5 Network Models

Networks: An Introduction,

M. E. J. Newman, Oxford University Press (2010), Chapter 12–15.

5.1 Random graphs

Real world networks have distinctive structural properties.

- Often details are not known, only averages.
- Models can inform about importance of features (for dynamics etc.)

"Scale free" degree distributions

Degree distribution: probability that random node has degree k: $p_k = f(k)$. Empirically: real world nets often scale free:

 \sim

$$p_k \sim k^{-\alpha}$$
 or cumulatively: (1)

$$P_k = \sum_{k'=k}^{\infty} p'_k \tag{2}$$

$$\sim k^{-(\alpha-1)}$$
 (3)

Figure 1: Cumulative degree distributions showing scale-free characteristics.

"Small world" property

Average shortest path-length \overline{l} between node-pairs:

$$\bar{l} = \frac{1}{\frac{1}{2}N(N-1)} \sum_{i \ge j} d_{ij}$$
(4)

• For regular *D*-dimensional lattices: $\bar{l} \propto N^{\frac{1}{D}}$

Data shows a short path usually exists between pairs of nodes:

• for people $(N \approx 7 \times 10^9)$ measure (Milgram etc.): $\bar{l} \sim 6$.

High clustering

Real world transitivity $(c = \frac{\#(\text{triangles})}{\#(\text{connected triples})})$ much higher than random chance. Also define average local clustering coefficient:

$$c_i = \frac{\#(\text{triangles on } i)}{\#(\text{connected triples on } i)}$$
(5)

Assortativity

Correlation ("de-mixing") occurs between some property of adjacent nodes.

• variable $x_i = x_j$ or degree $k_i \approx k_j$

Can mesure Pearson correlation coefficient:

$$r = \sum_{xy} \frac{xy(e_{xy} - a_x b_y)}{\sigma_x \sigma_y},\tag{6}$$

where e_{xy} is fraction of edges between x and y types, a_x and b_y : fraction of x, x and y, y edges resp; σ are st. dev. of a and b. For degree distributions this becomes:

$$r = \frac{\sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) k_i k_j}{\sum_{ij} \left(k_i \delta_{ij} - \frac{k_i k_j}{2m} \right) k_i k_j} \tag{7}$$

- Correlated network: $r \rightarrow 1$
- Uncorrelated network: r = 0
- Anti-correlated network: $r \rightarrow -1$

In real world correlations or anti-correlations occur, rather than random uncorrelated (see table).

	network	type	u	m	22	ł	σ	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55392	14.44	4.60	Ι	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253339	496489	3.92	7.57	Ι	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245300	9.27	6.19	Ι	0.45	0.56	0.363	311, 313
lsi	biology coauthorship	undirected	1520251	11803064	15.53	4.92	I	0.088	0.60	0.127	311, 313
oos	telephone call graph	undirected	$47\ 000\ 000$	$80\ 000\ 000$	3.16		2.1				8, 9
	email messages	directed	59912	86300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57029	3.38	5.22	I	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	I	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
u	WWW nd.edu	directed	269504	1497135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
oiti	WWW Altavista	directed	$203\ 549\ 046$	2130000000	10.46	16.18	2.1/2.7				74
smi	citation network	directed	783339	6716198	8.57		3.0/-				351
юји	Roget's Thesaurus	directed	1022	5103	4.99	4.87	Ι	0.13	0.15	0.157	244
ų	word co-occurrence	undirected	460902	17000000	70.13		2.7		0.44		119, 157
	Internet	undirected	10697	31992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
ls:	power grid	undirected	4941	6594	2.67	18.99	I	0.10	0.080	-0.003	416
oigo	train routes	undirected	587	19603	66.79	2.16	I		0.69	-0.033	366
olon	software packages	directed	1439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
цэə	software classes	directed	1377	$2\ 213$	1.61	1.51	I	0.033	0.012	-0.119	395
эţ	electronic circuits	undirected	24097	$53\ 248$	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3686	9.64	2.56	2.2	0.090	0.67	-0.240	214
ical	protein interactions	undirected	2115	$2\ 240$	2.12	6.80	2.4	0.072	0.071	-0.156	212
gol	marine food web	directed	135	598	4.43	2.05	I	0.16	0.23	-0.263	204
oid	freshwater food web	directed	92	266	10.84	1.90	Ι	0.20	0.087	-0.326	272
	neural network	directed	307	2359	7.68	3.97	I	0.18	0.28	-0.226	416, 421

Figure 2: (TABLE II from Newman) The properties measured are: type of graph, directed or undirected; total number of vertices n (N); total number of edges m; mean degree z (\bar{k}); mean vertexvertex distance l (\bar{l}); exponent α of degree distribution (if power law); clustering coefficient C(1) (c); clustering coefficient C(2); and degree correlation coefficient r. (Citation(s) from Newman).

