timber, either through a single time-of-flight measurement, or
through a resonance measurement which captures the repeated reflection of
the stress wave from end-to-end in the timber (Ross, 2015). The longitudinal
MOE of the timber is inferred by assuming one-dimensional wave behaviour,
and calculated using the equation MOE = C?p, where C is the velocity of the
stress wave, as calculated by its time of flight and the length of the timber,
and p is the mean overall density of the timber. As with static bending, this
MOE is then used to predict strength. A number of studies have demonstrated
the effectiveness of longitudinal stress wave testing for strength grading of whole
timber (see Table 2). However, Wang et al. (2004) found that log diameter had a
significant effect on longitudinal stress wave velocity for small diameter timbers.
Wang et al. (2004) proposed a multi-variable regression model which included
log diameter as a predictor of stiffness. This model resulted in relatively good
prediction of modulus of elasticity (as measured by static bending tests of the
same material) with coefficients of determination of R? ~ 0.7 to R? ~ 0.9. The
effect of log diameter on stress wave velocity was also confirmed by Ruy et al.
(2018).

A number of commercial products are available for longitudinal stress wave
testing, as handheld devices or as devices integrated into the heads of harvesters
or sawmill production lines. The relatively strong predictive power and ease of
use of longitudinal stress wave testing in the field and throughout the supply

chain of whole timber products make it a powerful tool for selection and grading
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Figure 11: Transverse vibration testing setup for non-destructive evaluation of whole timbers
used by Carreira et al. (2017). With permission from Carreira et al. (2017).

of whole timber for structural applications. A growing body of research has
also explored more sophisticated measures of wave behaviour in whole timber
elements with respect to orthotropic material properties, and more accurate
models of stress wave propagation (Elsener et al., 2013, Subhani et al., 2016,
Xu et al., 2018, Wang et al., 2018).

A number of studies have also demonstrated the effectiveness of acoustic
methods for NDE of standing trees (Senalik et al., 2014, Rudnicki et al., 2017),
which could be useful for improving the efficiency and usable yield of harvests

of whole timber for construction purposes.

4.2.4. Transverse Vibration Testing

Transverse vibration testing (Figure 11) works by measuring the displace-
ment time history of a slender timber element subjected to a transverse impact.
The timber is assumed to behaving as a single degree of freedom damped os-
cillator as it vibrates transversely in its fundamental bending mode. A natural
frequency is inferred from the displacement time history, which is then used to
back-calculate the MOE of the timber (Ross, 2015). As with static bending
and longitudinal stress wave testing, this MOE is then used to predict strength
based on the strong correlation between MOE and strength. A number of studies

have demonstrated that transverse vibration is an effective means of predicting
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the stiffness of whole timber (see Table 2) (Green et al., 2006, Carreira et al.,
2017). Wang et al. (2001b) found that transverse vibration testing appeared to
be less sensitive to geometric imperfections than longitudinal stress wave test-
ing. However, the tapered cross-section of unregularised whole timbers may still
complicate accurate back-calculation of MOE from vibration results. Chui et al.
(1999) and Murphy (2000) proposed methods for performing this calculation for
tapered round timbers. Here again, 3D scanning and a finite element analysis

could help to address issues related to geometric variability.

4.2.5. X-Ray Methods

X-ray scanning of timber works by recording the attenuation of radiation
which has passed through a timber element (in the same way as used in medical
imaging or other common X-ray applications). The degree of attenuation of ra-
diation is related to density (Wei et al., 2011), and, because timber strength and
stiffness is strongly correlated with its density, can be used to infer mechanical
properties (Oja et al., 2001). X-ray scanning can also be used to detect defects
or foreign objects in timber (Longuetaud et al., 2012, Johansson et al., 2013,
Krihenbiihl et al., 2014, Roussel et al., 2014). X-ray scanners commonly used
in timber imaging are single-directional, multi-directional, or involve a rotating
emitter and sensory arrays. Fixed-position X-ray scanners with emitters in per-
pendicular arrangements are used fairly widely in sawmills for log segregation
by the predicted value of sawn products yielded from them and to optimise
sawing patterns based on observed knot locations and log cross-section (Grund-
berg and Gronlund, 1997, Skog and Oja, 2010, Wei et al., 2011). In rotating
systems, computed tomography (CT) methods are used to process recorded sig-
nals to construct a volumetric representation of the density of a region of timber
(Wei et al., 2011). Recently, a CT-type X-ray scanning system using rotating
cone-type emitters has been developed which can accurately characterise the
internal properties of entire logs volumetrically at a line speed of 3 meters per
second (Giudiceandrea et al., 2011, 2016, Microtec, 2018). Such fully volumet-
ric representations, which are currently used for sawing optimisation, could also
be used for developing non-destructive evaluation models for timbers intended
for use as structural elements in their whole form (Grundberg and Gronlund,

1997). Because knots are the primary strength-reducing characteristics in tim-

27



590

595

600

605

610

615

ber, three-dimensional internal knot geometries and locations could likely be

used to develop accurate predictions of strength in whole timbers.

