
MA50174 Advanced Numerical Methods

Assignment 3 Initial value problems

• Set: Monday 21st November

• To be handed in: Friday 2nd December, by 12.00 to Maths Department Reception Desk. You
need to sign your work personally together with a signed coursework cover sheet.

• Handing in your work. Please write your Matlab codes to a CD and hand them in together
with the written part of your work. There will be no marks for typesetting your work (using,
for example LATEX) but it is your responsibility to make sure your work is well-presented and
readable.

All work which you hand in should be your own. Cheating is a serious offence and will
be dealt with under the University disciplinary procedures.

This assignment should typically take about 15 hours. If you spend significantly more than this on
the assignment then you may disadvantage yourself with regard to other courses.

You have a limit of 10 pages (excluding Matlab codes).

Matlab uses several algorithms for finding the numerical solution of initial value differential equation
problems. In this assignment we will look at both the inbuilt Matlab functions and also some other
methods, for both stiff and non-stiff problems.
We start the assignment by looking at the performance of some integrators on non-stiff initial value or-
dinary differential equations. These are problems for which all of the components evolve simultaneously
on comparable time-scales. Non-stiff problems are often solved by using explicit methods usually with
some error control.

1. Consider the following system of non-linear first order differential equations u̇ = f(t,u), u = [x, y]T

given by

ẋ(t) = αx(t) − βx(t)y(t)

ẏ(t) = δx(t)y(t) − γy(t),

with initial conditions x(0) = 2 and y(0) = 1 and parameters α, β, γ and δ. These equations are
a simple case of the so-called Lotka-Volterra equations, also known as predator-prey equations.
They are frequently used to describe the dynamics of biological systems in which two species
interact, one a predator and one its prey. x(t) is the number of prey and y(t) represents the
number of predators in a population at time t.

(a) Implement the function f in a function file f.m for α = β = 10 and γ = δ = 1. Then, write
a Matlab script method1.m which implements the forward Euler method for this problem
over the time interval [0, 5] where the step size h should be provided by the user. [1]

(b) Write a Matlab script method2.m which implements the following method

Un+1 = Un + hf(tn +
h

2
,Un +

h

2
f(tn,Un)), U0 = u(0) (1)

for this problem over the time interval [0, 5] where the step size h should be provided by the
user and plot the approximations to the solution x(t) and y(t) in the same figure. [1]



(c) Investigate the convergence behaviour of method (1) and the forward Euler method: Use
step sizes 2−j , j = 4, . . . , 10 and calculate the norm of the error at time t = 5. Hence, by
finding the convergence rates of both methods, compare their performance and explain your
results theoretically by examining the truncation error. [2]

(d) Change the intitial conditions to x(0) = y(0) = 1, run Euler’s method and repeat the
calculation of the error norms. What do you observe? Explain your findings theoretically.[1]

2. We will investigate the problem of the angle of swing θ of a simple pendulum of unit length, which
in a unit gravitational field, without damping, satisfies the differential equation

d2θ

dt2
+ sin(θ) = 0, θ(0) = α < π,

dθ

dt
(0) = 0. (2)

(a) Show (analytically) that the energy (or Hamiltonian) H(t) defined by

H(t) =
1

2

(

dθ

dt

)2

− cos(θ), (3)

is a constant of the motion, and evaluate this constant. [1]

(b) The pendulum equation (2) is an example of a Hamiltonian system of the special form:

H =
1

2
p2 + V (q),

dq

dt
=

∂H

∂p
,

dp

dt
= −

∂H

∂q

Express the equation with initial conditions given in (2) using a vector differential equation
and identify p and q. This can be solved by using a symplectic integrator with a time step
h ≪ 1. Suppose that qn, pn and Hn are the numerical approximations of q(t), p(t) and H(t)
at the time t = (n − 1)h. Two explicit symplectic integrators that can be used when the
Hamiltonian has the special form are:

symplectic-Euler: qn+1 = qn + hpn, pn+1 = pn − h sin(qn+1),

Störmer-Verlet: q∗ = qn +
h

2
pn, pn+1 = pn − h sin(q∗), qn+1 = q∗ +

h

2
pn+1.

Write a Matlab script pendulum.m which implements (on request) either the forward Euler
method, the symplectic Euler method or the Störmer-Verlet method for solving the pendulum
equation (2) with a requested h and α over a time interval [0, T ]. The code should generate
sequences qn, pn and Hn. [1]

(c) Apply the code in the case of T = 100, h = 0.1 and α = 0.25, comparing the results of the
forward Euler, symplectic Euler and Störmer-Verlet method by plotting the points (qn, pn).
Which do you think is the better method for this problem and why? [1]

(d) Suppose that α and hence q and p are initially small. By using a suitable approximation
of (2), write a linear system in Hamiltonian form using the variables p̃, q̃, H̃ . Then find a
matrix A so that if Un = (q̃n, p̃n)T are the solutions of the forward Euler method applied to
this system, then

Un+1 = AUn.

Hence, or otherwise, show that in this case
(

(q̃n+1)2 + (p̃n+1)2
)

=
(

1 + h2
) (

(q̃n)2 + (p̃n)2
)

.

[1]

(e) Find a corresponding matrix A for the symplectic Euler method applied to the linear system.
Hence show that if (q̃n, p̃n) is a small solution of the symplectic Euler method then there is
a constant C so that

(q̃n)2 + hq̃np̃n + (p̃n)2 = C.

Using this result and that in (d) give a brief explanation of the results of your computations
in (c). [2]



3. We now look at stiff differential equations. When solving a stiff equation a numerical method
has a step size which is restricted by considerations of stability rather than accuracy. Matlab

uses the functions ode23t and ode15s to solve stiff problems. Both of these usually involve
solving nonlinear equations in order to timestep. Stiff equations are very common in applications;
examples arise in the study of chemical reactions. We start with some theoretical investigations
before applying the results we have derived to a problem arising in chemical engineering.

