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Abstract: Gridshells have been widely used in various public buildings, and many of them are defined over complex
free-form surfaces with complex boundaries. This emphasizes the importance of general grid generation and
optimization methods in the initial design stage to achieve visually sound and easy-to-manufacture structure. In this
paper, a framework is presented to generate uniform, well-shaped and fluency triangular grids for structural design
over free-form surfaces, especially those with complex boundaries. The framework employs force-based algorithms
and a connectivity-regularization algorithm to optimize grid quality. First, an appropriate distribution of internal
points is randomly generated on the surface. Secondly, a bubble-packing method is employed to increase the
uniformity of the initial point distribution, and the points are connected using Delaunay-based triangularization to
produce an initial grid with rods of balanced length. Thirdly, the grid connectivity is optimized using a range of edge-
operations including edge- flip, collapse and split. The optimization process features a grid relaxation objective which
includes the degree of the vertices, leading to improved regularity. As a final step, the grid is relaxed to improve
fluency using a net-like method. As part of its contribution, this paper, therefore, proposes a metric for fluency, which
can be used to quantitatively evaluate the suitability of a given grid for architectural and structural expression. Two
case-study examples are presented to demonstrate the effective execution of the grid generation and optimization
framework. It is shown that by using the proposed framework, the fluency index of the grid can be improved by up
to 157%.

Keywords: gridshell; free-form surface; grid generation; dynamic relaxation; grid quality

Notation
ij.k serial number
n total number of grid nodes or bubbles

ken,ky coefficients

EPF‘

ke linear spring constants
original diameter of i-th bubble

)

<

displacement vector from i-th bubble center to j-th bubble center

inter-bubble force between i-th bubble and j-th bubble

resultant inter-bubble force at i-th bubble

displacement vector from the center of i-th bubble to its closest point over the surface

<

%]

~l 8l N1l

vector of force to attract i-th bubble to the surface

%)
o~

resistance force on i-th bubble

>

Ay

damping coefficient
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m lumped mass for each bubble
;i velocity vector of i-th bubble
Fl- resultant force acting on i-th bubble
Zi acceleration of i-th bubble
gi current position of i-th bubble
d; degree of i-th vertex in a triangulation
n; virtual degree of i-th vertex
di adjusted degree for i-th vertex
Vi weight of i-th vertex
A weight of interior vertices
R(G) nodal degree residual of the grid G
_l)ij vector of displacement from the i-th particle p; to the j-th particle p;
n; number of vertices connected to i-th vertex, that is, d;
_l)ij displacement vector from i-th particle p; to j-th particle p; , that is, EU
lo constant slack-length of the spring
7')1-' resultant spring force at i-th particle
e total number of edges
1_5“- boundary attractive force at i-th particle
triangular shape index
Mint number of interior vertices
Mbou number of boundary vertices
n* adjusted number of grid vertices
u the average nodal degree residual
6i angle disfluency index of i-th vertex
0 fluency index of a grid
p proportion of the interior regular vertices
Hinr number of interior regular vertices

1 Introduction

Gridshells as long-span roof structures are often the most striking part of a building from a designer’s perspective,
providing a sense of simplicity and elegance of appearance. The important features of gridshells are their appeal of
uninterrupted spans, the smoothness of their continuum surface, the lightness of their grid cells, curve fluidity and,
most importantly, their high structural efficiency, that can resist external actions through membrane stiffness [1].
Gridshells with planar, cylindrical, spherical and parabolic shapes have been widely used in practice [2-4], where
engineers often use analytical equations to generate the nodal positions and member connectivities for structural
design.

In recent years, parametric modeling and programming techniques in computer-aided design have allowed a new

level of complexity in 3D free-form structural (surface) design, allowing architects more freedom to create inspiring



1 forms and to restructure their workflow. The aesthetically pleasing nature of gridshells attracts the attention of high-
2 profile clients, and the number of new and complex free-form grid structures is increasing. Some buildings with

3 complex shapes have recently been erected successfully, as shown in Fig.1.

(a) Yas Viceroy Abu Dhabi Hotel, Abu Dhabi, UAE (b) Shenzhen Bay Sports Center, Shenzhen, China

Fig.1 Examples of free-form grid structures

4 Previous studies on free-form grid structures have concentrated on the structural design aspects, form-finding

5  methodologies [5] and optimization techniques [6], and the associated research on grid generating methodologies is

6  relatively scarce. However, it is not always easy to create an efficient grid structure on a given surface, despite grid

7  generation being a key stage in the design of free-form grid shells. Gridshells are often highly efficient in terms of

8  material use, therefore, in this paper efforts are made to generate grids with balanced rod lengths over a continuum

9  surface, whilst the efficiency of the material use and construction cost are assumed to be optimized subsequently in
10 the structural design process. Grids generated should approximate the given surface as closely as possible. Grid
11 members should all be of similar lengths to ease manufacture, connections, and equalize their buckling strengths, and
12 each continuous member should pass over the surface in a fluid manner and avoid singularities of curvature (kinks),
13 as shown in Fig.2.

Curve fluidity

14
15 Fig.2 A gridshell with curve fluidity and regular grid cells

16  Unstructured grid generation methods have been developed for finite-element analysis (FEA), with the most prolific
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methods being Advancing Front Technique[7], Mapping Method [8] and Delaunay Triangulation [9, 10]. For the
interested reader, an excellent review of unstructured grid generation algorithms has been presented by Owen [11].
In graphics applications, many remeshing methods [12] have been proposed to improve the mesh quality in terms of
vertex sampling, size grading and element shapes amongst other indexes. For example, Kammoun et al. [13] proposed
an algorithm to remesh an available surface grid into an adaptive semi-regular mesh based on Voronoi tessellation
and regular subdivision. The meshing methods singly pursue grid regularity by ignoring other design requirements
of the grid, such as fluency and uniformity. And whilst they are not particularly focused towards the design of
architectural grids, they do however provide an important underpinning methodology to improve grid regularity.
Gridshells come in many forms, and are generally composed of triangular, quadrilateral or hexagonal grid cells. Su
et al. [12] proposed an improved advancing front technique to generate triangular grids and the principle stress
trajectories were used to determine edge directions. Gao et al. [14] developed a “guide line method” to generate
triangular or quadrilateral grids with rods of balanced length and fluent lines. Peng et al. [15] presented a framework
to generate meshes composed of a hybrid of both triangles and quads and the generated meshes fit the surface
boundaries and curvatures.An excellent review of designing grid structures that consist of polyhedral cells has been
presented by Pottmann et al [16].