5. Materials Preparation and Processing

The harvesting and preparation of whole timber for service in structures
involves a number of specialised processing operations - some of which have
strength-reducing effects. The following sections discuss developments in whole

timber processing for construction.

5.1. Harvesting

Ranta-Maunus (1999) and Jayanetti (2000) provide guidance on harvest-
ing of small-diameter whole timber for construction. It is important to note
that mechanised harvester head-rollers may damage the exterior surface of
small-diameter timbers, resulting in aesthetic defects, and potentially strength-
reducing damage (Ranta-Maunus, 1999). Sahu and Wang (2015), Mollica and
Self (2016), and WholeTrees (n.d.a) used manual (hand-held chainsaw) harvest-

ing.

5.2. Debarking

Whole timbers must be debarked if they are to be used in structures. De-
barking improves drying speed and is required for most preservative treatments
(Jayanetti, 2000, Lebow, 2010). Debarking can be done manually using a de-
barking spud (Jayanetti, 2000), or using a range of mechanised mobile, station-
ary, or harvester-mounted debarking machinery. Mechanical debarking is much
faster than manual debarking, but typically results in damage to external fibres,
a less attractive surface finish, and may fail to fully remove all bark. The NZS
3603 design standard for timber structures provides strength reduction factors
for poles which been mechanically debarked (see Table 3). The efficiency of de-
barking greatly depends on the species and time of harvest. Debarking efficiency
for some softwood species is as much as 50% lower in winter as compared to
summer (Heppelman et al., 2016). Law (2010), Sahu and Wang (2015), Mollica
and Self (2016), and WholeTrees (n.d.a) all used manual debarking for at least

some of the whole timber in their structures.
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5.3. Mechanical Rounding

Whole timbers are often mechanically rounded into cylinders of uniform
cross-section, or even into “cigar’-like forms (Darcy, 2017), for convenience in
fabrication, connection detailing (Reelick, 2004, Walford and Reelick, 2006), and
aesthetic preference. Ranta-Maunus (1999) and Larson et al. (2004) found that
mechanical rounding reduced bending strengths of whole timber by about 5-
20%, likely depending largely on the fraction of juvenile wood in the remaining
section. Larson et al. (2004) also observed that mechanically rounded timbers
failed in a more brittle way than unregularised timbers, due to broken fibre
continuity around knots. The Australian and New Zealand standard AS/NZS
7000 provides mechanical properties reduction factors (Table 3) for mechanically

rounded poles of some softwood species.

Table 3: Mechanical properties adjustments for softwoods due to mechanical peeling (de-
barking) according to New Zealand timber design standard NZS 3603 (NZS, 1993) and me-
chanical rounding according to Australia and New Zealand standard AS/NZS 7000 (AS/NZS,
2016). fp: bending strength, fe|: compression strength parallel to the grain, fe1: compres-
ston strength perpendicular to the grain, fi: tensile strength parallel to the grain, MOE:
longitudinal modulus of elasticity.

Operation fo Je| JeL ft MOE

Mechanical Peeling 0.9 1.0 - 0.85 1.0

Mechanical Rounding  0.75 0.9 1.0 0.75 0.95
5.4. Drying

The drying of whole timbers to their anticipated in-service moisture content
is challenging for a number of reasons. Firstly, whole timbers dry much slower
than sawn timber at conventional structural dimensions because of their rela-
tively low surface area to volume ratio and comparatively large section depth,
resulting in more energy-intensive and costly drying and potentially higher in-
ventory costs. Secondly, whole timbers tend to develop significant longitudinal
cracks (“checks”) on their exterior as they dry (See Figures 6 and 12a). These
longitudinal cracks are caused by internal stresses which are the result of two
factors: the difference between the drying shrinkage rate of wood in the tan-
gential and radial directions and the moisture content gradients created by the
exterior of whole timbers drying faster than their interior (Park et al., 2014).

The rate of tangential shrinkage in timber is typically about twice that of radial
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shrinkage (Glass and Zelinka, 2010). Smaller-diameter timbers may exhibit less
longitudinal cracking than larger-diameter timbers, likely due to the reduced
severity of the moisture gradients induced during drying due to their smaller
cross-section (Evans et al., 2000).

Longitudinal cracks do not have a significant impact on member structural
behaviour, but can significantly reduce the strength of connections when they oc-
cur near fasteners (Huybers, 1987, Ranta-Maunus, 1999, Jayanetti, 2000, Wolfe,
2000, Eckelman, 2004). Such cracks may also reduce durability by providing ac-
cess to the interior of timbers for moisture, fungi, and insects if they extend
deeper than the penetration depth of the preservative treatment, or into the
heartwood, which is typically more difficult to treat than the sapwood closer
to the exterior (Figure 6) (Batchelar, 2012). Longitudinal cracks may also be
undesirable for aesthetic reasons.

