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General Framework — Background

Opinions, disease states, etc. modelled as variables on nodes, (e.g. binary
variable: [uninfected, infected], [uninformed, informed], [against, for]...)

— dynamics determined by social interactions.

Microscopic processes lead to cooperative phenomena,

— interaction and alignment of variables,

* e.g. synchronisation of coupled oscillators.

Interested in transition between disordered and ordered phases, where
nodes share similar states;

— can use tools of statistical mechanics and population dynamics.

Results can often be translated to different contexts.

General Framework — Basics

Associate variables x; with states on node 7, can be:

— continuous variable, or set of variables x; = (214, T2, ...);
— enumerated states z; € {1,2,3, ..., s} (same meaning);
— system configuration: x = (1,2, ...,ZN),

— can define macro-states, e.g.: mean value (x).

Wish to understand evolution of system:
x(t) = (21(8), 22(t), - 2y (1)), o1 (%) (1), Or...

Dynamical systems theory gives tools to do this, given:

— intial values xg,
— dynamical equations: z; = f;(x), for future state z’.

* e.g.: X = f(x)+ oLx; reaction diffusion system.



6.3 General Framework — Issues

1. System size N often too large to solve directly,

e analytically unwieldy, numerically impractical:

e complete understanding requires phase-space map for all sV initial
configurations!

2. Network structure not known precisely, or different for each realisation:

e cities, friendship networks, computer networks, biological or ecologi-
cal networks...

3. Initial conditions not known precisely,

e outcomes can be very sensitive to IC,

e often know only certain features, e.g. distributions of numbers S in
each state.

6.4 General Framework — Problem

e How can we deal with such systems?

e Micro-simulation of small-scale models, Monte-Carlo, ensemble averages...
— gain some statistical insight,
— study factors affecting outcomes by studying initial conditions.

e to gain more understanding need to simplify in meaningful way,

— make analytically feasible.

6.5 Analytical Methods

e Know that dynamics tends to reduce variability and increase order:

— individuals end up sharing same technology, language, opinion, ve-
locity...

— i.e. correlation of neighbouring states.
— familiar from statistical physics...
e Use concepts and tools from statistical mechanics,

— need to extend to deal with complex topologies.

e Ask questions such as:

— what are likely equilibrium states, if they exist?
— what are mechanisms driving ordered/polarised state?

— what are thresholds for transitions?



6.6 Analytical Methods - Master Equation

e Dynamical process described by state transitions:
— X% — x?; where x®,x® are different configurations.

e Often don’t know precise dynamics due to unknown factors or noise.
— instead focus on probability P(x,t), for particular config.

e Master equation (ME):

0P(x,1) = Y [P(X )W (X — x) - P(x, )W (x — x')],

x/

W (x® — x%) are transition rates.

6.7 ME e.g.: Growing Networks

Master Equation for number of nodes Ny with degree k:
® O:Ni =1k-1-kNk-1 — Thk+1 Vg + Opm

For the simple Barabasi-Albert model:

e cach new node ¢ has a edges to nodes j with probability o k;, degree of j
e ME: 8tNk = N[(k - 1)Nk,1 - ]CN]C] + 5/@,1
— note: t = N, so N = tny, obtaining recurrence relation:

(k—
® N =Nk_1(g

3 and can solve to give:

Le. P(k) o k3.

F1

4
.nk:
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k(k+1)(k+2)

6.8 Master Equation — Simplifications
e but still sV equations with sV terms!

e need to find ways to simplify...

e Do not need whole configurations:
/ / / /
x = (21,22, ...,xn) and X' = (2], 25, ..., Ty)

e State x; of node ¢ depends only on its neighbours j so:

(x' —x) wa — xilxj),

where w are trans. rates conditional only on neighbours.

e Network topology now plays a role in dynamics.



e In principle possible to compute expectation value of function A(x):

(A1) = 3~ A()P(x,1).

e In practice impossible to solve ME in most cases!
e Additionally most real-world applications are non-equilibrium

— not possible to use equilibrium thermodynamics and ergodic hypoth-
esis.

6.9 Approx. Solutions of Master Equation

1. Consider appropriate projection:

e e.g.: average number in state x; = a at time t¢:
<Na(t)> = Z Z 61‘1‘,GP(X7 t)’
x %

¢ is Kronecker delta.

e average quantity = deterministic.

2. Neglect network structure, assume homogeneous system with no correla-
tions; prob(x; = a) = p,, for each

P(x) = pr7

e Mean Field (MF) approximation.

6.10 (In-)Validity of Mean Field Approx.
MF valid when:

e Variables (degrees of freedom) of system are iid:

— generally not true, as interactions are by definition dependencies!
— can get around using pair approrimation schemes:

* assume neighbours j only dependent on self i.
e Homogeneous mixing; i.e. all 7+ have equal chance of interacting with all j,

— again, network structure invalidates this,
— can assume independence of neighbourhoods:

* neighbours of ¢ are on average same as system average.
However:

e produces analytically tractable results,

e in many cases useful ones.



6.11 Example of Mean Field Approx. Scheme

e Consider simple system:

— two states: z; = A and z; = B,
— Dynamics: A+ B — 2B, rate (.
— w(A — Alz; = A) =w(B — Blz; = A)
=w(B— Blz;=B)=1, w(A— Blz; =B)=p
e Using: (Na(D) = X3 b, aP(x,1)
and (Np(t)) = >3 62,8P(x,1)

o ME: 9;(Np(t)) = >3 6z, 80, P(x, 1)

Op(Np(t) =222 |0z, I;Iw(wk — wg|2y) P(X ;1) = 00, l;[w(xk — @yl P(x, 1),

i x x

and using the normalisation conditions:
Y Tw(er — wilz;) =1, 3202, 8 [ [w(z), — wil2)) = w(e] — 2 = Blz))
x k x k

O (Np(t)) = ZZ [w(z] — z; = B\x;)P(x’,t)] — (Np(t))

Now using MF: pa = Na/N, pp = Ng/N and P(x') = [[; p::

Yw(z; — x; = Blal)P(x',t)

x/

=3 |w(e} = A— @ = Bla)pa T1 po +wlel =B -z =Blhps 1T par.
x, JEV() JEV(i)

J

LHS w = 3 with prob 1 — (1 — pg)*, and RHS w = 1 always, so:

0e(NE(t)) = BNa(1 — (1 = Ng/N)").
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