This paper focuses on triangular grid generation and optimisation over a free-form surface, since triangulated grids
are structurally efficient and are most widely used. For the triangulation of a given design domain, a point list is often
generated first, and the points are subsequently connected to form triangles, often using Delaunay triangularization
[9, 10]. With the topology of a grid determined, force-based methods have been used effectively to smooth (adjust
the point positions) the grid. Force-based methods define proximity-based, repulsive/attractive inter-nodal forces
between node-pairs and then carry out an explicit dynamic simulation with damping to achieve a force-balanced
configuration of nodes. Diverse grid types and element sizes can therefore be achieved by adjusting the directions
and magnitudes of the nodal forces. Shimada and Gossard [17] proposed a bubble-packing method for the grid
generation on non-manifold geometry. They used the list of points spanning the domain to define the centres of
packed bubbles, and the bubble locations were then optimised by iteratively solving equations of motion. They later
extended the bubble-packing method by generating grids on trimmed parametric surfaces for finite element modelling
[18]. Zheleznyakova et al. [19, 20] also proposed an approach to generate grids for finite element applications, but
based on the concept of molecular dynamic modelling. Nodes were taken as likewise charged interacting units that
could move to optimal positions in a parametric design domain of the NURBS surface. These particles were then
linked into well-shaped triangles using Delaunay Triangulation algorithm. The resulted triangles were then mapped

4
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from the parametric space to the physical space. However, this mapping of triangles from the parametric domain to
the 3D surface causes metric distortions in the grids, limiting the method’s application. Despite such physically-based
methods, there is still a need to develop suitable methodologies to generate grids specifically for the structural design
on free-form lattice shells that considers both grid uniformity and regularity.

This paper presents a framework for generating triangular grids with improved quality, employing a force-based
smoothing technique and a connectivity regularization algorithm to optimize the grid topology. The framework starts
with distributing a list of points spanning the design domain and applies a bubble-packing method and a Delaunay-
like triangulation algorithm to uniformize point distribution and generate a uniform grid respectively. The
connectivity of the uniform grid is then improved by iterative edge-operations to obtain a semi-regular grid with a
small number of extraordinary nodes. The semi-regular grid is smoothed by a net-like method and the final gird is
acquired. Section 2 introduces the NURBS technique and the gird to represent free-form surfaces. Section 3 gives an
overview of our grid generation framework. In Section 4, a bubble-packing method is introduced with the dynamic
simulation technique to achieve more uniformly distributed points, while a technique based on Delaunay triangulation
is described to connect the points into a triangular grid. Section 5 then presents a series of geometry operations to
improve the regularity of the grid connectivity. In Section 6, a net-like method is introduced to smooth the grid. In
Section 7, metrics are defined to quantify the element and fluency of grids for gridshell applications. Two case studies
are presented in Section 8 to illustrate the effectiveness of the framework and the resultant grids are evaluated by
edge lengths, shape quality indexes and fluency indexes. This paper, therefore, uses two physical-based methods for

the grid generation of free-form gridshells, a bubble-packing method and a net-like method.

2 Representation of surfaces

Although many mathematical models for the representation of surfaces have been proposed, NURBS (Non-Uniform
Rational B-Splines) [21] tend to be the most common in engineering applications and are widely used due to their
mathematically accurate illustrations of a variety of shapes, from a simple 2D line to a complex 3D surface, using a
relatively small amount of information. This section presents a brief on the definition of NURBS to set the scene for
the rest of the paper, since the proposed framework uses the NURBS models to parameterize the surfaces and curves
in the grid generation process.

A NURBS surface represents an arbitrary geometric shape by adjusting its knot weights and control points and

establishes a mapping relationship between the surface and its parametric domain. A complex CAD model is usually
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represented by a multiple surface in the design of free-form gridshells. The multiple surface comprises a set of
NURBS surface patches. Fig.3(a) illustrates a multiple surface made from five surface patches.

Discretized forms of surfaces (meshes/grids) are composed of a number of connected vertices, edges, and faces, as
shown in Fig.3(b). An edge (the connection between a pair of vertices) forming only one face is defined as a boundary
edge, whilst an edge which defines two faces is an interior edge. The endpoints of boundary edges are boundary

vertices, whilst other endpoints are all interior vertices.

Face
—— Interior edge b

Boundary edge ( )
L Interior vertex
Boundary vertex

(a)

Fig. 3 A multiple surface and its grid representation

3 Overview of the framework

An overview of the grid generation framework is presented in Fig.4. The starting point is a surface geometry which

remains fixed throughout the whole procedure. On this surface we wish to create an optimal grid shell
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Fig.4 Flow diagram of our scheme
The steps needed to generate a high-quality grid using this framework are as follows:
(1) The bubble-packing method is used to uniformly distribute the randomly generated node distribution on a given
surface by solving a series of dynamic motion equations to achieve a static equilibrium state.
(2) Delaunay triangulation-based method used to connect vertices into a triangular grid on the free-form surface.
(3) Connectivity of the grid is optimized based on the application of three basic edge operations: flips, collapses and
splits.
(4) The net-like method smooths the grid on the surface without changing its topology.
(5) Grid quantitative measures to evaluate the grid, including edge-length index, grid shape quality and grid fluency
index to allow comparison between initial and final designs.
The algorithms have been programmed in a plugin for the Rhinoceros-based parametric geometric modelling tool
Grasshopper [22], providing a parametric modelling environment suitable for use in design. The detailed procedure
of the grid generation framework would be presented in the following 3 sections using an example for illustration

purposes.