Suppose that u satisfies the differential equation

du

dt
= f(u) ≡ Λu, Λ =

(

−100 1
0 −1

)

u(0) = (2, 2)T .

(a) Find the solution u(t) to this system. [1]

(b) Show that if the forward Euler method is used to solve this differential equation, with Un

approximating u((n− 1)h) then

Un = (1 + hΛ)n−1U1.

Let Ah = I + hΛ. Show that Un will grow without bound if h > 2/100. This method is
unstable if h > 2/100 = 0.02 and this imposes a restriction on the step size we can use. [1]

(c) The absolute truncation error E that is made at each step of the forward Euler method
between t and t+ h is given by

E =
h2

2
|u′′(ξ)|, ξ ∈ [t, t+ h].

The relative error R is given by R = E/|u|. If we want a relative error of 0.5× 10−2 at each
step when calculating the solution, show that we could in principle use a step size of h = 0.1
in the latter part of the calculation. What step size do we in principle need to use in the
initial stages of the calculation? [1]

This shows that in the initial stages of the calculation (when u is varying rapidly), the step
size is restricted by considerations of accuracy and in the latter stages by consideration of
stability. To avoid the growth of small errors in the latter stages of the calculation the method
is working too hard. This is the hallmark of using a non-stiff method on a stiff problem. The
function ode45 behaves in a very similar manner.

4. The trapezoidal rule is widely used to solve stiff ordinary differential equations. It combines
stability with accuracy and ease of use. It is also a symmetric method which makes it especially
suitable for solving differential equations which remain unchanged when time is reversed. Matlab

has a trapezoidal rule method ode23t. The trapezoidal rule is defined by

Un+1 = Un +
h

2

(

f(Un) + f(Un+1)
)

.

If f(u) is a nonlinear function, then, at each time step, a nonlinear system must be solved.

(a) Show that for the problem in Question 3 we have

Un+1 = BhU
n,

for some matrix Bh which you should identify. Hence show that this method is stable for all
(positive) h i.e. Un does not grow without bound. [1]

(b) The absolute truncation error at each stage of the trapezoidal rule is given by

E =
h3

12
|u′′′(ξ)|, ξ ∈ [t, t+ h].

Find choices of step size h for the initial and final stages of the calculation so that the relative
error R = E/|u| is less than 10−2. Compare these with the step sizes for the forward Euler
method and comment. [1]



5. The HIRES problem is a stiff system of 8 nonlinear ordinary differential equations. HIRES stands
for the High Irradiation Responses of photomorphogenesis on the basis of phytochrome, by means
of a chemical reaction involving eight reactants. The concentration of the reactants is given by the
vector u(i) with i = 1, 2, .., 8 and each differential equation describes a chemical reaction as part
of an overall process which is influenced by the presence of enzymes. It is a typical example of the
sort of problems that arise in chemical engineering and/or biochemistry. Details of the problem
are given in:

E. Schäfer, A new approach to explain the ’high irradiance responses’ of photomorphogenesis on
the basis of phytochrome, J. Math. Biology, 2, (1975), 41–56.

We now integrate this system, using the explicit ode45 (for which, as an explicit method, the
step size is restricted by considerations of stability) and the variable order stiff solver ode15s (for
which, as an implicit method, the step size is determined by considerations of accuracy rather
than stability, but involves solving nonlinear equations at each step). The ode15s algorithm is
very powerful and should be used for most stiff problems.

The HIRES system takes the form

du

dt
= f(u), u(0) = u0.

Here

f(u) =

























−1.71u1 + 0.43u2 + 8.32u3 + 0.0007
1.71u1 − 8.75u2
−10.03u3 + 0.43u4 + 0.035u5
8.32u2 + 1.71u3 − 1.12u4
−1.745u5 + 0.43u6 + 0.43u7
−280u6u8 + 0.69u4 + 1.71u5 − 0.43u6 + 0.69u7
280u6u8 − 1.81u7
−280u6u8 + 1.81u7

























and the initial values are given by u0 = (1, 0, 0, 0, 0, 0, 0, 0.0057)T .

(a) (i) Write a Matlab script file hires.m which integrates this problem over the range t=[0

321.8122] using either ode45 or ode15s with the default parameters. Calculate the solution
[t,u] in each case (you will have to wait for the ode45 calculation) and plot (on the same
graph) log(h(i)) as a function of t(i) in both cases, where h is the vector of time-steps
h(i) = t(i+ 1) − t(i). [1]

(ii) Modify the script file so that it uses the options = odeset(..) function to set up
a relative tolerance ’RelTol’ equal to 10−(4+m/4) for m = 0, 1, 2, .., 24 and an absolute
tolerance ’AbsTol’ equal to ’RelTol’. For each of these values of m determine the cputime
that it takes to run the calculation when using either ode45 or ode15s. (See help cputime

for details of this command). Plot (separate) graphs in each of these two cases of the cputime
as a function of m. [1]

(b) Using the results of Questions 3 and 4 give a careful qualitative and quantitative explanation
of the form of each of the graphs in (a)(i) and (a)(ii), comparing ode45 and ode15s, and
giving a mathematical justification where necessary. [2]

6. For the ODE and initial data given in problem 3, implement the second order Runge-Kutta scheme
(problem 1, part (b)) and the trapezoidal scheme (problem 4) on the interval [0, 1] with stepsize
h = 2−j for j = 2, 3, . . . , 10. Plot the error at T = 1 for both methods on the same graph on a
log-log scale. Discuss what your graph shows. [Extra Credit 2]

Paul Milewski


