Dynamical Models

7. Phase Transitions and Dynamical Models

- Dynamical Processes on Complex Networks, A. Barrat, M. Barthélemy and A. Vespignani, Cambridge University Press (2008)
- 2. Statistical physics of social dynamics,
 C. Castellano, S. Fortunato and V. Loreto, Rev. Mod. Phys. 81 (2009).

Dynamical Models

Statistical Mechanics

• Statistical mechanics studies macroscopic properties emerging from microscopic interaction rules.

Statistical Mechanics

- Statistical mechanics studies macroscopic properties emerging from microscopic interaction rules.
- Particularly looks at phase-transitions:
 - change in macroscopic behaviour under variation of parameter.
 - e.g. water to ice phase transition; bulk magnetisation.

Statistical Mechanics

- Statistical mechanics studies macroscopic properties emerging from microscopic interaction rules.
- Particularly looks at phase-transitions:
 - change in macroscopic behaviour under variation of parameter.
 - e.g. water to ice phase transition; bulk magnetisation.
- Ising model is simplified model of phase transitions:
 - usually on lattices,
 - can be translated to complex networks.

- Model for interaction of magnetic dipole "spins":
 - each site ("atom") i has a spin $\sigma_i \in [-1, +1]$:
 - called "spin down" and "spin up" states.
 - spins interact with nearest neighbours and can align,
 - bulk magnetisation M is "order parameter":
 - $M = \sum_{i} \sigma_{i} / N$ quantifies degree of order in system.

- Model for interaction of magnetic dipole "spins":
 - each site ("atom") i has a spin $\sigma_i \in [-1, +1]$:
 - called "spin down" and "spin up" states.
 - spins interact with nearest neighbours and can align,
 - bulk magnetisation M is "order parameter":
 - $M = \sum_{i} \sigma_{i} / N$ quantifies degree of order in system.
- Ising model is defined by Hamiltonian:

$$H = -\sum_{i} \sum_{j \neq i} J_{ij} \sigma_i \sigma_j \tag{1}$$

 J_{ij} is energy reduction if spins aligned: $J_{ij} > 0$ if *i* and *j* are neighbours, $J_{ij} = 0$ otherwise.

- Model for interaction of magnetic dipole "spins":
 - each site ("atom") i has a spin $\sigma_i \in [-1, +1]$:
 - called "spin down" and "spin up" states.
 - spins interact with nearest neighbours and can align,
 - bulk magnetisation M is "order parameter":
 - $M = \sum_{i} \sigma_{i} / N$ quantifies degree of order in system.
- Ising model is defined by Hamiltonian:

$$H = -\sum_{i} \sum_{j \neq i} J_{ij} \sigma_i \sigma_j \tag{1}$$

 J_{ij} is energy reduction if spins aligned: $J_{ij} > 0$ if *i* and *j* are neighbours, $J_{ij} = 0$ otherwise.

• can see from (1) that minimum *H* is where all spins are aligned up or down.

 Introduce thermal noise in system: temperature T > 0, encouraging disorder.

- Introduce thermal noise in system: temperature T > 0, encouraging disorder.
- At eqm. prob. finding syst. in state σ given by:

$$P(\sigma) = \frac{1}{Z} \exp\left[-\frac{H(\sigma)}{T}\right]$$
(2)

- Introduce thermal noise in system: temperature T > 0, encouraging disorder.
- At eqm. prob. finding syst. in state σ given by:

$$P(\sigma) = \frac{1}{Z} \exp\left[-\frac{H(\sigma)}{T}\right]$$
(2)

- Algorithm (ensuring above prob.):
 - 1. Set initially random σ_i values,
 - 2. randomly choose *i* and calculate δH if $\sigma_i \rightarrow -\sigma_i$,
 - 3. accept spin-flip if $\delta H < 0$; else if $\exp\left[-\frac{\delta H}{T}\right] \le \nu$, random number $0 \le \nu \le 1$
 - 4. repeat above two steps until eqm. reached.

Dynamical Models

The Ising Model

• See existence of *phase transition* (in 2D¹):

Figure: Below critical T_c states align; at T_c length-scales diverge; above T_c find disorder.

¹phase transitions are not seen for 1D lattices: proof exists.