4 Initial grid generation

To illustrate the grid generation and optimization framework proposed in this paper, a glass facade of an air-corridor

structure from practice has been used as an example for the grid generation process, as shown in Fig.5. The gridshell



1

2

10

11

12

13

14

15

16

was due to be built as a facade of a large-span space structure and is a landmark in Wenzhou, China. The facade is

650m in length, 240m wide and 33m in height. Its surface model, S, is formed of 11 NURBS surface patches.

e ﬁ
D - ——

Fig.5 Surface representing a facade of a large-span space structure (units: m)

A set of points is first randomly generated on the surface, with the number of points, 7, given by Eq. (1) based on the
area A of the surface and a desired triangle area A, or edge length /, (generally estimated by the designer from

experience):
A A 2 A
naa, = ko, = kg O
0

ZXT

n==k

The coefficient of £, is initially presumed to be 1.0, however, it can be adjusted by trial and error in an interactive
manner. If the random placement of points leads to an element in the final grid being smaller than the desired /o, &,

can be decreased to reduce the number of points and obtain longer members. As Fig.6 shows, A is the area of an

1
equilateral triangle with side length lo. For each vertex of a triangle, the area allocated to the vertex will be 3Ao.

1
Since each vertex has 6 adjacent triangles, the total area allocated to each vertex will be 340 X 6 = 24,.
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Fig.6 Allocated area for an individual vertex (4g = %l% is the area of an equilateral triangle with side length [p)

Since the initially generated points are randomly distributed in the domain, the potential connectivity between points
will not be obvious (as shown in Fig.7) and a method to control the spacing within the domain is also needed to

produce grids with well-shaped elements.

Fig.7 Randomly generated points on a surface for a facade design

Physics-based methods have been effectively used to adjust the distribution of points to achieve more uniform
patterns. A bubble-packing method is adopted here to uniformly distribute the randomly generated points on the
surface directly, rather than using grid mapping from the plane to the 3D space.

When initial points are generated in the design domain, the bubble-packing method defines proximity-based,
repulsive/attractive inter-nodal forces between each pair of points. A dynamic simulation is then conducted to reach
a force-balanced configuration for the points. The algorithm is developed in accordance with the observation that a
pattern of tightly packed spheres on a surface mimics Voronoi polygons. With Voronoi polygons in the design domain
as a starting point, well-shaped Delaunay triangles can easily be created by connecting the centers of the tightly
packed spheres, constructing the dual. This paper adopts such a bubble-packing method to uniformly distribute the

randomly generated points before connecting them to produce a grid.

4.1 Bubble-packing method
The main assumption of a bubble-packing method in this context is that the nodes in the grid are assumed to be elastic
bubbles. In a physically-based dynamic simulation, the overlaps between bubbles generate inter-bubble forces ?ij,

defined as:
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In this equation, 4y is the linear constant of bubble springs; D; and D; are the diameters of the i-th and j-th bubble
respectively, and (_i)ij is the vector of displacement from bubble i center to the center of bubble j. To obtain uniform
grid edge length, the initial diameters of bubbles are assumed to be a single value Dy, which is one of the important
physical assumptions that determines the behavior of the bubble system. To distribute bubbles to the maximum extent
over the surface, Dy should be normally bigger than the desired edge length /y, such that the balanced bubbles will
stay in a static state of being squeezed and the possibility of creating ill-shaped grid elements is significantly lowered.
The interactive bubble forces in the i-th bubble are defined as the sum of all the interactive forces from all of the
other bubbles in the system (see Eq.(3)), such that a repulsive force is applied when two bubbles are located closer
than the stable distance D, (bubbles are overlapping). Most of the internal forces are zero since most bubbles are

further away from the range of interaction:
Ti= z Ti (3)

where 7 is the number of simulated bubbles. A force is also used to constrain the bubbles to the surface, so that the

centers of the bubbles stay on the surface, as shown in the following equation:

P =k -ds (4)
where k. is a linear spring constant for attracting the bubble to the surface and is much larger than the force between
bubbles, ESL- is the displacement vector from p;,, the location of the center of bubble i, to its closest point on the
surface. The attracting forces are applied to make sure that all the centers of bubbles stay on the given surface.

A resistance force, f;, of intermediate magnitude, is also imposed on the bubbles to simulate viscous damping, and

depends on the bubble velocity and acts in the opposite direction to that of the bubble’s motion:

f,=—k, -vi (5)
where k¢is the damping coefficient; ;i is the velocity vector of the i-th bubble.
As mentioned above, all the forces acting on a bubble come from the interactions with other bubbles, attraction to

the surface and viscous damping. The resultant force Fi acting on the i-th bubble is therefore calculated as the sum

of these components:
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Fi=Ti+Ps+f, (6)

where 1_51- is acted though p;, the center of the i-th bubble.

4.2 Dynamic relaxation

Given the inter-bubble forces defined above, the objective is to find a bubble configuration that produces a static
force equilibrium. Based on the force equations and Newton’s equations of motion, a dynamic simulation procedure
that assumes a lumped mass at the center of each bubble is employed to solve the force balancing problem. The
integration of these equations proceeds as follows:

(1) Define n bubbles in the design domain, with their center coordinates p; (x, y, z), and a lumped mass m for each
bubble.

(2) At time ¢ = 0 the bubbles are static with an initial zero velocity (i.e. 1_J)l-(t =0)=0).

