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Introduction

Spectromicroscopy is a powerful tool used in many disciplines
to understand the chemical speciation of a specimen at the
microscopic scale.

Typically the intensity of precise x-ray beams are measured
over a 100× 100 grid and at 150 energy levels.

Experiments take several hours, creating a bottleneck.

Proposed Solution

Undersample the measurements taken of a specimen and use
numerical techniques to recover the missing entries.
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X-ray Absorption Spectroscopy (XAS)

Used to determine material
composition.

Measures the intensity of
transmitted x-rays: I t(E ).
From this we infer the
absorption coefficient: µ(E ).

Absorption is based on the
atoms’ core electron
excitation energies.

I t(E ) = I 0 exp(−µ(E )t).

(a) Transmission Setup

(b) X-ray Absorption Fine Structure, mu(E)

Figure 1: Spectroscopy Illustrations
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Scanning Transmission X-ray Microscopy (STXM)

Spectromicroscopy combines spectroscopy with microscopic
techniques - this particular experiment is called STXM.

STXM repeats the spectroscopy experiment at many points in
a grid pattern (raster) at the microscopic level.

We store the optical density in tensor D ∈ RnE×n1×n2 , so that

Di ,j ,k = − ln

[
I tj ,k(Ei )

I 0

]
= µ(Ei )tj ,k .

Figure 2: STXM Illustration
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PCA

Flatten the data:
A ∈ RnE×N ,N = n1n2.

We wish to filter out noise.

Use PCA to characterise the most
significant variations of the data:

A = C · R,

with C ∈ RnE×nE , R ∈ RnE×N .

Columns of C are the eigenvectors
of the covariance matrix
Z = A · AT , so orthogonal.

Define R = C−1A = CTA.

(a) Columns of C

(b) (Reshaped) Rows of R
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Choice of Low Rank

To remove noise and interference, we compute low rank
A′ = C ′R ′, where C ′, R ′ are the first L columns, rows of C , R
respectively.

Set L at the elbow point of the
SVs of A - point of max curvature.

To find this, use the KNEEDLE
algorithm.

KNEEDLE finds the maximum
orthogonal distance to the line
through the 1st and 20th data
point.

Figure 4: Illustration of Kneedle on DS1
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Cluster Analysis

We identify pixels with similar spectra through cluster analysis.

Use kmeans to cluster the columns of R ′ in L-dimensional space.

Taking the mean of the columns of A corresponding to pixels in a
given cluster approximates the absorption spectra of that material.

Figure 5: Cluster results of DS2 with k = 5.
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Low Rank Matrix Completion

When presented with sampled data, assume there is an underlying
low rank matrix. Find this by solving:

Definition (Low Rank Completion Problem (LRCP) for STXM)

Let Ω be the set of known entries of the data A ∈ RnE×N . Define
PΩ : RnE×N → RnE×N as the orthogonal projection onto the space
supported by Omega:

(PΩ(A))ij = Aij if (i , j) ∈ Ω, (PΩ(A))ij = 0 otherwise.

We wish to solve:

min
X∈RnE×N

rank(X ), subject to PΩ(X ) = PΩ(A).
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Sampling Methods

Define the undersampling ratio p = |Ω|/nEn1n2.
Bernoulli Method: Each entry sampled i.i.d. with probability p.
Raster Sampling: block entries in their (physical) rows for greater
experimental efficiency.
Robust Raster Sampling: Slightly reduce randomness to ensure no
zero-rows or zero-columns can occur.

(a) Bernoulli Sampling (b) Raster Sampling

Figure 6: CaptionOliver Townsend
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Alternating Steepest Descent (ASD)

ASD is the method of choice.

Fix the rank r by setting the following decomposition:

A = XY , A ∈ RnE×N , X ∈ RnE×r , Y ∈ Rr×N

r must be set as an input.

We now optimise the following function:

min
X ,Y

f (X ,Y ) f (X ,Y ) =
1

2
||PΩ(A)− PΩ(XY )||2F .

There are also scaled and looped variants:
ScaledASD and LoopedASD.

Oliver Townsend



Introduction Spectromicroscopy Current Analysis Matrix Completion Experimental Results Conclusion Additional

ASD - Algorithm

Each iteration, one component of A = XY is fixed and f (X ,Y ) is
minimised using steepest descent with exact line searchwith respect to
the other. This alternates between components.

Write f (X ,Y ) as fX (Y ) for fixed X , and as fY (X ) for fixed Y .

ASD - Algorithm


Fix Yi , compute ∇fYi (Xi )

Xi+1 = Xi − ηX+i∇fYi (Xi )

Fix Xi+1, compute ∇fXi+1(Yi )

Yi+1 = Yi − ηYi∇fXi+1(Yi )
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Experimental Results

We created several numerical experiments to test all aspects ASD
(and other algorithms) when used with spectromicroscopy.