Dynamical Models

Mean Field Treatment

• Assume all spins under equal influence of all others:

$$-\sigma_i \sum_j J_{ij}\sigma_j \to -J\sigma_i \sum_j \langle \sigma_j \rangle = -J \langle k \rangle M\sigma_i$$

since $M = \langle \sigma_j \rangle$.

Dynamical Models

Mean Field Treatment

• Assume all spins under equal influence of all others:

$$-\sigma_i \sum_j J_{ij}\sigma_j \to -J\sigma_i \sum_j \langle \sigma_j \rangle = -J \langle k \rangle M\sigma_i$$

since
$$M = \langle \sigma_j \rangle$$
.
• $M = \frac{1}{Z} \sum_{\sigma_i = \pm 1} \sigma_i \exp\left(-\frac{J\langle k \rangle}{T} M \sigma_i\right) = \tanh\left(\frac{J\langle k \rangle}{T} M\right)$

Dynamical Models

Mean Field Treatment

• Assume all spins under equal influence of all others:

$$-\sigma_i \sum_j J_{ij}\sigma_j \to -J\sigma_i \sum_j \langle \sigma_j \rangle = -J \langle k \rangle M\sigma_i$$

since
$$M = \langle \sigma_j \rangle$$
.
• $M = \frac{1}{Z} \sum_{\sigma_i = \pm 1} \sigma_i \exp\left(-\frac{J\langle k \rangle}{T} M \sigma_i\right) = \tanh\left(\frac{J\langle k \rangle}{T} M\right)$
• $M = 0$ always a solution,

• non-zero solutions exist for $T < J\langle k \rangle = T_c$,

Dynamical Models

Mean Field Treatment

• Assume all spins under equal influence of all others:

$$-\sigma_i \sum_j J_{ij}\sigma_j \to -J\sigma_i \sum_j \langle \sigma_j \rangle = -J \langle k \rangle M\sigma_i$$

since
$$M = \langle \sigma_j \rangle$$
.
• $M = \frac{1}{Z} \sum_{\sigma_i = \pm 1} \sigma_i \exp\left(-\frac{J\langle k \rangle}{T} M \sigma_i\right) = \tanh\left(\frac{J\langle k \rangle}{T} M\right)$
• $M = 0$ always a solution,
• non-zero solutions exist for $T < J\langle k \rangle = T_c$,
• can also show: $M \approx (T_c - T)^{1/2}$ near T_c .

Generalising Ising

- σ_i can represent (binary) opinions in a social system.
- J_{ij} can be replaced with adjacency matrix:
- can study Ising on complex topologies.

Generalising Ising

- σ_i can represent (binary) opinions in a social system.
- J_{ij} can be replaced with adjacency matrix:
- can study Ising on complex topologies.

Watts-Strogatz

- Can interpolate between:
 - 1D lattice (no phase transition),
 - random network (with critical $T_{c_{MF}}$),
 - dD lattice (with critical $T_{c_{dD}}$);

Generalising Ising

- σ_i can represent (binary) opinions in a social system.
- J_{ij} can be replaced with adjacency matrix:
- can study Ising on complex topologies.

Watts-Strogatz

- Can interpolate between:
 - 1D lattice (no phase transition),
 - random network (with critical $T_{c_{MF}}$),
 - dD lattice (with critical $T_{c_{dD}}$);
- mean-field type phase transition found for any finite p_r .

General Degree Distributions

Given a degree distribution P(k):

• define average over class of nodes of degree k:

$$\langle \sigma \rangle_k = \frac{1}{N_k} \sum_{i,k_i=k} \langle \sigma_i \rangle,$$

General Degree Distributions

Given a degree distribution P(k):

• define average over class of nodes of degree k:

$$\langle \sigma \rangle_k = \frac{1}{N_k} \sum_{i,k_i=k} \langle \sigma_i \rangle,$$

• define average over all neighbours of nodes with degree k:

$$u = \sum_{k} \frac{k P(k)}{\langle k \rangle} \langle \sigma \rangle_{k},$$

General Degree Distributions

Given a degree distribution P(k):

• define average over class of nodes of degree k:

$$\langle \sigma \rangle_k = \frac{1}{N_k} \sum_{i,k_i=k} \langle \sigma_i \rangle,$$

• define average over all neighbours of nodes with degree k:

$$u = \sum_{k} \frac{k P(k)}{\langle k \rangle} \langle \sigma \rangle_{k},$$

• can be shown that:
$$T_c = J \frac{\langle k^2 \rangle}{\langle k \rangle}.$$

The Voter Model

- Model of competition of species or opinions.
- Agents have binary variable: $s_i = \pm 1$,
- select node *i* and neighbour *j* and set $s_i = s_j$:
 - imitation rule (no noise).