(3) At time ¢ > 0 the unbalanced and residual force I?l-(t) produces an acceleration Ei(t) for the i-th bubble:

- Fi(®)
a;(t) =—, (7

(4) From the current positions gi(t), velocities 1_J)i(t) and accelerations Ei(t) of each bubble, the new positions and
velocities at time (#+J¢) can be predicted:
vi(t+8t)=vi(t)+ai(t)st (8)

si(t+3t)=si(t)+5si(t)=si “HM

ot ©)
where 6t is the (small) time step.

(5) The process is repeated from step (3), using the positions and velocities at time #+d¢ to calculate forces I?l-(t + 8t
) and accelerations Ei(t + 6 t) attime ¢+ oz. The cycle is repeated until | 8 gi(t) | is acceptably small.

With the above equations of motion, the remaining task is to determine a combination of physical parameters, namely,
the mass m, the damping coefficient ks and the linear spring constant 4, of inter-bubble force. Though this
requirement is not often discussed in physically based approaches, it clearly constitutes an important issue, since the
characteristics of the system are all determined by the above parameters. If these parameters are not chosen carefully,
the system may be very slow to converge, oscillatory, or in the worst case, completely unstable. As a result, it is vital
to select suitable values for these parameters so that the system strikes a balance between stability and efficiency. It

is recommended by Shimada and Gossard [17] that the physical parameters of the bubble system should be chosen

to satisfy the following relationship:
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The bubbles reach an equilibrium that is closely packed, within a relatively short number of steps, due to the action
of resistance forces due to viscous damping. Fig.8(a) illustrates the initial bubble distribution, while Fig.8(b) shows
the resulting bubbles in equilibrium over the surface. When the center-points of the bubbles are extracted from
Fig.8(b), the results are as presented in Fig.8(c), which shows clear improvement over that the initially generated

points (Fig.8(a)) in terms of uniformity of distribution.

(¢) Uniformly distributed nodes

Fig.8 Discretization of the facade surface using the bubble-packing method: (a) Initial nodes and bubbles; (b)

12
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4.3 Triangulation

The generated points are connected into a triangular grid according to a Delaunay Algorithm [23]. The procedure is

concluded as follows:

(1) Calculate the Voronoi diagram of the bubble centers obtained in Section 3.2. A Voronoi diagram is a partition of
space into domains based on the distance to given vertexes in a specific subset of the space. For each vertex,
there is a corresponding domain consisting of all points closer to that vertex than to any other.

(2) Compute the intersection curves between the Voronoi diagram and the surface S, which forms a Voronoi-like
diagram on the surface (Fig.9). More efficient algorithms can be found in [23-25].

(3) For each edge of the Voronoi diagram, connect the two adjacent points closest to the corresponding edge. Traverse
all edges of the Voronoi diagram and get the dual graph of the Voronoi diagram, namely the Delaunay
triangulation on the surface.

(4) Finally, delete the faces of the Delaunay triangulation that are outside the surface. The grid based on the balanced

bubble centers is thus obtained (Fig.10).

g
G‘Egﬁ 00a2
S T

=

Fig.10 Triangular grid based on optimized node placement (black nodes are connected with 5 edges and white
nodes are connected with 7 edges)
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It is shown in Fig.10 that the generated triangular grids are generally uniform and well-shaped, with most triangles
close to being equilateral. However, there are a number of interior nodes that are connected by 5 or 7 edges (the black
and white nodes in Fig.10), which causes the grid to appear to lack fluency, and a method is therefore required to
obtain more nodes with 6 connected edges, which would also ideally ensure more edges met at a node with an angle
of 60°, decreasing the number of more acute or obtuse angles. In this case, the generated grid will become more
regular and it seems likely that triangle shapes would be further improved. Section 4 will use edge operations on the

grid to improve its regularity and Section 5 will introduce indexes to measure its quality.

5 Connectivity regularization

With the initial point placements optimized and a uniformly-sized and well-shaped grid obtained, the next step of the
grid generation framework is to propose an effective algorithm to improve the grid regularity by adjusting its
connectivity. Topologically, a closed mesh with nonzero Euler characteristic must exist at least one irregular vertex.
The irregular vertices naturally appear in high discrete Gauss curvature regions in the mesh. Li et al. [26] proposed
an interactive framework to control the type, location, and the number of irregular vertices in a triangle mesh. An
improved algorithm based on Li et al. [26] is proposed to modify the grid connectivity, specifically for architectural
design while considering the impact of boundary curves.

The algorithm employs a series of edge operations such as edge-flip, edge-collapse and edge-split [27]. For each
edge, a regularization index is computed that depends on the degrees of its end points and opposite points. Any edge
for which this index exceeds a prescribed threshold will be adjusted until a more regular grid is obtained.

5.1 Optimization objective

The degree, d;, of the i-th vertex in a triangulation, is the number of edges connected to it. d,; is the optimal degree
of node i. For an equilateral triangular grid, the interior nodes have optimal degree d,;= 6, and for boundary vertices,
d,; is related to the boundary curvature and usually equals 4 to obtain 60° angles. To simplify the computational
process, adjustments are made to boundary vertices by assigning virtual degrees [27]. As shown in Eq.(11), the
adjusted degree at a boundary vertex is equal to the actual degree plus the virtual degree, which allows the target

adjusted degree, d ], to be the same for all points in the system:

. (d, P
dl- :{ i ple int (11)

di+vi’ piEPbou

where d is the adjusted degree for the i-th vertex, P;, and Py, are the interior and boundary vertices respectively
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and v; is the virtual degree, defined as the following:

4-k, o, <6 <¢,,,k=0,123,4
v = (12)
0, o, <6,

where aj = 60°k(k + 1), k=0,1,2,3,4,5 and 0i is the sum of the interior angles (in degrees) of the faces at the i-th
vertex.