Many designers have opted to fabricate and install whole timbers in the green
condition with the knowledge that timbers will dry in service and continue to
develop checks and exhibit some dimensional changes (Burton et al., 1998, Make,
2018). Designers should be careful to note the generally reduced strength and
stiffness properties of green timber in these cases.

Others have opted to air- or kiln-dry their whole timber before installation
(Batchelar, 2012, Batchelar and Newcombe, 2014b,a), which has the additional
benefit of killing any insects which may later contribute to degradation (May-
hew, 2018). Air drying generally appears to produce more checking than kiln-
drying. High-temperature kiln-drying has been found to be more effective than
conventional kiln-drying for reducing longitudinal cracking, but also somewhat
reduces the strength of whole timbers (Ranta-Maunus, 1999). ASTM D2899
provides reduction factors for strength properties based on the type of condi-
tioning performed to whole timbers, based on compression tests of conditioned

whole-section piles (see Table 4) (ASTM, 2017¢).

Table 4: ASTM D2899 Reduction factors for strength due to conditioning of whole timbers
(ASTM, 2017c).

Air-Drying Kiln-Drying  Boulton Normal Marine
Drying Steaming Steaming
1.0 0.9 0.95 0.8 0.74
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Figure 12: 12a) Whole timbers exhibit longitudinal cracking when dried. 12b) Cored timbers
show less longitudinal cracking due to reduced internal drying stresses. Photographs courtesy
of TTT Products Ltd. and Mark L. Batchelar.

7
(a) (b) (©)

Figure 13: Visualisation of drying stresses in a) uncored round timber b) cored round timber
¢) cored round timber sealed with polyethylene wrap around its exterior. Adapted with
permission from Park et al. (2014).

Longitudinal cuts (“kerfs”) made in timbers prior to drying have been used
to relieve internal drying stresses and control the location of cracks (Chabloz
and Dupraz, 2000, Evans et al., 2000, Yeo et al., 2007). This technique may
be useful for ensuring that cracks do not occur near fasteners and reduce the
strength of connections.

Another approach for improving drying in whole timber is the mechani-
cal removal of the inner core of whole timbers prior to drying (Figure 12b)
(Batchelar, 2012). Coring significantly reduces drying times by increasing the
exposed surface area of whole timbers. Coring also significantly reduces lon-
gitudinal checking by reducing the internal stresses induced by differences in
tangential vs. radial shrinkage rates, and by reducing the severity of internal
moisture gradients (Park et al., 2014). Yeo et al. (2007) found that coring could
reduce kiln-drying time by one half when drying 150 mm and 210 mm diameter
round timbers to a target moisture content of 15%. Applying a vapour bar-
rier such as a polyethylene wrap to the exterior of cored whole timbers during

drying can further reduce longitudinal checking to apparently almost none, by
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establishing an inverted moisture gradient during drying which counteracts the
stresses induced by the difference in tangential vs. radial shrinkage rates (Figure
13) (Park et al., 2014).

It should be noted that while coring does not appear to have a significant ef-
fect on compressive strengths (Yeo et al., 2007) and likely not on tensile strengths
either, it has been shown to reduce bending strengths by 10-30% depending on
the inner diameter of the cored timber (Lim et al., 2013) when timbers with large
fractions of juvenile wood are used, and after adjusting for the reduced section
modulus of the cored timber. Lim et al. (2013) attributed this reduced bending
strength to a tensile failure perpendicular to the grain caused by a “flattening”
failure mode. This strength reduction was not observed, however, in Radiata
Pine timbers with low proportions of juvenile wood when core diameter was

limited to 1/3 of the total timber diameter (Batchelar, 2019).

5.5. Fabrication

Figure 14: Subtractive fabrication of connections in irregular forked timbers using a router
mounted on a 6-axis industrial manufacturing arm (Mollica and Self, 2016, Devadass et al.,
2016). Photograph by Swetha Vegesana. Courtesy of the Architectural Association School of
Architecture.

One of the most significant advancements in fabrication methods for whole
timber construction in recent years has been the use of new digitally-enabled
fabrication tools (Mollica and Self, 2016, Devadass et al., 2016, Self and Ver-
cruysse, 2017, Von Buelow et al., 2018, Vercruysse et al., 2018). Mollica and Self
(2016), Devadass et al. (2016) and Von Buelow et al. (2018) describe techniques
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for fabrication of bespoke connections in irregular forked timbers using timber
routers mounted on 6-axis fabrication arms (Figure 14). Vercruysse et al. (2018)
explored the use of bandsaws and chainsaws mounted to multi-axis positioning
arms for bespoke digitally navigated fabrication of whole timbers.

