
4 Quantifying Networks

Networks: An Introduction,
M. E. J. Newman, Oxford University Press (2010), Chapter 7 (Also see 11).

Complex networks: Structure and dynamics,
Boccaletti et al., Physics Reports 424 (2006), Section 7.

4.1 Basic measures

4.1.1 Node Degree

The node degree is also sometimes called the degree centrality, as it gives an
idea of the relative importance (or centrality) of a node compared the others in
the network. The degree of node i is given by:

ki =

N∑
j=1

Aij . (1)

For directed networks this expression give the in-degree: kini =
∑N

j=1Aij . For

the out degree we sum over columns instead of rows: koutj =
∑N

i=1Aij , which is

the same as transposing the adjacency matrix: kouti =
∑N

j=1A
T
ij

4.1.2 Edge Density

The edge density is the ratio of the actual number of edges to the total possible
number 1

2N(N − 1). If m is the number of edges then each edge has 2m ends,
which is also the sum of all node degrees:

2m =

N∑
i=1

ki (2)

or

m =
1

2

∑
ij

Aij

m =
∑
ij

Aijfor directed

 . (3)

The mean degree is:

k̄ =
1

N

N∑
i=1

ki =
2m

N
. (4)

Therefore the network edge density is:

ρ =
2m

N(N − 1)
=

k̄

N − 1
. (5)

We’ve also already seen a number of measure such as the number of length r
paths between nodes i and j: nr = [Ar]ij , loops of length r: Lr = [Ar]ii = TrAr

and the transitivity c =
TrA3∑
i6=j

A2
ij

.
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4.2 Centrality Measures

Centrality is a measure of the importance of a node or an edge relative to others
in the network.

4.2.1 Betweenness Centrality

This measures the relative number of geodesic paths passing through a node:

xi =
1

N2

∑
st

nist
gst

, (6)

where nist is number of geodesic shortest paths between s and t passing through
node i and gst is total number of geodesic paths between s and t. This can also
be applied to edges instead of nodes, giving the “edge betweenness centrality”.

4.2.2 Eigenvalue Centrality

If we consider a node to be important not only due to the number of its links (its
degree) but also the importance of its network neighbours then we can define
another measure. This can be calculated iteratively from an initial guess at
the importance (either the degree or just all xi = 1 will do. At each step we
recalculate the centrality measure:

x′i =
∑
j

Aijxj , (7)

or in matrix form:
x′ = Ax. (8)

This is repeated until it converges suitably on some value:

x(t) = Atx(0). (9)

This is recognised as the power method for calculating largest (most positive)
eigenvalue of a matrix and its corresponding eigenvector. Indeed the above
centrality problem can also be stated that we wish to find some values of xi
such that each node has a centrality that is proportional to the sum of its
neighbours’ values:

xi = λ−1
∑
j

Aijxj , (10)

where λ−1 is a constant of proportionality. In matrix form this is the eigenvalue
equation:

Ax = λx. (11)

The Perron-Frobenius theorem tells us that (9) converges to the eigenvector x
with all positive values corresponding to the largest eigenvector λN , which is
positive and real. Hence the vector x gives us the required centrality measure.

For directed networks (e.g. web pages and links) we choose the right eigenvectors
so that we count incoming links:

xi = λ−1R

∑
j

Aijxj , Ax = λRx (12)
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4.2.3 Modified eigenvalue centrality measures

The above method can have problems in cases where nodes which are very highly
cited by low-value nodes no not obtain enough centrality weight in the network,
and there are also problems with acyclic graphs (e.g. citation networks) [See
Newman]. This can be rectified in various ways.

Katz centrality : We can add a small constant centrality to each node to
prevent the above problem:

xi = α
∑
j

Aijxj + β, x = αAx + β1, (13)

where α, β are positive constants. setting β = 1 this rearranges to:

x = (I − αA)−11, (14)

This can be calculated directly, taking care to choose a value of α below which
the determinant diverges, which is where det(A − α−1I) = 0, i.e. α−1 = λ1,
the largest eigenvalue of A, hence we must choose α < 1/λ1. A more efficient
method is by an iterative process similar to the previous case:

x′ = αAx + β1. (15)

A useful generalisation for real-world systems, where some nodes have some
intrinsic quality, would be to have separate βi for each node, based on that
property.

PageRank. A further extension useful in problems such as web-page rankings
is to normalise the influence of outgoing links by the total out-degree. In this
way highly ranked nodes would not give undue ranking to the many unimportant
neighbours they cite:

xi = α
∑
j

Aij
xj
koutj

+ β, (16)

artificially setting koutj = 1 for any which really have koutj = 0. This can be
written:

x = αAD−1x + β1, (17)

where D is a diagonal matrix with:

Dii =

{
1 if kouti = 0,
kouti otherwise.

(18)

This can be solved to give:

x = β(I − αAD−1)−11. (19)

This centrality measure is called the “PageRank” (named after Larry Page of
Google) and is used by Google to rank web-pages.
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Figure 1: A network with two components.

4.3 Other spectral measures

Another thing eigenvalue of matrices representing the network structure can do
is give information about the connectivity of the network.

A network with multiple disconnected components has an adjacency matrix
that can be rearranged by swapping rows and columns to give a block diagonal
matrix:

A =

A1 0 · · ·
0 A2 · · ·
...

...
. . .

 ,

but it is not immediately obvious from the original unsorted A which nodes
are in which component. The eigenvalues of a matrix related to the adjacency
matrix can be used to give information on the number of components amongst
other things.

