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M. E. J. Newman, Oxford University Press (2010), Chapter 6.

The structure and function of complex networks,
M. E. J. Newman, SIAM review (2003), Sec. I.

3.1 Representation of Networks

In its most general form a network is a graph, i.e. an ordered set of vertices and
edges:

N = {V, E} (1)

Figure 1: (a) A simple graph, i.e., one having no multiedges or self-edges. (b)
A network with both multiedges and self-edges.

The set of vertices is simply a list of the nodes present in the network. For
the example graph in Fig. 1 (a) this is:

V = {1, 2, 3, 4, 5, 6}.

A compact way to write and store the set of edges is in the form of the edge-
list. Figure 1 (a) is a simple graph, meaning there aren’t any pairs of vertices
connected by multiple edges, the edges are all un-weighted (having the same
strength as each other) and not directed: i.e. all edges are two-way, e.g.:

E = {{1, 2}, {1, 5}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {3, 6}};

where we only need to write each edge once. For directed graphs we have to
specify the connected vertices and also the order, and hence must write both
(i, j) and (j, i) wherever a two-way connection exists.

Computationally it is also sometimes convenient to write this as a list of
edges for each node:

E = {1 : {2, 5}, 2 : {1, 3, 4}, 3 : {2, 4, 5, 6}, 4 : {2, 3}, 5 : {1, 3}, 6 : {3}}.

This can be more compact for directed graphs and allows us to quickly access
information about a particular node, including its degree and network neigh-
bours.
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3.2 The Adjacency Matrix

One of the most useful representations of the connections in a network is the
adjacency matrix. For a network with N nodes this is an N ×N matrix, having
a row and a column for each node, where the element in the ith row and jth
column is zero where no connection exists between node i and j, but takes the
value 1 where such a connection exists, i.e.:

Aij =

{
1 if an edge {i, j} exists
0 otherwise

(2)

It is also possible to represent multiedges and self-edges using an adjacency
matrix. Self-edges count as two links in this case, one from each vertex to
the other. Numbers other than one can also be used to indicate edge weights
in weighted graphs. For the networks in Figures 1 (a) and (b) the adjacency
matrices are written:

A(a) =


0 1 0 0 1 0
1 0 1 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0

 , A(b) =


0 1 0 0 3 0
1 2 2 1 0 0
0 2 0 1 1 1
0 1 1 0 0 0
3 0 1 0 0 0
0 0 1 0 0 2


Note that for the case of a simple un-directed graph A is symmetric about the
diagonal, having the property:

Aij = aji. (3)

For directed networks the adjacency matrix is defined as:

Aij =

{
1 if there is an edge from j to i
0 otherwise

(4)

Directed networks do not generally have symmetric adjacency matrices, as
shown below for the graph in Figure 2.

A =


0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 1
0 1 0 0 0 0

 .

Figure 2: A directed network.
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3.3 Using the Adjacency Matrix

3.3.1 The Degree Sequence

The degree ki of a node i is the sum over all its adjacent edges, which can be
obtained by summing over the ith row of the adjacency matrix:

ki =

N∑
j=1

Aij (5)

Therefore multiplying A by the length-N unit vector 1 gives a vector k
corresponding to node degrees. For example, for the graph in Figure 1 (a):

A1 =


0 1 0 0 1 0
1 0 1 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0




1
1
1
1
1
1

 =


2
3
4
2
2
1

 = k.

This vector is a list of node degrees known as the degree sequence, which is
often ordered by degree: K = {4, 3, 2, 2, 2, 1}. For directed graphs this gives the
in-degree, due to the definition of A given in (4) that there are non-zero entries
on row i and column j when there is an incoming link from j to i. To obtain
the out-degree we must therefore use the transpose AT instead of A.

3.3.2 Length-n Paths

Common non-zero entries between rows i and j in the adjacency matrix occur
wherever nodes i and j share a common neighbour k (such that Aik = Ajk = 1
for simple graphs). Therefore the number of paths of length two between i and
j can be found by summing over all such neighbours of i and j. For undirected
graphs amounts to multiplying row i by column j, since rows and columns of
A are symmetric in this case. Doing this for all nodes and multiplying the
adjacency matrix of a graph by itself gives all paths of length two between any
pair of vertices:

AA =


0 1 0 0 1 0
1 0 1 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0




0 1 0 0 1 0
1 0 1 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0

 =


2 0 2 1 0 0
0 3 1 1 2 1
2 1 4 1 0 0
1 1 1 2 1 1
0 2 0 1 2 1
0 1 0 1 1 1

 .