Another significant advance has been the development of fabrication tech-
niques for standardised truss, composite-member, and panelised structural sys-
tems in whole timber, discussed in greater detail in Sections 6 and 7. Among
these, new techniques discussed by Batchelar (2012) and Batchelar and New-
combe (2014b,a) for coring round timbers up to 18 meters in length are par-
ticularly promising, because they offer reduced drying time, reduced shipping
weight, improved dimensional stability, reduced longitudinal cracking, and al-
low for new internally post-tensioned connection types. It should be pointed out
that no coring techniques for curved and forked timber have yet been developed,
despite the increasing sophistication in subtractive digital fabrication methods

for whole timber in recent years.

5.6. Protection

All timber is vulnerable to attack by fungi and insects, resulting in a loss
of strength and stiffness, and undesirable aesthetic effects. One strategy to
maximise the durability of whole timber structures is to use naturally durable
species. Woodward and Zoli (2013) and Baxter et al. (2018) used Black Locust,
a naturally durable hardwood in whole timber construction to achieve good
durability without preservative treatment. In many cases, however, additional
preservative treatment is required to improve durability. Jayanetti (2000) dis-
cusses a number of detailing and preservative treatment strategies for maximis-
ing the durability of whole timber construction, and strategies for addressing
termite attack.

Batchelar and Newcombe (2014b,a) describe how coring of whole timbers
can be used to achieve reported 100% pressure-based preservative penetration
by increasing surface area and by removing the heartwood of the timber, which is
more difficult to treat effectively than sapwood (See Figure 6) (Lebow, 2010). It
should be noted that Radiata Pine, the species used by Batchelar and Newcombe

(2014b), has a particularly low ratio of heartwood to sapwood. Preservative

33



no  penetration in cored timbers of species with larger proportions of heartwood

may be less successful.

6. Connections
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Figure 15: Selected whole timber structural connections. References: (a): (Burton et al., 1998, Morgado et al., 2013, Schober et al., 2018)
(b): (Burton et al., 1998) (c): (Wolfe et al., 2000, Eckelman, 2004, Mollica and Self, 2016, Brose, 2018) (d): (Al-Khattat, 2008, Woodward
and Zoli, 2013) (e): (Huybers, 1987, Lowenstein, 2002, Huybers, 2002, Lusambo and Wills, 2002, Barnard, 2001, Make, 2018, Gorman et al.,

2012, Morgado et al., 2013, WholeTrees, n.d.a, Darcy, 2017) (f): (Jayanetti, 2000, Brito, 2010, Brito and Junior, 2012, Gorman et al., 2012)
(g): (Morris et al., 2009) (h): (Make, 2018) (i): (Imai et al., 2002, 2016)

The design and fabrication of safe, cost-effective, and high-capacity struc-

tural connections are among the greatest challenges in whole timber construc-

ns  tion. Longitudinal shrinkage cracking, when it occurs near fasteners, can reduce
connection capacities by precipitating tensile failures perpendicular to the grain.
Juvenile wood can reduce embedment strengths of fasteners, particularly closer

to the centre of timbers (Barnard, 2001). A further challenge is the development
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of connections which can accommodate multiple unregularised whole timbers at

a node.

6.1. Dowel-type connections

The most commonly used engineered connections for whole timber are dowel-
type connections (Figures 15¢ and 15e), which are well accommodated for by
existing design standards for timber construction. A common approach to con-
servatively adapt dowel-type connection design rules to whole timbers is to size
the connections assuming that only a rectangle inscribed into the cross-section
of the timber is engaged structurally (Miller-Johnson and Ernst, 2018). When
large proportions of juvenile wood (which typically has lower density than ma-
ture wood) are likely to be present, however, conventional connection design
methods based on Johansen’s equations are likely to be unsafe (Barnard, 2001).

In these instances, destructive testing of connections should be conducted.

6.1.1. Flitch plates

The most commonly used and studied dowel-type connections for whole tim-
ber are “flitch plate” connections (Figure 15e), which combine a central steel
plate with bolts or pipes as dowels (Lowenstein, 2002, Make, 2018, Gorman
et al., 2012, Morgado et al., 2013, Darcy, 2017, Baxter et al., 2018). This con-
nection type accommodates irregular whole timber cross-sections fairly easily,
is relatively straightforward to fabricate, and, when sized correctly, fails in a
ductile manner through plastic hinge formation in the dowels. A number of
early studies in engineered whole timber construction explored the use of ex-
ternal wire lacing in pipe-type flitch plate connections to reduce the effects of
shrinkage cracks on connection capacity (Huybers, 1987, 2002, Lusambo and
Wills, 2002).

6.1.2. Dowel-nuts

Another connection type which has seen considerable research is the “dowel-
nut” connection (Figure 15¢), favoured for its simple fabrication and low cost
(Wolfe et al., 2000, Eckelman, 2004, Mollica and Self, 2016, Brose, 2018). Mollica
and Self (2016) demonstrated a “cross-bolt” configuration combined with mass-
customised CNC-fabricated 3D mated timber surfaces to achieve a dowel-nut-

like pipe and bearing washer connection which could accommodate irregular
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whole timber geometries meeting at a node. Split rings were used to provide

shear transfer at these connections.