4.4 The Graph Laplacian Matrix

Another useful matrix comes from studying diffusion on networks, where the
flow into a site depends on the density difference between it and neighbouring
sites. Other processes where the evolution of the state of a node has a linear
dependence on the difference between its own state and that of its neighbours
can also be modelled in similar ways, and diffusion processes are often used for
modelling the spread of information or disease on networks. If each node i has
an associated quantity xi, and the flow from a neighbouring node j occurs at a
rate σ(xj − xi) where σ is a diffusion constant:

dxi
dt

=
∑
j

Aijσ(xj − xi). (20)

This can be rearranged to give:

dxi
dt

= σ
∑
j

ai,jxj − σxi
∑
j

ai,j

= σ
∑
j

ai,jxj − σxiki, (21)

since we have already seen that A1 = k. This can then be rearranged into
matrix form:

ẋ = σ(A−D)x, (22)
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Where D is a diagonal matrix with k on the diagonal and x is a vector of node
states. The matrix:

L = D −A (23)

is known as the graph Laplacian, and takes the place of the Laplacian operator
for diffusion in continuous media ∇2.

The graph Laplacian for a symmetric N node system is therefore an N × N
matrix, with elements:

L(i 6=j) =

 ki if i = j,
−1 if i 6= j and there is an edge (i, j),
0 otherwise,

(24)

so that rows and columns all sum to zero.

For the network in Figure 1 B the graph Laplacian is:

L =


3 −1 −1 −1
−1 2 0 −1
−1 0 1 0
−1 −1 0 2


Equation 22 then becomes:

ẋ+ σLx = 0. (25)

4.5 Eigenvalues and eigenvectors of the Laplacian

Since L is symmetric it has real eigenvalues, and it can also be shown that they
are non-negative.

The edge incidence matrix B is a matrix similar to the one seen in the
previous lecture, except that it is for simple 2-edges and elements take positive
or negative values depending on which (arbitrarily chosen) end of an edge the
vertices i and j are, i.e.:

Bij =

 +1 if end 1 of edge i is attached to vertex j,
−1 if end 2 of edge i is attached to vertex j,
0 otherwise.

(26)

It can be easily verified that the following is true:

L = BTB. (27)

Therefore, if x is a normalised eigenvector of L corresponding to eigenvalue λi:

Lxi = λixi,

xT
i Lxi = xT

i λixi,

xT
i B

TBxi = λix
T
i xi,

(xT
i B

T )(Bxi) = λi. (28)

Since Bxi is a real vector, λi ≥ 0.
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4.6 The zero eigenvalues

The Laplacian always has at least one zero eigenvalue since:

L1 = 0, (29)

due to the fact the rows all sum to zero.

For a graph with multiple components, which can be written in block diagonal
form with the jth block being the Laplacian Lj of the jth component, it is easy
to see that any eigenvector x with elements xi = 1 for nodes in a component j
and xi = 0 elsewhere will also have a zero eigenvector:

L1 0 0 · · ·
0 L2 0 · · ·
0 0 L3 · · ·
...

...
...

. . .




1
0
0
...

 = 0,


L1 0 0 · · ·
0 L2 0 · · ·
0 0 L3 · · ·
...

...
...

. . .




0
1
0
...

 = 0, . . .

It can thus be shown that the number of zero eigenvalues is the number of
components of the network. Due to this, the second eigenvalue λ2 is called the
algebraic connectivity and is only non-zero if the graph is connected.

4.7 Spectral graph partitioning

Things are less clear cut (literally) when there are elements connecting the differ-
ent “components” (communities). It is not generally possible to cleanly divide
the network into clear communities if there are many overlaps, but studying the
eigenvectors of the Laplacian gives some indication of the structure.

The eigenvectors corresponding to larger, non-trivial, eigenvalues of L for a
connected network are orthonormal and have a mixture of negative and positive
elements. The graph can be partitioned based on the sign of these elements,
and the eigenvector x2, corresponding to the second smallest eigenvalue λ2,
known as the Fiedler vector, is used to partition networks into two, where this
is appropriate. This eigenvector is chosen because the cut-size can be shown to
be proportional to the magnitude of the corresponding λ (See Newman Chapter
11).

Comparing n sequential eigenvectors against each other in an n dimensional
space is found to be a useful method for partitioning graphs into communities,
and often plotting x2 against x3 shows which nodes belong to which commu-
nities (with the minimum number of edges between them (the cutsets)), and
how strongly these are separated. Measures based on the Euclidean distance
between the vectors or components can be used to quantify the similarity or
distance between communities and their nodes (See Boccaletti Section 7).

4.8 Betweenness partitioning

Other algorithms exist for partitioning graphs, including sequential edge-swapping
and cutting followed by measuring the connectivity of the resulting clusters in
an iterative manner.

One other method is to assigning betweenness scores to edges, using a similar
method to that for nodes in in Section 4.2.1. Removing these between community
links in sequence can result in partitioning networks into useful communities.
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Figure 2: (a) Components of the first non-trivial eigenvector x2 for a computer-
generated network with four communities. (b) All communities can be identified
when the components of x3 are plotted versus those of x2 [Figure originally from
L. Donetti & M.A. Muñoz, J. Stat. Mech. (2004)].

Figure 3: Connected communities.

Figure 4: The node or edge at A has a high betweenness centrality, despite
having few links, due to its importance connecting pats between different com-
munities in the network.
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