For example, the simple grid in Fig.11 has a boundary point labelled p2 which has nodal degree d, = 5 and is

surrounded by 4 faces (fl-f4). The interior angles at p2 sum to 8, = 57° + 66° + 64° + 34° = 221° As

a3 =208°<6,=221°< o, = 268°, therefore k = 3 and the virtual degree of p2, v =4 -3 = 1. As a result, the

adjusted degree of the boundary point is d3 = 6. The degrees of other vertices in Fig.11 are also shown in Table.1.

Fig.11 A simple example to illustrate the calculation of degree at each vertex

Table.1 Degrees for vertices in the grid shown in Fig.11

Vertex number i 1 2 3 4 5 6
Actual degree d; 6 5 3 4 2 6
Virtual degree v; \ 1 2 3 4 0
Adjusted degree d 6 6 5 7 6 6

A vertex p; is regular if dj =6 and irregular if d} # 6. For better comparison, vertices in the following figures are
colored according to their adjusted degree, a vertex is labeled as black if d; <6 and white if d} > 6. Such vertices
are non-ideal, and will decrease the regularity and fluency of the grid and produce wrinkles. Therefore, improving
the regularity of a grid means minimizing the nodal degree residual (i.e. the divergence from all nodes having adjusted

degree 6), defined as the function R(G):

A, . P
=i, (13)
1-4, p ePy
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R =X_,(d}-6)° (14)
where 7 is the total number of grid vertices; y; is the weight of i-th vertex; A is the weight of interior vertices, and A €
[0,1]. The residual will reflect how much the mesh differs from the ideal equilateral triangular grid. However, the
irregular boundary vertices have less impact on the overall fluency of the grid, therefore, A tends to be larger than 0.5.
Studies carried out during the preparation of this paper has suggested that A= 0.9 leads to good quality grids, and as
such this value has been assumed for the rest of the work reported here.

5.2 Edge operations

The regularity of an edge depends on the number of non-ideal vertices at its ends. Potential edge operations are carried
out if any one of its end vertices is non-ideal. The regularization index of an edge depends on the adjusted degrees of
its end vertices and its two opposite vertices. Taking Figl2(a) as an example, the regularization index of the red edge
depends on the degrees of vertices p1-p4 and the nodal degree residual of an edge before and after the edge operation
are defined in Eq. (15) and Eq. (16), respectively. The change in nodal degree residual of an edge before and after an
edge operation AR; is defined in Eq.(17). The edges with sma aller value of AR; will be operated in priority. As
shown in the lower part of Fig.12 (a), when an edge is flipped, the degree of the four vertices (p1-p4) is changed. A

R; is calculated from Eq.17 and if AR; <0, the edge-flip has been effective in reducing R(G).

R, =3 yld — 6 (15)
R, '=y,d; =7V + 7,(d; =57 + y,(d; =7 +7,(d, —5) (16)
AR; =R(G')~R(G)=R,'-R, (17)

where d7 is the adjusted nodal degree of p; in the original grid and i =1,2,3,4; G and G’ are the grid before and
after the edge-operation respectively. For an edge with non-ideal endpoints, the edge might benefit from operations
including edge-flip, edge-collapse and edge-split, as shown in Fig.12. The edge-flip procedure, shown in Fig.12(a),
can be beneficial when the two endpoints of the edge are white (d; > 6) and one of its adjacent point is black (d }
< 6). When both endpoints are black, the edge needs be collapsed to increase the nodal degree at both vertices, as
shown in Fig.12 (b). If both its vertices are white but the two adjacent vertices are ideal, this edge should be split as
shown in Fig.12 (c). After splitting, two of its neighboring edges will need to be flipped according to the rule defined
in Fig.12(a). It can be seen that edge-collapse and edge-split operations usually will not generally decrease the nodal
degree residual R(G) directly. Nevertheless, the distribution of non-ideal vertices is changed and further edge-flip

operations on neighboring vertices then become effective.
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Fig.12 Types of edge-operations
If the endpoints of an edge both are irregular (colored), the edge is a featured-edge. Specifically, if one endpoint of
an edge is a white while the other endpoint is black, the edge is termed a drifting edge. The operations allow the
movement of the white and black vertices across a regular region of the grid. When drifting edges meet other non-
regular vertices or featured edges, effective edge-flips, edge-collapse or edge-split can be conducted and the nodal
degree residual decreased. As shown in Fig.12 (d), when a featured edge with one white vertex and one black vertex
drifts to the boundary, with one boundary vertex, operations can be carried out to reduce R(G) further. If the
boundary endpoint is black, the singularity of both endpoints can be eliminated by collapsing a boundary edge (Fig.12
(e)). If the boundary endpoint is white, the singularity of the interior endpoint can be transferred to a boundary vertex

by splitting a boundary edge (Fig.12 (f)). As A<I, both the boundary edge-collapse and edge-split operations can
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reduce the nodal degree R(G). Fig.13 illustrates this in practice, where the featured edges and vertices of the large-
span space structure surface can be identified. However, the edge-collapse and edge-split operations will change the
number of vertices n. As n is related to the grid size, n is usually limited to a certain range, which is a constraint to
the optimization. The edge-collapse and edge-split operations can therefore only be performed whilst #» does not
exceed the range.

e irregular vertices with valence < 6

s irregular vertices with valence > 6
— unchanged edges
— edges to be flipped

— edges to be split
edges to be collapsed

VAVAVAVAY)
AVAVAVA%A%

Fig. 13 Edges to operate

The algorithm to regularize connectivity requires a series of local operations, including edge-flips, edge-collapses
and edge-splits and edge-drift. In the authors’ software implementation, the irregular edges are stored in an ordered
queue, and the edges with the smallest AR; are given the highest priory. After each edge-modification the queue
priorities are updated. That is, the algorithm always performs effective edge-flips on irregular edges according to
their priority. Once edge-flips have been applied, edge-drift, edge-collapse and edge-split operations are performed.
These steps are repeated until there are no featured edges except drifting boundary edges on the boundary.