6.1.3. Screws

Another important trend in whole timber connection design has been the
increasing use of screws (Malo and Ellingsbg, 2010, Make, 2018, Frese and Blaf,
2014). Imai et al. (2002, 2016) and Miyahara et al. (2016) demonstrated the
use of specially-designed lag screws glued into the end-grain of small-diameter
timbers as part of a high-capacity spatial truss nodal connection (Figure 15i).
Self-tapping mass timber screws have also been explored as a means of reducing
the effects of splitting in dowel-type connections in whole timber (Klajmonova

and Lokaj, 2014).

6.2. Glued connections

Glued-in rods (Figure 15a) have also been explored as a high-capacity con-
nection for whole timber, and when sized correctly, also exhibit ductile failure
(Burton et al., 1998, Morgado et al., 2013). Schober et al. (2018) demonstrated
the use of concrete-type adhesives for glued-in rods to address quality control
and cracking issues associated with thin glue lines. These connections were
combined with bespoke cast polymer-concrete nodes which accommodate di-
verse member geometries and angles at nodes well. 3D-printing of nodes may
also provide a means of accommodating multiple whole timbers at connections,
an approach which has been demonstrated for whole-culm bamboo (Amtsberg
and Raspall, 2018).

Glue has also been used to achieve splice connections (Figure 15b) (Burton
et al., 1998) and even finger joints in round and flat-sided round timber (Flach
and Hernandez, 2003, Piao et al., 2013). Pipe-seated glued connections (Figure
15d) have also been used for round timber (Woodward and Zoli, 2013).

6.3. External plates and sheaths

A number of connection types have also been explored using external steel
plates or sheaths. Jayanetti (2000), Brito (2010), Brito and Junior (2012),
and Gorman et al. (2012) discuss nail plate connections (Figure 15f). Morris

et al. (2009) demonstrated an annular-groove sheath connection (Figure 15g)
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for round timbers designed to achieve moment resistance, typically a major

challenge in any timber connection, and whole timber connections especially.

7. Structural Systems

7.1. Trusses

One of the most common applications of whole timber in construction has
been in trusses - in particular exposed roof trusses (Figures 7a,7b and 19a,19b)
(Huybers, 1987, 2002, Wolfe et al., 2000, Lowenstein, 2002, Zhang et al., 2013,
Miyahara et al., 2016, WholeTrees, n.d.a, Brose, 2018). Exposed roof trusses are
a particularly appropriate application of whole timber because they showcase
the structural potential of whole timber prominently, maximising visual impact,
while generally having lower design loads, simpler envelope attachment details,
and less stringent deflection and vibration limits compared to other building
components. Whole timber has also been successfully used in roofs in single-
layer grid-shells (Imai et al., 2002, Fujimoto et al., 2002, 2009, 2016), and in
double layer grid-shells (Burton et al., 1998).

Whole timber trusses have also been used for pedestrian bridges (Figure
20) (Yeh and Lin, 2007, Al-Khattat, 2008, Woodward and Zoli, 2013). Post-
tensioning was used by Al-Khattat (2008) to achieve glue-free seated pipe con-
nections. Spatial truss systems for whole timber have also been applied in
tower structures (Huybers, 2002, Batchelar, 2012, Klajmonové and Lokaj, 2015).
Batchelar (2012) demonstrated the use of hollow-core round timbers as struc-
tural elements in spatial trusses for telecommunications towers.

A number of designers have addressed the challenge of fabricating large
numbers of whole timber truss elements efficiently, typically through the design
of easily-fabricated connections and simplified assembly sequences. Gundersen
(2015) demonstrated a system for hybrid steel and whole timber parallel chord
roof truss elements (Figures 21 and 16i), which eliminated the need for time-
consuming fabrication of angled timber-timber connections of whole timbers in
the chord and web. Imai et al. (2002, 2016), Zhang et al. (2013), and Miyahara
et al. (2016) discuss the use of a standardised node connection for large scale
round timber space trusses which allows for efficient fabrication by minimally

trained workers. Gongalves et al. (2014) and Bukauskas (2015) proposed trussed
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structural column modules for use in prefabricated kit-type whole timber con-
struction. Such kits of parts could simplify the design and fabrication of whole
timber structures through the marketing and sale of a range of prefabricated
structural-scale modules similar to those found in the steel and pre-cast concrete

industries.

7.2. Frames

Whole timber has also been shown to be effective in frame-type structures,
despite challenges in developing moment connections for whole timber. Morris
et al. (2009) demonstrates how moment-resisting annular-groove connections
(Figure 15g) can be used in multi-storey portal frame structures. Kroeker
(2007), in an approach similar to that described in Burton et al. (1998) for
spliced actively bent arch members, demonstrates the use of a two-layer moment-
resisting composite member using actively-bent small-diameter whole timbers
as chords, and short whole timber elements as web members.

