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General Framework – Background

• Opinions, disease states, etc. modelled as variables on
nodes, (e.g. binary variable: [uninfected, infected],
[uninformed, informed], [against, for]...)
• dynamics determined by social interactions.

• Microscopic processes lead to cooperative phenomena,
• interaction and alignment of variables,

• e.g. synchronisation of coupled oscillators.

• Interested in transition between disordered and ordered
phases, where nodes share similar states;
• can use tools of statistical mechanics and population

dynamics.

• Results can often be translated to different contexts.
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General Framework – Basics

• Associate variables xi with states on node i , can be:
• continuous variable, or set of variables xi = (x1i , x2i , ...);
• enumerated states xi ∈ {1, 2, 3, ..., s} (same meaning);
• system configuration: x = (x1, x2, ..., xN),
• can define macro-states, e.g.: mean value 〈x〉.

• Wish to understand evolution of system:
x(t) = (x1(t), x2(t), ..., xN(t)), or 〈x〉(t), or...

• Dynamical systems theory gives tools to do this, given:
• intial values x0,
• dynamical equations: x ′i = fi (x), for future state x ′.

• e.g.: ẋ = f (x) + σLx; reaction diffusion system.
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General Framework – Issues

1. System size N often too large to solve directly,
• analytically unwieldy, numerically impractical:
• complete understanding requires phase-space map for all

sN initial configurations!

2. Network structure not known precisely, or different for
each realisation:
• cities, friendship networks, computer networks, biological

or ecological networks...

3. Initial conditions not known precisely,
• outcomes can be very sensitive to IC,
• often know only certain features, e.g. distributions of

numbers S in each state.
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General Framework – Problem

• How can we deal with such systems?

• Micro-simulation of small-scale models, Monte-Carlo,
ensemble averages...
• gain some statistical insight,
• study factors affecting outcomes by studying initial

conditions.

• to gain more understanding need to simplify in
meaningful way,
• make analytically feasible.
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Analytical Methods

• Know that dynamics tends to reduce variability and
increase order:
• individuals end up sharing same technology, language,

opinion, velocity...
• i.e. correlation of neighbouring states.
• familiar from statistical physics...

• Use concepts and tools from statistical mechanics,
• need to extend to deal with complex topologies.

• Ask questions such as:
• what are likely equilibrium states, if they exist?
• what are mechanisms driving ordered/polarised state?
• what are thresholds for transitions?
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Analytical Methods - Master Equation

• Dynamical process described by state transitions:
• xa → xb; where xa, xb are different configurations.

• Often don’t know precise dynamics due to unknown
factors or noise.
• instead focus on probability P(x, t), for particular config.

• Master equation (ME):

∂tP(x, t) =
∑
x′

[P(x′, t)W (x′ → x)− P(x, t)W (x→ x′)] ,

W (xa → xb) are transition rates.
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ME e.g.: Growing Networks

Master Equation for number of nodes Nk with degree k :

• ∂tNk = rk−1→kNk−1 − rk→k+1Nk + δk,m

For the simple Barabási-Albert model:

• each new node i has a edges to nodes j with probability
∝ kj , degree of j

• ME: ∂tNk = 1
N

[(1− k)Nk−1 − kNk ] + δk,1

• note: t = N, so Nk = tnk , obtaining:

• nk = nk−1
(k−1)
(k+1)

; and hence:

• nk =
4

k(k + 1)(k + 2)
. I.e. P(k) ∝ k−3.
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Master Equation – Simplifications

• ME has sN equations with sN terms,

• need to find ways to simplify.

• Do not need whole configurations:
x = (x1, x2, ..., xN) and x′ = (x ′1, x

′
2, ..., x

′
N)

• State xi of node i depends only on its neighbours j so:

W (x′ → x) =
∏

i

w(x ′i → xi |xj),

where w are trans. rates conditional only on neighbours.

• Network topology now plays a role in dynamics.
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• In principle possible to compute expectation value of
function A(x):

〈A(t)〉 =
∑

x

A(x)P(x, t).

• In practice impossible to solve ME in most cases!

• Additionally most real-world applications are
non-equilibrium
• not possible to use equilibrium thermodynamics and

ergodic hypothesis.
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Approx. Solutions of Master Equation

1. Consider appropriate projection:
• e.g.: average number in state xi = a at time t:

〈Na(t)〉 =
∑

x

∑
i

δxi ,aP(x, t),

δ is Kronecker delta.
• average quantity ⇒ deterministic.

2. Neglect network structure, assume homogeneous system
with no correlations; prob(xi = a) = pa, for each i :

P(x) =
∏

i

pxi
.

• Mean Field (MF) approximation.
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(In-)Validity of Mean Field Approx.
MF valid when:

• Variables (degrees of freedom) of system are iid:
• generally not true, as interactions are by definition

dependencies!
• can get around using pair approximation schemes:

• assume neighbours j only dependent on self i .

• Homogeneous mixing; i.e. all i have equal chance of
interacting with all j ,
• again, network structure invalidates this,
• can assume independence of neighbourhoods:

• neighbours of i are on average same as system average.

However:

• produces analytically tractable results,

• in many cases useful ones.
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Example of Mean Field Approx. Scheme

• Consider simple system:
• two states: xi = A and xi = B,
• Dynamics: A + B → 2B, rate β.

• w(A→ A|xj = A) = w(B → B|xj = A)
= w(B → B|xj = B) = 1, w(A→ B|xj = B) = β

• Using: 〈NA(t)〉 =
∑
x

∑
i

δxi ,AP(x, t)

and 〈NB(t)〉 =
∑
x

∑
i

δxi ,BP(x, t)

• ME: ∂t〈NB(t)〉 =
∑
x

∑
i

δxi ,BδtP(x, t)
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∂t〈NB(t)〉 =∑
i

∑
x′

∑
x

[
δxi ,B

∏
k

w(x ′k → xk |x ′j )P(x′, t)− δxi ,B

∏
k

w(xk → x ′k |xj)P(x, t)

]
,

and using the normalisation conditions:∑
x′

∏
k

w(xk → x ′k |xj) = 1,∑
x
δxi ,B

∏
k

w(x ′k → xk |x ′j ) = w(x ′i → xi = B|x ′j )

∂t〈NB(t)〉 =
∑
i

∑
x′

[
w(x ′i → xi = B|x ′j )P(x′, t)

]
− 〈NB(t)〉

Now using MF: pA = NA/N, pB = NB/N and P(x′) =
∏

i px′
i
:∑

x′
w(x ′i → xi = B|x ′j )P(x′, t) =

∑
x′
j

[
w(x ′i = A→ xi = B|x ′j )pA

∏
j∈V(i)

px′
j

+ w(x ′i = B → xi = B|x ′j )pB

∏
j∈V(i)

px′
j

]
,

LHS w = β with prob 1− (1− pB)k , and RHS w = 1 always, so:

• ∂t〈NB(t)〉 = βNA(1− (1− NB/N)k).
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