Note that, for simple graphs, the diagonal of A2 contains the degree vector
k, so that A2

ii = [A1]i. In general the diagonal represents paths of length two
which go out from node i to nearest neighbours and back to node i. The above
results can be generalised for An, representing all paths of length n between all
pairs of nodes. For directed networks An gives the number of inward paths of
length-n, and (AT )n the number of outgoing paths.
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For the example for the network in Figure 2:

A2 =


0 0 0 0 0 1
1 0 0 0 1 0
0 0 0 2 0 1
0 1 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0

 , (AT )2 =


0 1 0 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 2 0 0 0
0 1 0 0 0 0
1 0 1 0 1 0


3.3.3 Clustering (Transitivity)

The above property can be used to help calculate the degree of clustering on
graphs (also known as “transitivity”). This is the “friend of a friend is also
a friend” effect, whereby in non-random graphs there is often a higher than
random probability of an edge existing between i and j if both share a common
network neighbour k. Transitivity is defined as the fraction of closed length-2
paths in the graph. Since each triangle can be made by adding an extra edge
to three possible length-2 paths (triads):

c =
3#(triangles)

#(triads)
(6)

Figure 3: A network with one triangle and eight triads, giving a clustering
coefficient c = 3× 1

8 = 3
8 .

The number of triangles associated with a node i is half the number of
length-3 paths from node i back to itself (as each path can be taken in either
direction). Since there are three nodes per triangle the sum of diagonals of A3

(i.e. the trace of the matrix) is six times the total number of triangles in the
network. Similarly the sum of off-diagonal elements in the A2 matrix is twice
the number of triads, hence:

c = 3
trace(A3)/6∑
i 6=j

A2
ij/2

=
trace(A3)∑
i 6=j

A2
ij

(7)

For the example in Figure 3: A =

(
0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 0
0 0 1 0 0

)
, A2 =

(
2 1 1 1 1
1 2 1 1 1
1 1 4 0 0
1 1 0 1 1
1 1 0 1 1

)
,

A3 =

(
2 3 5 1 1
3 2 5 1 1
5 5 2 4 4
1 1 4 0 0
1 1 4 0 0

)
, c =

trace(A3)∑
i 6=j

A2
ij

=
6

16
=

3

8
.
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3.3.4 Cocitation and Bibliographic Matrices

Consider the two networks in Figure 4 below (where (a) is (b) with the directions
reversed). In both cases A2 = [0], since there are no paths of length-2. Elements

(a) (b)

Figure 4: Directed graphs representing citation.

of row i represent incoming links to node i, so in order to obtain the total number
of common incoming links to both i and j we must multiply the ith row of A by
the transpose of the jth row. That is multiplying A by its transpose AT results
in a matrix whose off-diagonal Aijth element shows the number of common links
to both i and j. This is called the cocitation matrix C = AAT , and in the case
of (a):

A =



0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, C =



4 3 0 0 0 0 0 0
3 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


In networks where vertices are papers and edges are citations from another, the
value of off-diagonal elements of the cocitation matrix is often a good indicator
that the works deal with related topics. Note that the diagonal elements are
the in-degree of incoming edges.

A similar matrix can be defined for outgoing citations in the bibliography,
known as the bibliographic coupling matrix B = ATA, which shows the similarity
of papers based on them citing many of the same sources.

In the example above case the cocitation matrix of (a) is the same as the
bibliographic matrix of (b), due to the symmetry of the two networks, i.e. Bb =
AT

b Ab = (AT
a )T (AT

a ) = AaA
T
a = Ca.

3.4 Representation of Bipartite Graphs

The adjacency matrix for a bipartite graphs with N nodes and G groups has
the following form:

A =

(
O E
ET O

)
, (8)

where E is a G×N matrix called the incidence matrix, defined by:

Eij =

{
1 if node j is in group i
0 otherwise

(9)
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Figure 5: A bipartite graph and projections on to the two sets of vertices.

For example, for the central graph in Figure 5:

E =


1 1 1 0 0 0 0
0 1 1 1 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 1 1


To obtain a one-mode projection for the links between only nodes or groups

we can multiply E by its transpose ET to obtain either P = ETE for the
projection onto nodes (columns in E), or P ′ = EET for a group-node projection
(or hypergraph), where links are overlaps between groups.

For the example above:

P = ETE =



1 1 1 0 0 0 0
1 2 2 1 1 0 0
1 2 2 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 3 2 1
0 0 0 0 2 2 1
0 0 0 0 1 1 1


, P ′ = EET =


3 2 0 0
2 4 1 1
0 1 2 2
0 1 2 3



These is similar to adjacency matrices except that the off-diagonal elements
are number of common connections. Diagonal elements in P give the number
of groups of which each vertex is a member, and in P ′ gives the number of
members of each group.
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