A number of structures have also demonstrated the potential for curved and
forked irregular whole timbers to be used in frame structures. A number of
residential-scale structures have been built using forked and curved timbers in a
post and beam type arrangement, successfully mating the irregular geometries
of the irregular structural whole timbers with regularised envelope elements
(Baxter et al., 2018). Mollica and Self (2016) and Von Buelow et al. (2018)
demonstrated the use of forked timbers in Vierendeel frame arrangements (Fig-
ures 7a,7b,16j), relying on the moment capacity of fork junctions to reduce the
number of connections and triangulating members. A patent by Thornton and
Blair (2017) presents a novel solution for small-scale portal frame construction
using round timbers combined with panelised timber boards to achieve moment

capacity through composite action.

7.8. Wall Elements

The use of whole timber in wall assemblies is particularly promising because
of its potential to provide a high-volume low- and mid-rise construction market
for whole timber products. Batchelar and Newcombe (2014b) and Batchelar and
Newcombe (2014a) demonstrated how hollow-core round timbers could be joined

with shear-keys into panel elements with shear resistance (Figures 17a,160), and
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combined with internal post-tensioning cables to achieve good seismic perfor-
mance in a 5-story residential structure. Wu et al. (2015, 2018) proposed and
tested a system for light-frame stud walls made with whole timbers cut in half
and arranged with their flat sides facing outwards, with steel shear connectors to
achieve composite action (Figure 16s). Sahu and Wang (2015) demonstrated a
contemporary innovation on traditional log wall construction techniques through
the use of irregular curved whole timbers for a non weather-tight single story
free-form log wall (Figure 16e), which was enabled by digital scanning, design,

and fabrication.

7.4. Floor and Bridge Deck Systems

Chabloz and Dupraz (2000), Chapman and Dodd (2007, 2008) and Batchelar
(2012) demonstrated floor systems using round timber (Figure 16p). Chapman
and Dodd (2007, 2008) found that such floor systems had good acoustical perfor-
mance. Several studies have explored the use of unregularised and round timber
floor systems with shear-connected concrete toppings (Figure 16q) (Batchelar,
2012, Skinner et al., 2014). Skinner et al. (2014) found that the concrete topping,
by increasing the modal mass of the whole timber-concrete composite floor ele-
ments, brought them to within occupant comfort vibration serviceability limits.
Whole timber-concrete composite spanning systems have also been effectively
applied in low-cost, high-capacity road bridges in rural and developing regions
(Logsdon, 1982, Pigozzo et al., 2004, Brito and Junior, 2012, Rodrigues et al.,
2013).

Thornton and Blair (2011) and Thornton and Thornton (2019) demonstrated
a system for constructing I-beams using round timbers as flanges, and plywood
or another engineered timber product as web material (Figure 16r). Similarly,
Gorman et al. (2016) proposed and tested a system for I-beams built up using
two halves of a small-diameter round timber as the chords, and a piece of sawn
timber as the web (Figure 16r).

Thornton and Blair (2014, 2016), Thornton (2018a,b) demonstrate a system
for creating spanning elements using small-diameter round timbers by mating
them at profiled surfaces and connecting them with angled glued-in through-
bolts to achieve shear resistance (Figures 18 and 16t). Thornton and Blair

(2014) also discussed methods for connecting such elements longitudinally to
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achieve longer spans. Loggo (n.d.) presents ways in which these elements can be
used in rapidly-erected residential construction. This application is particularly
promising because it allows for the use of very small-diameter timbers and waste
“peeler cores” from veneer production in a potentially high-volume structural

application.

7.5. Foundations

Hollow coring has also allowed significant innovations in whole timber foun-
dation structures, including allowing for water jetting and cement grout injec-
tion through the core of round timber piles for more effective pile driving and
soil stabilisation (Batchelar, 2012, Batchelar and Newcombe, 2014a). Raft-type
foundation systems have also been developed using crossing arrangements of

hollow-core round timbers (TTT, 2015).

7.6. Structural “Form-Fitting”

A key challenge in the design of whole timber structural systems is the match-
ing of available whole timbers to desired structural forms. Unlike standardised
construction products, whole timber elements must be used “as-is”, rather than
specified based on a predetermined structural design. This constraint presents
an interesting design problem for architects and engineers working with whole
timber. A number of researchers and designers have explored the challenge of
developing computational “assignment” or “form-fitting” approaches to discover
and optimise structural forms which are both buildable and satisfy structural
requirements given predetermined finite inventories of whole timber elements
(Monier et al., 2013, Stanton, 2010, Mollica and Self, 2016, Bukauskas et al.,
2017a,b, 2018, Von Buelow et al., 2018, Allner and Kroehnert, 2018, Marshall
et al., 2018). This research has demonstrated the feasibility of assignment al-
gorithms for determining viable structural geometries given finite inventories of
diverse elements, and has identified the need for generaliseable computational
approaches which designers could use for the design of a wide range of whole

timber structural typologies.
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Table 5: Selected list of structures using whole timber built since around the year 2000. For
structures built before this time, see (Burton et al., 1998, Ranta-Maunus, 1999, Stern, 2001,
Huybers, 2002). A more extensive list of structures, including historic examples, can be found
online at the Whole Timber Structures Database (Bukauskas, 2018).