In particular, we have examined ASD’s completion results on:

Completing Spectromicroscopy data.

The impact of completion on clustering.

Parameter impact on clustering.
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Real Data Results

LoopedASD achieves good completion errors for each data set
within 1000 iterations (less than 30s).

Minimum undersampling ratio of approximately p̂ = 0.15.

For this p, optimal undersampling ratios of r = 5 for DS1, r = 3 for
DS2 and DS3.

(a) Min. Completion Error
vs Completion Rank

(b) Min. Completion Error
vs Undersample Ratio

(c) Optimal Completion
Rank per Undersample
Ratio.

Figure 7: Average Results from Real Data

Oliver Townsend



Introduction Spectromicroscopy Current Analysis Matrix Completion Experimental Results Conclusion Additional

Scaled Images of Completions:

(a) Scaled Colour Image of Data
Set 2

(b) LoopedASD completion of
Data Set 2 (p = 0.2, r = 5)

(c) Completion after sampling an
artefact

Figure 8: Average Results from Real Data
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Clustering

We now apply PCA and Cluster Analysis to completions.
Use Aligned Rand Index (ARI) to compare between clusters.
Some parameter choices can be optimised (e.g. matching L with
completion rank, cluster algorithm)
Other variables depend on researcher aims (e.g. number of clusters).

(a) Clustering Results of full data (Data Set 1),
with mean absorption spectra

(b) Clustering Results of Completion, p = 0.15,
r = 5, L = 5, # clusters = 5.

Figure 9: Comparing Clustering Results of completion against full data set.
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Effect of Completion Parameters on Clustering

We check that clusters similarity depends only on the completion
error, not on any particular parameters (e.g. completion rank).
Plot the completion error against (1− ARI ), seeking a linear
dependence.

(a) DS1 (b) DS2 (c) DS3

(d) DS1 - partitioned p (e) DS2 - partitioned p (f) DS3 - partitioned pOliver Townsend
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Where Next?

Developing Rank finder to work with real data sets.

Producing more rigorous guarantees for ASD completion.

Tensor Completion.

Non-negative Matrix Factorisation (NMF).

Ptychography and Tomography.
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Flattening the Data

Stack the optical densities of N = n1× n2 pixels to get A ∈ RnE×N .

If there is a mix of S materials, the coefficients µ(E ) sum
linearly.

Now write µ ∈ RnE×S , t ∈ RS×N : columns of µ are the materials’
absorption spectra, rows of t are the corresponding thickness maps.

Ai ,j =
S∑

s=1

µs(Ei )tj .

i = 1, ..., nE runs over the energy
levels of the x-ray flux,

j = 1, ...,N indicates the pixels.
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Thickness Maps

The final step is to compute smooth thickness maps for each
material. We have that,

µ · t ≈ A′ = C ′ · R ′ = (C ′ · T ) · (T † · R),

for transformation T . T † exists as long as k ≥ L, and we associate

µ = C ′ · T and t = T † · R

We use the mean spectra Ā as a stand in for µ, and set

T = (C ′)−1 · Ā = (C ′)T · Ā

t = T † · R ′

= T † · CT · A′
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Completion Algorithm Examples

Three general approaches considered for solving: convex optimisation,
projected gradient descent and alternating optimisation. Some examples:

Singular Value Thresholding (SVT)

Inspired by l1 minimisation in signal processing, SVT implements
convex optimisation through linearized Bregman iterations.

Involves soft thresholding on the singular values of the iterates.

Singular Value Projection (SVP)

Utilises a projected gradient method with efficient SVD.

Truncates the iterates’ number of nonzero singular values,

Requires the true rank as an input.
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Rank Finder Algorithm

We wish to obtain the optimal rank from the sampled data PΩ(A).
The optimal rank is clear for exact rank matrices - less so for
smooth singular value decays.
Run short trials at different completion ranks, using k-fold cross
validation to penalise overfitting.
True rank minimises the trial error.

Figure 11: Trial Error for rank 10 matrix, square, sampled by point.
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Exact Rank Results

Format 1: Square, Point Sample

Format 2: Square, Raster Sample

Format 3: Wide, Point Sample

Format 4: Wide, Raster Sample

(a) Format 1, p = 0.06 (b) Format 2, p = 0.11 (c) Format 3, p = 0.14 (d) Format 4, p = 0.15

Figure 12: Above: Mean Residual Decay of Iterates (rank = 10). Below: Completion Rates varying parameters

(a) Format 1 (b) Format 2 (c) Format 3 (d) Format 4

Figure 13: Illustration of Completion Rates (proportion of successful completions)
Oliver Townsend


	Introduction
	Spectromicroscopy
	Current Analysis
	Matrix Completion
	Experimental Results
	Conclusion
	Additional