FIG. 2. (Color online) Evolution of a two-dimensional voter model starting from a droplet (top) or a fully disordered configuration (bottom). From Dornic *et al.*, 2001.

Modifications of the Voter Model

• Potts model:

Voter on Networks

- multiple variables.
- "Zealots" [ref: Mobilia]:
 - Individuals who don't change their opinions, biasing local neighbourhood.
- Majority Rule:
 - select groups and take majority opinion.

FIG. 3. Log-log plot of the fraction n_A of active bonds between nodes with different opinions. Empty symbols are for rewiring probability p=0.05. Data are for N=200 (circles), N=400(squares), N=800 (diamonds), N=1600 (triangles up), and N=3200 (triangles left), From Castellano et al., 2003.

Dynamical Models

The Axelrod Model

• Model of cultural similarity and attraction²:

11

The Axelrod Model

- Model of cultural similarity and attraction²:
- The state of node *i* is a vector of *F* components:

11

The Axelrod Model

- Model of cultural similarity and attraction²:
- The state of node *i* is a vector of *F* components:

 $(\sigma_{i1}, \sigma_{i2}, \ldots, \sigma_{iF}).$

The Axelrod Model

- Model of cultural similarity and attraction²:
- The state of node *i* is a vector of *F* components:

 $(\sigma_{i1}, \sigma_{i2}, \ldots, \sigma_{iF}).$

 Each σ_{if} can take any of the q integer values (1,..., q), initially random.

11

The Axelrod Model

- Model of cultural similarity and attraction²:
- The state of node *i* is a vector of *F* components: $(\sigma_{i1}, \sigma_{i2}, \dots, \sigma_{iF}).$

 Each σ_{if} can take any of the q integer values (1,..., q), initially random.

• The time-discrete dynamics is an iteration:

The Axelrod Model

- Model of cultural similarity and attraction²:
- The state of node *i* is a vector of *F* components: $(\sigma_{i1}, \sigma_{i2}, \dots, \sigma_{iF}).$

 Each σ_{if} can take any of the q integer values (1,..., q), initially random.

- The time-discrete dynamics is an iteration:
 - 1. Select at random a pair of connected nodes: (i, j),

- Model of cultural similarity and attraction²:
- The state of node *i* is a vector of *F* components: $(\sigma_{i1}, \sigma_{i2}, \dots, \sigma_{iF}).$
- Each σ_{if} can take any of the q integer values (1,..., q), initially random.
- The time-discrete dynamics is an iteration:
 - 1. Select at random a pair of connected nodes: (i, j),

2. calculate the overlap:
$$l(i,j) = \sum_{f=1}^{r} \delta(\sigma_{if}, \sigma_{jf}),$$

- Model of cultural similarity and attraction²:
- The state of node *i* is a vector of *F* components: $(\sigma_{i1}, \sigma_{i2}, \dots, \sigma_{iF}).$
- Each σ_{if} can take any of the q integer values (1,..., q), initially random.
- The time-discrete dynamics is an iteration:
 - 1. Select at random a pair of connected nodes: (i, j),
 - 2. calculate the overlap: $l(i,j) = \sum_{f=1}^{F} \delta(\sigma_{if}, \sigma_{jf}),$
 - 3. If 0 < l(i,j) < F the bond is *active* and nodes *i* and *j* interact with probability l(i,j)/F:

- Model of cultural similarity and attraction²:
- The state of node *i* is a vector of *F* components: $(\sigma_{i1}, \sigma_{i2}, \ldots, \sigma_{iF}).$
- Each σ_{if} can take any of the q integer values (1,..., q), initially random.
- The time-discrete dynamics is an iteration:
 - 1. Select at random a pair of connected nodes: (i, j),
 - 2. calculate the overlap: $l(i,j) = \sum_{f=1}^{F} \delta(\sigma_{if}, \sigma_{jf}),$
 - 3. If 0 < l(i,j) < F the bond is *active* and nodes *i* and *j* interact with probability l(i,j)/F:
 - choose g randomly such that $\sigma_{ig} \neq \sigma_{jg}$ and set $\sigma_{ig} = \sigma_{jg}$.