Grid optimization with the objective to minimize R(G) as described above can easily converge to a local minimum
rather than global minima. At this point, there may be some isolated irregular vertices among the generated grid.
Based on the simulated degradation method, one technique is to perform edge-collapse or edge-split to the edges
connected to the isolated irregular vertices randomly, which will cause R(G) to rise, and then perform conventional
optimization to reduce R(G). The irregular vertices can, therefore, be transmitted to the boundary of the grid or even
be eliminated directly. However, the computational cost of this algorithm for the search of global minima is high [28]
and the edge segmentation or merging will change the number and distribution of nodes, which will in turn decrease
the uniformity of the gird. An alternative method is to allow users to specify the operations for isolated irregular
vertices and to further optimize the grid in an interactive way within the framework. This method requires only a
limited amount of manual intervention and can rapidly regularize the grid. The method is outlined by Algorithm 1and

a work-flow is presented in Fig 14.



Algorithm 1 connectivity regularization:

Input: G, an irregular grid
Output: G, the adjusted grid

while the maximum number of loops is not reached:
dR list <= enumerate all edges to calculate AR
sort(dR_list), from small to big
while dR_list [0]<0:
ce < dR_list [0]’s corresponding edge
flip(ce)
update dR_list
end while
R_list — enumerate all edges to calculate R
sort(R_list), from big to small and if equal, corresponding edge with two irregular vertices in same type
ahead
if R_list [0]>=2:
ce < R list [0]’s corresponding edge
switch type(ce):
case two black vertices:
collapse(ce)
case two white vertices:
split(ce)
case one black one white:
drift(ce),until encounter other irregular vertices or reach the boundary
end switch
else:
mark all irregular vertices
the user perfom operations to the edges with Rj >0 interactively
end if
end while
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Fig.14 Flow diagram of the algorithm to regularize connectivity

The algorithm to regularize connectivity is incorporated into the authors’ framework. When this algorithm is applied
to the surface in Fig. 13, a grid with fewer irregular vertices is found, as shown in Fig.15, which in this case has

managed to remove all interior vertices with valence # 6, leaving irregular vertices only on the boundary.

e irregular vertices with valence < 6
- irregular vertices with valence > 6
— unchanged edges
—— new edges

4 N
AVAVAVAVAVAY
KRR

Fig.15 Regularized grid

6 Grid relaxations

A consequence of the edge operations above is that, whilst improving the topological regularity, the triangles of the
resulting grids become less equilateral. A net-like method is therefore used to re-smooth the generated grid on the
surface without changing its improved topology. The net-like method, which is also physically based, is similar to
the principle of the bubble-packing method. However, the net-like method only takes into account the interaction

between connected nodes, and only adjusts the placement of these nodes by a relatively small amount. The objective

20
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of the net-like method is to relax the grid to achieve the overall uniformity of grid size without changing the topology

of the grid.
The triangular grid is treated as a net of springs. Each edge is assumed to be a linear spring, and each vertex is
modelled as a particle with a lumped mass m. For the i-th particle p;, there are n; particles connecting it, and the

resultant spring force at particle p; is calculated by Eq.(18) and Eq. (19):

(18)

Ti'=' Tij' (19)

where ky, is the linear spring constant, Zi ; is the displacement vector from the i-th particle p; to the j-th particle p;, Iy

is the constant slack-length of the spring and is defined as the average value of all edge lengths across the surface:

l=1=2 (20)

where 7. is the total number of edges, and /; is the j-th edge length.
For boundary vertices, there are also boundary attractive forces defined to keep the boundary particles on the

boundary:

21

¢ =

= kc 'aci’ p,- ePnak
0, p; EPint

-

where k. is a linear spring constant for the attractive force of the boundary curve, and %, is much larger than k&;,; d;
is the displacement vector from p; to its closest point on the curve.
Similar to the bubble-packing model presented in Section 3.1, the surface attractive force, the boundary anchoring
force and the viscous damping forces are summed to compute the resultant force acting on the i-th particle:
F=Ti4Pa+Ps+f, (22)
The dynamic simulation procedure presented in Section 3.2 is once again employed to solve the dynamic motion
equations presented in Eqns.(7)-(9) to obtain a static force equilibrium of the net-like system. For the triangular grid
in Fig.15, the method is employed to relax the grid and the result is shown in Fig.16. It can be seen that the new grid

is more uniform and fluent, and looks very suitable for free-form grid structure design, but a more robust measure of

this suitability is required to allow formal comparison.
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Fig.16 Relaxed grid

7 Grid quality evaluation

Architects or engineers usually evaluate grids based on visual checks. This requires the designers’ experience to
assess the quality of grids in terms of uniformity, regularization and fluency. Quantitative methods are therefore
essential to evaluate the quality of architectural grids of free-form surfaces. Grid quality indices, such as face shape
quality and edge length, can give an overall description of the quality, but these indices are once again mainly focused
on FEA applications and have not been derived in the context of structural gridshells. The authors therefore present
a new index to assess the fluency of triangular grids, whereby improved fluency means a better visual expression of

a grid structure as required in most architectural applications.

