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Phase Transitions Dynamical Models

Statistical Mechanics

• Statistical mechanics studies macroscopic properties
emerging from microscopic interaction rules.

• Particularly looks at phase-transitions:
• change in macroscopic behaviour under variation of

parameter.
• e.g. water to ice phase transition; bulk magnetisation.

• Ising model is simplified model of phase transitions:
• usually on lattices,
• can be translated to complex networks.
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Phase Transitions Dynamical Models

The Ising Model
• Model for interaction of magnetic dipole “spins”:

• each site (“atom”) i has a spin σi ∈ [−1,+1]:
• called “spin down” and “spin up” states.

• spins interact with nearest neighbours and can align,
• bulk magnetisation M is “order parameter”:

• M =
∑

j σj/N quantifies degree of order in system.

• Ising model is defined by Hamiltonian:

H = −
∑

i

∑
j 6=i

Jijσiσj (1)

Jij is energy reduction if spins aligned: Jij > 0 if i and j
are neighbours, Jij = 0 otherwise.

• can see from (1) that minimum H is where all spins are
aligned up or down.
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Phase Transitions Dynamical Models

The Ising Model

• Introduce thermal noise in system: temperature T > 0,
encouraging disorder.

• At eqm. prob. finding syst. in state σ given by:

P(σ) =
1

Z
exp

[
−H(σ)

T

]
(2)

• Algorithm (ensuring above prob.):

1. Set initially random σi values,
2. randomly choose i and calculate δH if σi → −σi ,
3. accept spin-flip if δH < 0; else if exp

[
− δH

T

]
≤ ν,

random number 0 ≤ ν ≤ 1
4. repeat above two steps until eqm. reached.

4



Phase Transitions Dynamical Models

The Ising Model

• Introduce thermal noise in system: temperature T > 0,
encouraging disorder.

• At eqm. prob. finding syst. in state σ given by:

P(σ) =
1

Z
exp

[
−H(σ)

T

]
(2)

• Algorithm (ensuring above prob.):

1. Set initially random σi values,
2. randomly choose i and calculate δH if σi → −σi ,
3. accept spin-flip if δH < 0; else if exp

[
− δH

T

]
≤ ν,

random number 0 ≤ ν ≤ 1
4. repeat above two steps until eqm. reached.

4



Phase Transitions Dynamical Models

The Ising Model

• Introduce thermal noise in system: temperature T > 0,
encouraging disorder.

• At eqm. prob. finding syst. in state σ given by:

P(σ) =
1

Z
exp

[
−H(σ)

T

]
(2)

• Algorithm (ensuring above prob.):

1. Set initially random σi values,
2. randomly choose i and calculate δH if σi → −σi ,
3. accept spin-flip if δH < 0; else if exp

[
− δH

T

]
≤ ν,

random number 0 ≤ ν ≤ 1
4. repeat above two steps until eqm. reached.

4



Phase Transitions Dynamical Models

The Ising Model

• See existence of phase transition (in 2D1):

Figure: Below critical Tc states align; at Tc length-scales diverge;
above Tc find disorder.

1phase transitions are not seen for 1D lattices: proof exists.
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Phase Transitions Dynamical Models

Mean Field Treatment

• Assume all spins under equal influence of all others:

−σi

∑
j

Jijσj → −Jσi

∑
j

〈σj〉 = −J〈k〉Mσi

since M = 〈σj〉.

• M =
1

Z

∑
σi=±1

σi exp

(
−J〈k〉

T
Mσi

)
= tanh

(
J〈k〉
T

M

)

• M = 0 always a solution,
• non-zero solutions exist for T < J〈k〉 = Tc ,
• can also show: M ≈ (Tc − T )1/2 near Tc .
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Phase Transitions Dynamical Models

Generalising Ising

• σi can represent (binary) opinions in a social system.

• Jij can be replaced with adjacency matrix:

• can study Ising on complex topologies.

Watts-Strogatz

• Can interpolate between:
• 1D lattice (no phase transition),
• random network (with critical TcMF

),
• dD lattice (with critical TcdD

);

• mean-field type phase transition found for any finite pr .
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Phase Transitions Dynamical Models

General Degree Distributions

Given a degree distribution P(k):

• define average over class of nodes of degree k :

〈σ〉k =
1

Nk

∑
i ,ki=k

〈σi〉,

• define average over all neighbours of nodes with degree k :

u =
∑

k

kP(k)

〈k〉
〈σ〉k ,

• can be shown that: Tc = J
〈k2〉
〈k〉

.
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Phase Transitions Dynamical Models

The Voter Model
• Model of competition of species or opinions.
• Agents have binary variable: si = ±1,
• select node i and neighbour j and set si = sj :

• imitation rule (no noise).