- Model of cultural similarity and attraction²:
- The state of node *i* is a vector of *F* components: $(\sigma_{i1}, \sigma_{i2}, \dots, \sigma_{iF}).$
- Each σ_{if} can take any of the q integer values (1,..., q), initially random.
- The time-discrete dynamics is an iteration:
 - 1. Select at random a pair of connected nodes: (i, j),
 - 2. calculate the overlap: $l(i,j) = \sum_{f=1}^{F} \delta(\sigma_{if}, \sigma_{jf}),$
 - 3. If 0 < l(i,j) < F the bond is *active* and nodes *i* and *j* interact with probability l(i,j)/F:
 - choose g randomly such that $\sigma_{ig} \neq \sigma_{jg}$ and set $\sigma_{ig} = \sigma_{jg}$.
- In any finite network the dynamics settles into an *absorbing state* with no active bonds.
- ²Klemm *et al.*, PRE (2003)

The Axelrod Model on Watts Strogatz Networks

FIG. 3. The average order parameter $(\xi_{med})/N$ as a function of q for three different values of the small-world parameter p. System sizes are $N = 500^\circ$ (squares) and $N = 1000^\circ$ (diamonds); number of features F = 10. Each plotted value is an average over 100 runs with independent rewiring (p > 0) and independent initial conditions.

- critical q_c separating ordered and the disordered state,
- q_c increases with disorder from p.

FIG. 4. Phase diagram for the Axelrod model in a small-world network. The curve separates parameter values (p,q) which produce a disordered state (shaded area) from those with ordered outcome (white area). For a given p the plotted value q_{\star} is the one for which the value of the order parameter is closest to the, somewhat arbitrary but small, value 0.1 for system size $N=500^{2}$ and F=10. Inset: After subtraction of a bias $q_{\star}(p=0)=57$, $q_{\star}(p)$ follows a power law $\approx p^{1.39}$ (dashed line).

The Axelrod Model on Scale Free Networks

Figure: The average order parameter $\langle S_{max} \rangle / N$ in scale-free networks for F = 10. N = 1000 (circles), N = 2000 (squares), N = 5000 (diamonds), and N = 10000 (triangles).

FIG. 8. The average order parameter $\langle S_{max} \rangle / N$ as a function of q for F = 10 in structured scale-free networks. The networks contained N = 1000 (circles), N = 2000 (squares), N = 5000 (diamonds), and N = 10000 (triangles) nodes with F = 10 features. Each data point is an average over 32 independent realizations.

Dynamical Models

The Kuramoto Model on Scale Free Networks³

- Model of synchronisation of many interacting individuals:
 - model each as a phase oscillator with attractive coupling:

$$\dot{\theta}_i = \omega_i + \lambda \sum_{j \in \mathsf{nei}(i)}^N \sin(\theta_j - \theta_i)$$
 (3)

• define order parameter:

$$r(t) = \left| \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j(t)} \right|$$
(4)

³Moreno and Pacheco, Europhys. Lett. (2004)

Dynamical Models

The Kuramoto Model on Scale Free Networks

Fig. 1 – Coherence r as a function of λ for several system sizes. The onset of synchronization occurs at a critical value $\lambda_c = 0.05(1)$. Each value of r is the result of at least 10 network realizations and 1000 iterations for each N. The inset is a soom around λ_c .

Fig. 2 – Normalized phase distributions $D(\theta)$ for different values of the control parameter λ . The curves depicted correspond to values of λ below, near and above λ_c as indicated. The network is made up of $N = 10^6$ nodes.

Community Detection using Synchronisation⁴

• Use local order parameter: $\rho_{ij}(t) = \langle \cos(\theta_i(t) - \theta_j(t)) \rangle$

⁴Arenas et al., Physica D (2006)