To quantify the grid quality in terms of edges, the coefficient of variation is used based on statistical principles [29]:

Ne

S -1y
Sl =— (23)
n -1

r=s)/1 (24)

The smaller the coefficient , the more uniform the edge lengths.
To evaluate the grid quality in terms of triangles, the triangular shape index ¢, defined by Eq.(25), is used. Since
equilateral triangles are desired in a grid structure design, a larger mean value of the triangular shape index implies

the better shape of the triangular grid:
g=a3——2 (25)

where 4, is the triangle area; [,, [, and I, are the side lengths of the triangle. q € [0,1], and for an equilateral triangle

q = 1, while for a degenerate triangle (three points collinear), ¢ is taken as zero.
Grid fluency is an important aspect in evaluating a free-form gridshell, however there is no previously proposed
standard and qualitative measurement for the assessment of grid fluency. An index is therefore proposed to evaluate

the fluency of a triangular grid. As discussed in Section 4, the nodal degree residual R(G) of a gridshell is related to

22
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the fluency of a grid, the average nodal degree residual, , is therefore calculated from Eq.(26) and (27):

n =in_ +(1-2n,, (26)
o 27)
n

where R(G) is defined in Eq.(14), n;y is the number of interior vertices , ny,, is the number of exterior vertices and
RintHipow = 7. It is worth noting that ™ is the number of grid vertices adjusted by 4 to differently weight the boundary
and interior node degree.

For a node with degree 6 (an ideal point), another factor that can affect the fluency is the angle between two opposite
edges and the opposite angles at the point. As shown in Fig.17, if the edges E1 and E4 are in a straight line (i.e 1,4
= 180°), a more fluent triangular grid will be achieved. It is also expected that the opposite angles between edges

E1 and E2 (1) and the angle between edges E4 and E5 would be the same in a more fluent grid.
Es Es
P

b1 N Pra E4

E>
E;

Fig.17 Angles of a node

As a result, an angle fluency index & of an interior regular vertex is defined by Eqns.(28)-(30).

3
D (B, —180°)
j=1
3

k=j+3 (28)

Z(ﬂj _ﬂj+3)2
3

S, =+ol+1° (30)

where §; denotes the angle fluency index of the i-th vertex; ;) denotes the angle between the j-th edge and the -

(29)

th edge and f; denotes the angle between the j-th edge and the (j+1)-th edge, as shown in Fig.17. The smaller the
angle fluency index of a regular vertex, the more fluent the grid around that vertex.

A simple grid in Fig.18 is evaluated by using this index as an example. p2 is an ideal point with 6 equilateral triangles,
the angle fluency index is & = 0°. The points p3 and p9 are visually non-ideal, and the angle fluency index is as large
as 40.7° and 53.9°, respectively. As shown in Table.2, the magnitude of &; reflects the grid fluency around each

23



1 pointi. Fig.19(a) and Fig.19(b) mark the vertices of the grid before and after the grid relaxation process described in

2 section 5, coloring the vertices according to their angle fluency indexes. It can be seen that the grid relaxation process

3 significantly smooths the grid as the angle fluency indexes of the vertices reduce obviously.

4
Fig.18 A planar grid with 9 nodes
6
7 Table.2 Fluency index of interior vertices
Node
pl p2 p3 p4 p3 po6 p7 p8 P9
number
o (°) 16.8 0.00 28.8 6.90 245 32.8 24.5 0.841 383
7 (°) 11.9 0.00 28.7 4.90 24.5 32.8 24.5 0.800 37.9
5(°) 20.6 0.00 40.7 8.46 34.6 46.4 347 1.18 53.9
8
9
10 (a) Regularized grid (b) Relaxed grid
11 Fig.19 Angle fluency indexes of interior vertices

12 The overall fluency index, O, of a grid is defined in Eq.(31) by including the nodal degree residual and angle fluency

13 index taken from Eq.27 and Eq.30 respectively. The fluency index Q is therefore used to make a comprehensive

14 evaluation of the quality of the entire grid, with the larger the value of O, the more fluent the generated grid structure.
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1
where the coefficient kg = ¢ to make the units comparable and the proportion of the interior regular vertices, p,

is defined as:
p=—r (32)

where n;,, is the number of interior regular vertices.
8 Case studies

Case studies are presented in this section to illustrate the application of the proposed framework. For case studies,
the linear spring constant of bubbles £, is set to be 10. The original diameters of bubbles d, are assumed to be 1.2
times of the desired length /y. The linear spring constant k. for attracting the bubble to the surface is set to be 100

while the damping coefficient k¢ is set to be 1.

8.1 Hexagon triangulation

Fig.20 presents a simple benchmark example of a hexagonal design domain in which 61 points are randomly
generated. The bubble-packing method was firstly employed to regularize the nodal placement, as shown in Fig.21
(a). The Delaunay-like triangulation was then used to generate the initial triangles in Fig.21(b). Connectivity
optimizations were subsequently conducted in Fig.21(c) to eliminate the non-ideal internal points. However, at this
stage the grid edges are no longer uniform, and the net-like method was employed to relax the grid and the result is
shown in Fig.21(d). It can be seen from Fig.21 that the expected regular triangulation is achieved using the framework

presented above.

Fig.20 Given surface for grid generation: (a) A hexagon design domain; and (b) 61 randomly generated points
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Fig.21 Grid generation procedures for the triangulation of a hexagon design domain with 37 internal points
and 24 boundary points: (a) Point uniformization; (b) Triangulation; (c) Connectivity optimization and (d) Grid

relaxation

Fig.22 investigates the influence of the number of initially generated points. In the grid shown in Fig.22(a), precisely
36 interior points were inserted, and all non-ideal points were eliminated using the connectivity optimization. The
grid relaxation has also been employed to improve the smoothness of the grid. In the grid shown in Fig.22(b), 38
internal points were inserted. Neither of these grids stabilized to eliminate all the irregular connections. The black
and white nodes presented are located and oriented in such a way that further refinement is impossible to improve

the node connectivity, even if continuing to apply the edge operations indefinitely.
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Fig.22 The influence of the number of initial points (a) 60 points and (b) 62 points