Structure Structural System(s) Connections References Year
Muroto Indoor Stadium Spatial truss Lag screws in end-grain ~ Miyahara et al. (2016) 2017
Scott Visitor Center Pin-ended struts Lag screws in end-grain ~ LFA (2015) 2016
Festival Foods Grocery Store Planar trusses Bolted flitch plates, in- WholeTrees (n.d.a) 2016
ternal bearing bar
Treetop Walkway at Weston- Pin-ended struts Bolted flitch plates Darcy (2017), BuroHap- 2016
birt Arboretum pold (2018)
Wood Chip Barn Vierendeel trusses / Pipe/washer-seated Mollica and Self (2016), 2016
trussed arches crossing bolts with digi- Devadass et al. (2016),
tally fabricated mortise Self and  Vercruysse
and tenon, split rings (2017)
Huia Road Residence Hollow core round tim- Shear keys, post- Batchelar and New- 2016
ber shear walls tensioning rods combe (2014a)
Boiler House Freeform log walls Packers with screws Sahu and Wang (2015) 2015
Hanifl Garage Hybrid whole timber- Integrated single-bolt WholeTrees (n.d.b), 2014
steel truss flitch plates Gundersen (2015)
Te Wharehou O Tuhoe Various hollow core Various Batchelar and New- 2014
round timber structural combe (2014b,a)
systems
Lake Bunyoni School Dining Reciprocal frame round- Bolted lap joint Dickson and Parker 2014
Hall house (2014)
Hollow Core Round Timber Trussed tower External sheath with Batchelar (2012) 2013
Telecommunications Towers annular grooves
Salvia Dome Spatial truss Lag screws in end-grain ~ Miyahara et al. (2016) 2013
Underhill Residence Post and beam, free- Bolted lap joint WholeTrees (n.d.c) 2013
form
Squibb Park Bridge Underslung cable bridge  Glued pipe socket Woodward and Zoli 2013
(2013)
Big Shed Planar trusses Bolted flitch plates, Make (2018) 2012
mass-timber screws
Bohdanka Observation Tower Trussed tower, shear- Bolted flitch plate Kala et al. (2012), 2011
bolted compound whole Klajmonova and Lokaj
timber columns (2015)
Sustainability Centre at Prickly ~ A-frame Bolted lap joint Law (2010) 2010
Nut Wood
Pictou Landing Health Centre  Actively-bent arch Various Kroeker (2007) 2007
Round Timber Concrete Com- Whole timber-concrete Epoxy-bonded shear  Brito (2010) 2006
posite Bridge composite bridge deck rods
Japan Railway Yashiro-Cho Single-layer gridshell Lag-screws in end grain FEEL (2011) 2005
Station Hall
Lowndes Residence Portal frame External sheath with Morris et al. (2009) 2004
annular grooves
Ivy Dome Spatial truss Lag screws in end-grain ~ Miyahara et al. (2016) 2003
Doncaster Earth Centre Photo-  Spatial truss Bolted flitch plates Lowenstein (2002) 2001
voltaic Roof
Balbeg House Actively-bent arch Various Chrisp et al. (2003) 2001
Gifu Academy of Forest Science = Spatial truss and struts ~ Various Gifu (2018) 2000
and Culture
Academy Mont-Cenis Herne Pin-ended struts Bolted flitch plates Hegger, Hegger and 1999
Schleiff Architekten
(1999)
Le Sentier Road Bridge Whole timber-concrete  Shear connectors to con-  Natterer (2004) 1997
composite bridge deck dete
Lyss School of Forestry Whole timber columns, Various Chabloz and Dupraz 1997

single-layer whole tim-
ber floor system

(2000)



[Interactive geospatial visualisation of the locations of structures in Table 5
should be included here. KML file included with submission:

940 WholeTimberStructuresLocations_InteractiveGeospatialData.kml]
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Figure 16: Selected structural systems in whole-timber. References: (a): (Burton et al., 1998, Chrisp et al., 2003, Kroeker, 2007) (b): (Law,
2010, 2018) (c): (WholeTrees, n.d.d,n) (d): (Zhou et al., 2018) (e): (Sahu and Wang, 2015) (f): (Hegger, Hegger and Schleiff Architekten,
1999, LFA, 2015) (g): (Make, 2018, WholeTrees, n.d.a) (h): (Huybers, 1987, 2002, Wolfe et al., 2000, Lowenstein, 2002, Woodward and
Zoli, 2013, Zhang et al., 2013, Miyahara et al., 2016, Brose, 2018) (i): (WholeTrees, n.d.b, Gundersen, 2015) (j): (Mollica and Self, 2016)
(k): (Morris et al., 2009) (1): (Burton et al., 1998) (m): (Fujimoto et al., 2002, 2009, 2016, Von Buelow et al., 2018) (n): (Burton et al.,
1998) (0): (Batchelar, 2012, Batchelar and Newcombe, 2014a) (p): (Batchelar, 2012, Batchelar and Newcombe, 2014b,a) (q): (Logsdon,
1982, Chabloz and Dupraz, 2000, Pigozzo et al., 2004, Chapman and Dodd, 2007, Batchelar, 2012, Brito and Junior, 2012, Rodrigues et al.,