FIG. 2. sColor onlined Evolution of a two-dimensional voter

model starting from a droplet stopd or a fully disordered con-

figuration sbottomd. From Dornic et al., 2001.
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Phase Transitions Dynamical Models

Modifications of the Voter Model

• Potts model:

• multiple variables.

• “Zealots” [ref: Mobilia]:

• Individuals who don’t
change their opinions,
biasing local
neighbourhood.

• Majority Rule:

• select groups and take
majority opinion.

Voter on Networks
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FIG. 3. Log-log plot of the fraction nA of active bonds be-

tween nodes with different opinions. Empty symbols are for

the one-dimensional case sp=0d. Filled symbols are for rewir-

ing probability p=0.05. Data are for N=200 scirclesd, N=400

ssquaresd, N=800 sdiamondsd, N=1600 striangles upd, and

N=3200 striangles leftd. From Castellano et al., 2003.
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Phase Transitions Dynamical Models

The Axelrod Model
• Model of cultural similarity and attraction2:

• The state of node i is a vector of F components:

(σi1, σi2, . . . , σiF ).

• Each σif can take any of the q integer values (1, . . . , q),
initially random.

• The time-discrete dynamics is an iteration:

1. Select at random a pair of connected nodes: (i , j),

2. calculate the overlap: l(i , j) =
F∑

f =1

δ(σif , σjf ),

3. If 0 < l(i , j) < F the bond is active and nodes i and j
interact with probability l(i , j)/F :

• choose g randomly such that σig 6= σjg and set
σig = σjg .

• In any finite network the dynamics settles into an
absorbing state with no active bonds.

2Klemm et al., PRE (2003)11
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Phase Transitions Dynamical Models

The Axelrod Model

on Watts Strogatz Networks

FIG. 3. The average order parameter ^Smax&/N as a function of
q for three different values of the small-world parameter p. System
sizes are N55002 ~squares! and N510002 ~diamonds!; number of
features F510. Each plotted value is an average over 100 runs with
independent rewiring (p.0) and independent initial conditions.

• critical qc separating ordered and
the disordered state,

• qc increases with disorder from p.

FIG. 4. Phase diagram for the Axelrod model in a small-world
network. The curve separates parameter values (p ,q) which pro-
duce a disordered state ~shaded area! from those with ordered out-
come ~white area!. For a given p the plotted value qc is the one for
which the value of the order parameter is closest to the, somewhat
arbitrary but small, value 0.1 for system size N55002 and F510.
Inset: After subtraction of a bias qc(p50)557, qc(p) follows a
power law }p0.39 ~dashed line!.
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Phase Transitions Dynamical Models

The Axelrod Model

on Scale Free Networks

Figure: The average order parameter 〈Smax 〉/N
in scale-free networks for F = 10. N = 1000 (circles),
N = 2000 (squares), N = 5000 (diamonds), and
N = 10000 (triangles).

FIG. 8. The average order parameter ^Smax&/N as a function of
q for F510 in structured scale-free networks. The networks con-
tained N51000 ~circles!, N52000 ~squares!, N55000 ~diamonds!,
and N510000 ~triangles! nodes with F510 features. Each data
point is an average over 32 independent realizations.

13



Phase Transitions Dynamical Models

The Kuramoto Model

on Scale Free Networks3

• Model of synchronisation of many interacting individuals:
• model each as a phase oscillator with attractive coupling:

θ̇i = ωi + λ

N∑
j∈nei(i)

sin(θj − θi ) (3)

• define order parameter:

r(t) =

∣∣∣∣∣∣ 1

N

N∑
j=1

e iθj (t)

∣∣∣∣∣∣ (4)

3Moreno and Pacheco, Europhys. Lett. (2004)
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Phase Transitions Dynamical Models

The Kuramoto Model

on Scale Free Networks
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Fig. 1 – Coherence r as a function of λ for several system sizes. The onset of synchronization occurs
at a critical value λc = 0.05(1). Each value of r is the result of at least 10 network realizations and
1000 iterations for each N . The inset is a zoom around λc.
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Fig. 2 – Normalized phase distributions D(θ) for different values of the control parameter λ. The
curves depicted correspond to values of λ below, near and above λc as indicated. The network is
made up of N = 104 nodes.
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Phase Transitions Dynamical Models

Community Detection using Synchronisation4

• Use local order parameter: ρij(t) = 〈cos(θi (t)− θj(t))〉
4Arenas et al., Physica D (2006)
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