5.2 The Erdős Renyí model

Simplest "random graph" model: assign all edges randomly: 2 ways to construct:

- 1. G_{NK}^{ER} : Create N nodes and randomly allocate K edges.
 - randomly assign 2K elements $A_{ij,i>j} = A_{ji,i< j} = 1$.
- 2. G_{Np}^{ER} : For each pair of nodes *i* and *j*, assign edge with prob. *p*.
 - G_{NK}^{ER} will appear from ensemble with prob. $p^{K}(1-p)^{N(N-1)/2-k}$

Properties of ER model:

Can solve for many features:

Short path lengths: trivial for random case: each step gain (on average) \bar{k} neighbours, #(nei at dist $l \sim \bar{k}^l$), hence for whole network $N \sim \bar{k}^l$:

$$\bar{l} \sim \frac{\log N}{\log \bar{k}}.$$
(8)

• for world population: $\bar{l} \sim \frac{\log(\approx 7 \times 10^9)}{\log(\sim 50)} \approx 6.$

Clustering: *c* is random, independent of other edges:

$$c = p = \frac{\bar{k}}{n-1}, \quad \to 0 \text{ for } N \to \infty$$
 (9)

For world pop. $c \approx 7 \times 10^{-7}$, but actual measured: 0.01–0.5

Degree distribution : Prob. vertex having degree k (holding \bar{k} const.):

$$p(k) = \binom{N}{k} p^k (1-p)^{N-k} \approx \frac{\bar{k}^k \exp(-\bar{k})}{k!},$$
 (10)

exact for $N \to \infty$

• Not scale-free. (also uncorrelated)

5.3 The configuration model

- Define desired degree distribution p_k ,
- Assign m edges to N nodes by either:
 - 1. Assign k_i stubs (drawn from p_k) to each node i,
 - randomly join stubs
 - 2. assign k_i "desired degree" then:

 $-m = \frac{1}{2} \sum_{h} k_{h}$ edges placed with prob. $p \propto k_{i}k_{j}$.

Features: can choose degree distribution, path lengths short as in ER, can derive (Newman) $c = \frac{1}{N} \frac{[\langle k^2 \rangle - \langle k \rangle]^2}{\langle k \rangle^3}$ which can be large in special cases, but not general.

5.4 The Watts Strogatz model

Regular lattices can have high clustering:

c=0.4: comparable to real world Can vary c by changing \tilde{k} on a 1D lattice:

$$=\frac{3(k-2)}{4(\tilde{k}-1)}$$
(11)

But: path-lengths are long: $\bar{l} \sim \frac{N}{2\bar{k}}$. Make model "small world" by introducing short-cuts with prob p:

Figure 3: (a) Watts Strogatz, (b) Newman Watts Strogatz

Can either replace existing links or just add links.

Mixture of regular and random networks - contains features of both.

Difficult to treat analytically (2nd model is easier), but numerically observe range of p with clustering and short \bar{l} .

However, the degree distribution isn't scale free, e.g. for NWS:

$$p_k \sim e^{-\tilde{k}p} \frac{(\tilde{k}p)^{k-\tilde{k}}}{(k-\tilde{k})!} \tag{12}$$

rewiring probability p

Figure 4: Mean path-length and clustering for different rewiring in WS model.

5.5 The Barabási–Albert preferential attachment model

Models can try to explain features, e.g. scale-free degree distribution. Barabási and Albert proposed a rich-get-richer model.

- start with \tilde{k} connected seed nodes
- at each generation step a new node is added with edges to \tilde{k} others.
- Probability of *i* connecting to $j \ p \propto k_j$

Degree distribution: Find empirically:

$$p_k \sim k^{-3} \tag{13}$$

Non-linear BA model

• Probability of *i* connecting to $j \ p \propto k_j^{\gamma}$

Figure 5: A Barabasí-Albert *preferential attachment* graph which has a power-law degree distribution.