2013, Skinner et al., 2014) (r): (Gorman et al., 2016, Thornton and Blair, 2017, Thornton and Thornton, 2019) (s): (Wu et al., 2015, 2018)
(t): (Thornton and Blair, 2014, 2016, Thornton, 2018a,b)

L

(t) Composite Log Wall



(b)

Figure 17: 17a: Panelised wall element using hollow-core round timbers shear-keyed together
to achieve shear resistance (Batchelar and Newcombe, 2014a). 17b: Earthquake-resistant
post-tensioned hollow-core round timber shear wall system in a 5-storey residential structure
built in 2016 in Wellington, New Zealand, a highly seismic zone (Batchelar and Newcombe,
2014a). Images courtesy of TTT Products Ltd. and Mark L. Batchelar.

Figure 18: Prefabricated floor system using composite log wall elements consisting of profiled
round small-diameter timbers and angled through-bolts for shear resistance (Thornton and
Blair, 2014, 2016, Loggo, n.d.). Photograph courtesy of Loggo Pty Ltd.

44



(b)

Figure 19: 19a: Unregularised Ash trees culled from local urban parks are used as columns
in the Festival Foods grocery store roof. (WholeTrees, n.d.a). 19b: Red Pine trees from
overstocked forests are used in 16-metre span whole timber trusses which were prefabricated
off-site. (WholeTrees, n.d.a). Photographs courtesy of WholeTrees Structures.
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Figure 20: Naturally durable round Black Locust timbers are used in an underslung cable
arrangement in the Squibb Park pedestrian bridge (Woodward and Zoli, 2013).

Figure 21: Trusses with whole timber chords and steel web members are used as spanning
elements in the Hanifl garage project. (Gundersen, 2015, WholeTrees, n.d.b). Photograph
courtesy of WholeTrees Structures.
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8. Conclusions

8.1. Summary of Developments

The diversity and sophistication of whole timber construction practices have
increased significantly in the past two decades. Research methods and commer-
cially available technology for geometric survey and non-destructive evaluation
of timber have advanced, creating opportunities for increasingly accurate and
convenient whole timber material characterisation. The design challenges iden-
tified by Wolfe (2000), Ranta-Maunus (1999), and others have largely been ad-
dressed through innovations in materials processing, connections, and structural
systems which have demonstrated the feasibility of whole timber construction
for a wide range of contexts. These advancements include highly mechanised
value-added processes, bespoke digital fabrication approaches, and technologies
appropriate in developing regions. A number of whole timber suppliers and fab-
rication companies have also demonstrated the effectiveness of prefabrication,
vertical supply chain integration, and investment in process optimisation for
scaling whole timber production (TTT, n.d., WholeTrees, n.d.d, FEEL, n.d.,
Loggo, n.d.). New solutions have also been developed to address longitudi-
nal cracking, a significant technical and aesthetic impediment to greater whole
timber adoption. These include new coring and drying methods, as well as re-
inforcement techniques for whole timber connections using self-tapping screws.

Although innovative technologies and methods have been developed, whole
timber construction has not achieved the widespread adoption and scale that
would be required to adequately address the issues of overstocking experienced
in forests worldwide, or to help address housing and infrastructure shortages in

developing regions through the use of low-value timber.

8.2. Future Work

In order to scale whole timber construction faster and more effectively, fu-
ture research should focus on the development of cost-effective and marketable
structural solutions for whole timber. In particular, research into structural
systems should focus on prefabricated floor, wall, and roof systems which can

allow for whole timber to be used in high-volume residential and commercial

47



975

980

985

990

construction. Future research should also continue to investigate opportunities
for digital technologies to scale and improve whole timber construction.

There has been little to no research into the fire performance of whole timber
in structures. Given uncertainties which have recently been identified regarding
the structural behaviour of timber elements in fire conditions (Schmid et al.,
2015), future research should investigate the fire performance of whole timber
structural elements and connections.

As timber construction in general sees more widespread adoption worldwide
in coming years, a key objective of researchers in this field should be to in-
vestigate whole timber structural systems as an alternative and complement to
more established engineered timber construction technologies. As timber con-
struction technologies at all building scales continue to mature and diversify, it
is likely that whole timber structural systems and components will occupy an
increasingly important role in applications where they are an environmentally,

socially, and economically appropriate building solution.
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