8.2 A gridshell roof

Fig.23 presents a more complex example for the grid generation over a free-form surface for a gridshell roof taken
from a real project. It is 78 m in length, 39 m in width and 12 m in height and contains 2 closed voids to provide light
to the building below and one open void as an entrance. The grid generation framework proposed in this paper has
been used to generate the grid for the design. The bubble-packing method was first employed to smooth the randomly
generated set of points and Delaunay triangulation was used to connect the points. From the results, shown in Fig.24,
it is clear that the degree of a significant number of the connections is non-ideal and the grids are therefore not fluent.
In Fig.25, the final grid, optimized using the authors’ scheme, is not only very uniform, but also dramatically increases

in fluency. The result is likely to be preferred by the architects due to its more aesthetic visual appearance.
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Fig.25 Grid by the connectivity regularization and net-like method: (a) Top view and (b) Perspective view
For comparison, a guide-line method based on surface flattening is employed to generate grids over the surface. The
method flattens the surface onto a plane, arranges a uniform grid on the planar surface, and controls the grid
generation direction with a guide line. A spatial grid is then obtained by mapping the grid in the plane back onto the
surface, as shown in Fig.26. The blue areas are meshes trimmed by the boundary curves. The generated grids possess
good fluency and uniformity generally, but the meshes near the boundary are not uniform and the number of nodes

is large, which makes it difficult to be directly employed for the design of practical grid structures.
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Fig.26 Grid by the guide line method: (a) Top view and (b) Perspective view

The grid quality indices for the facade of the space roof structure (roof 1) and the gridshell roof (roof 2) are presented
in Table 3. As shown in Fig.26, the grid generated by the guide line method exhibits significant polarization, that is
the internal grid (gray region) is of very high quality with » =4.85x10-2, g = 0.993 and Q = 7.81 while the grid near
the boundary (blue region) is of poor quality. For a surface with such complicated boundary curves, the proportion
of the meshes trimmed by the boundary line is relatively large, resulting in a grid with lower quality.

The grids optimized by the proposed scheme are excellent in terms of edge uniformity, grid shape quality and fluency
index, as shown in Table 3. The resulting average edge length of both roof 1 (from Section 6) and roof 2 (from Section
8.2) are close to the expected member length of 24.4m and 3.1m, respectively. Compared to the grids generated by
only the bubble-packing method [30], the results from the connectivity optimization have smaller fluency index in
terms of point degree (improved connectivity) in both roof 1 and roof 2. However, for roof 1, the edge length index
and angle fluency index deteriorate due to the presence of more ill-shaped triangles resulting from the edge operations.
For both roof1 and roof2, the grids are of relatively excellent shape with g > 0.97 and uniform edge lengths with

< 0.1.

For both roof 1 and 2, after the grid connectivity optimization, the degree fluency index p reduces by 75% and 74%
respectively. By using the proposed framework, the fluency index of the whole grid Q has been improved by 157%

and 118%, for roof 1 and roof 2, respectively.
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1 Table. 3 Grid quality indexes
I | s2 _ B
Cases Procedures Results 5 r q U . 0]
(m) | (m?) @)
Bubble-
packing 25.1 4.52 847 | 0976 | 0.351 | 19.9 1.10
method
Roof 1 | Commectivity 252 | 114 | 1340 | 0.942 | 0.089 | 26.6 | 2.03
optimization
Net-like 244 | 530 | 944 | 0980 | 0.089 | 17.5 | 2.83
method
Bubble- 0.075
packing avs 3.18 { 862 | 0.972 | 0.439 | 14.5 1.61
\VAVA
method '5,‘4%:,. .ié?lé -
Connectivity 310 | 0.150 | 1250 | 0.978 | 0.116 | 122 | 327
optimization . o.vi|
Roof2
Net-like & X 3.09 | 0.101 | 971 | 0985 | 0.116 | 10.8 | 3.52
method N . 1AvaY
VAVAVAVAVAVAY
TREeD
Guide line 3.01 | 0.146 | 485 | 0993 | 0 | 837 | 7.81
method hravay p
AV‘VAVAV
2
3 9 Conclusion
4  To automatically generate grids over a complex free-form surface for architectural design, this paper proposes a new
5  grid generation and optimization framework. The framework relies on a physically-based bubble-packing model and
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a geometry edge operation to achieve triangular grids with balanced rod-lengths and regular grid connectivity. Firstly,
an appropriate number of vertices are estimated based on the desired rod-length and the area of the free-form surface,
and points are randomly generated and distributed over the surface. A bubble-packing model is then employed to
smooth the initial points and a Delaunay Triangulation method is used to connect the generated vertices to obtain an
initial triangular grid with balanced edge-length. Subsequently, a series of edge operations, namely edge-flips, edge-
collapses and edge-splits, are carried out to improve the regularity of the grid connectivity and a grid with a reduced
number of irregular vertices is obtained. Finally, a net-like method is employed to re-smooth the grid, and a uniform
and fluent grid is consequently acquired. The proposed grid generation framework is robust, effective and can be
applied to free-form surfaces with complex boundary curves. In addition to conventional quantitative measurements
to evaluate the grid quality in terms of uniform edge lengths and grid cell shape quality, a new index is presented to
evaluate the fluency of grid, which is an important requirement for architectural design. Examples have been
presented that show the effectiveness of the proposed framework for grid generation and quantitative evaluation. By
using the proposed framework, the fluency index of the grid was improved by up to 157% for the presented examples.
The proposed framework can generate triangular grids for the design of free-form gridshell with complex boundaries
and the framework has been shown to be useful in facilitating the conceptual design process of free-form gridshells
in engineering practice.

The proposed framework is not always applicable to grid generation over a surface that has a sharp change in
curvature and a small spatial distance between two patches. However, the framework can be adapted to generate a
coarse grid, of an appropriate scale, over the surface first, and then subdivide and relax the grid to obtain a relatively

uniform and fluent semi-regular grid.
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